
A Hybrid Genetic Algorithm and Inver Over Approach for the
Travelling Salesman Problem

Shakeel Arshad, and Shengxiang Yang,Member, IEEE

Abstract— This paper proposes a two-phase hybrid approach
for the travelling salesman problem (TSP). The first phase is
based on a sequence based genetic algorithm (SBGA) with an
embedded local search scheme. Within the SBGA, a memory is
introduced to store good sequences (sub-tours) extracted from
previous good solutions and the stored sequences are used to
guide the generation of offspring via local search during the
evolution of the population. Additionally, we also apply some
techniques to adapt the key parameters based on whether the
best individual of the population improves or not and maintain
the diversity. After SBGA finishes, the hybrid approach enters
the second phase, where the inver over (IO) operator, which
is a state-of-the-art algorithm for the TSP, is used to further
improve the solution quality of the population. Experiments
are carried out to investigate the performance of the proposed
hybrid approach in comparison with several relevant algorithms
on a set of benchmark TSP instances. The experimental results
show that the proposed hybrid approach is efficient in finding
good quality solutions for the test TSPs.

I. I NTRODUCTION

The travelling salesman problem (TSP) is probably the
most widely studied combinatoral optimization problem and
attracted a large number of researchers over the last five
decades. For a TSP, a salesman needs to visit each of a set
of cities exactly once, completing a tour by arriving at a city
that is the start and by travelling the minimum distance or to
find a minimum weight Hamiltonian cycle in a graph. More
formally, given N cities, the TSP requires to search for a
permutationπ = {π(0), π(1), · · · , π(N − 1)}, using a cost
matrix C = {cij}, wherecij denotes the cost (known to the
salesmen) of travelling from cityi to city j, which minimizes
the path length defined as follows:

f(π, C) =

N∑

i=0

cπ(i),π(i+1) mod N (1)

whereπ(i) denotes thei-th city in the tour. Assuming that
a city i in a tour is marked by its position(xi, yi) in the
plane, and the cost matrixC contains the Euclidean distance
between cities, then the TSP is both symmetric and metric.

The search space of a TSP is giant, containingN ! per-
mutations, and the TSP was identified by Gareyet. al. [3]
to be NP-hard. There are many exact and approximation
algorithms developed for solving TSPs. Since the TSP has a
variety of application areas, such as, vehicle routing, robot
control, crystallography, computer wiring, and scheduling,
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etc and is a typical combinatorial optimization problem,
it has attracted the interest of the genetic algorithm (GA)
community [7]. Various techniques have been considered
when solving TSP by using GAs. These include crossover,
mutations, selections and local searches. In most GAs, the
operations are simple; but more complex techniques are also
used and are still in progress.

This paper proposes a two-phase hybrid approach for the
TSP. In the first phase, a sequence based genetic algorithm
(SBGA) which was proposed in [1], but here we have used
an embedded local search scheme to solve the TSP. Here
the word“embedded”means that the local search technique
is applied before the final evaluation of the individual in
crossover and mutation. Within the SBGA, a memory is
introduced to store good sequences (sub-tours) extracted
from previous good solutions. The stored sequences are used
to guide the generation of offspring during the crossover
and mutation operation. After each crossover and mutation
operation, local search runs to improve the fitness of newly
created child based on the set of sequences stored in the
memory. Additionally, some procedures are applied to main-
tain the diversity by breaking the selected sequences into
sub-tours if the best individual of the population does not
improve. After SBGA finishes, the hybrid approach enters
the second phase, where the inver over (IO) algorithm [11],
which is a state-of-the-art algorithm for the TSP, is used to
further improve the solution quality of the population. IO is
a kind of blind operator. Along with good adaptive power it
suffers from random inversions which does not give better
individuals finally. We modified the original IO by making
the inversions restrictive, only those inversions with better
fitness scores will be retained and replace the original tour
i-e. a kind of local refinement with IO.

In order to investigate the performance of the proposed
hybrid approach for the TSP, experiments are carried out to
compare it with other relevant algorithms on a set of small
and large benchmark TSP instances. Experimental results
show that the proposed hybrid approach is superior to the IO
algorithm in terms of the convergence speed solution quality
and time as well.

The rest of the paper is outlined as follows. Section II
describes the proposed hybrid approach, including the SBGA
and the IO operator. Section III presents the experimental
study. Finally, concludes this paper with discussions on future
work.



Algorithm 1 Sequence Based GA (SBGA)
1: Initialize Pop of the sizepopsize
2: for each individualindi ∈ Pop do
3: indi := 2-Opt(indi, K)
4: end for
5: repeat
6: Adapt the size of sequencesLseq

7: GenerateSequence(Numseq)
8: mating pool := TournamentSelect(Pop)
9: // Crossover

10: for j := 0 to popsize do
11: Select two parentsia and ib from themating pool
12: if (rand(0, 1) < pc) then
13: Create childa and childb by e −

SBOX(ia, ib, F reqOfinsertion)
14: Add childa andchildb to Poptmp

15: end if
16: end for
17: // Mutation
18: for each individualindi ∈ Poptmp do
19: if (rand(0, 1) < pm) then
20: e − SBIM(indi, inversions, F reqOfinsertion)
21: Add indi to Poptmp

22: end if
23: end for
24: Pop := SelectNewPop(Pop + Poptmp)
25: until Termination condition = true

II. T HE PROPOSED HYBRID APPROACH FOR THETSP

A. Phase 1: SBGA with embedded local search

As mentioned before, the first phase of the hybrid approach
is based on the SBGA proposed in [1]. The structure of
the SBGA used in this paper is shown in Algorithm 1.
SBGA uses a reverse approach of fragment assembly in DNA
sequencing. In DNA sequencing, all possible base pairs of
genome are putting together in pieces that match and the
sequence becomes bigger and bigger [9], [8]. In SBGA, sub-
tours are used to construct the whole tour. Similar work has
been done in [10], where an individual is broken into parts
and then reconnected in a random way.

The first step of SBGA is to initialize the population. A
simple 2-Opt improver is applied to each individualindii for
K iterations to give a nice start for SBGA. Then, a set of
Numseq sequences are generated as follows. A set of best
individuals are selected from the population. Each selected
individual is then broken into sub-tours, each of which has
the same number of cities. The sub-tour with the shortest
length is selected, further optimized by a 2-opt improver [5],
and then stored in a sequence set. This set of sequences
will be used to guide the crossover and mutation by putting
the sequence in a proper location among a set of random
locations.

After the construction of sequences, a mating pool is
generated using the tournament selection with the tournament
size 3. Then, crossover and mutation are performed based on
the set of sequences to generate offspring. In the proposed
hybrid approach, we integrate the local search operator as an
additional part within crossover and mutation not a separate
one as in our previous study [1]. Simply, the local search runs
after each crossover and mutation operation to improve the
fitness of newly created child. The details of each operation

are given in the following subsections, respectively.
1) Sequence generation:In SBGA, after the set of se-

quences are initialized, we update the set of sequences when
the fitness of the best individual of the population improves.
For the generation or update of the set of sequences, a certain
percentage of the best individuals from the population are
selected. Each of these selected individuals is checked oneby
one to generate sequences as follows. An individual is broken
into equal parts (sub-tours), each with the same number of
nodes. The next step is to find the shortest sub-tour among the
candidate sub-tours. SBGA starts from the first nodei = 0
and goes until the node(i < n−Sseq), whereSseq represents
the size of a sequence, i.e., the total number of nodes in a
sequence (sub-tour).

Algorithm 2 GenerateSequence(Numseq)

1: Select the best individuals from the population and storethem in
Bestindi

2: for i := 0 to Numseq do
3: Split Bestindi[i] into n sub-tours, each with the same number of

nodes
4: Calculate the length of each sub-tour
5: Further optimize the sub-tour with the minimum length by a2-Opt

improver
6: Store the sub-tour into the set ofSeqNumseq

7: end for

Algorithm 3 e − SBOX(ia, ib, Finsert)
1: Randomly selectSsel;
2: Remove the nodes ofSsel from thenodesind of individual ia and ib
3: Perform OX on the remainingnodesind of ia andib to create children

childa and childb

4: Apply SBLS(childa, Ssel, Finsert)
5: Apply SBLS(childb, Ssel, Finsert)
6: Evaluate(childa , childb)

For example, given an individual ABCDEFGHI-
JKLMNOP and the number of nodes in a sequence
Sseq = 4, then the candidate sequences for the shortest path
in this individual areABCD, BCDE, · · · , MNOP. In this
spliting procedure, one node comes in and one goes out. So
almost every node participates. The length of each sub-tour
is calculated. Suppose the shortest sequence isBCDE. Then,
BCDE is further optimized by the 2-Opt improver to, say,
CDBE. Finally, this sequenceCDBE is stored in a set of
sequncesSeqNumseq. The same procedure applies for all
selected top individuals to generateNumseq sequences.

2) embedded-Sequence Based Order Crossover (e-SBOX):
The Order Crossover (OX) [2], [4] is a sexual reproduction
operator. It is the variant of “two point crossover” and is
a classical “blind” heuristic, which does not depend on the
local city-to-city distance information, but only on the global
“whole genome” fitness to achieve progress. It is observed to
be one of the best in terms of quality and speed, and simple
to implement.

In SBGA, we use a modified OX operator, the embedded-
sequence based OX (e-SBOX). The pseudocode of e-SBOX
is shown in Algorithm 3. e-SBOX works as follows. First, a
random sequenceSsel is selected from the set of sequences.



Two individuals are selected from themating pool, which is
created through the tournament selection as mentioned above.
If the crossover condition is satisfied, then those nodes of the
sequenceSsel are removed from both of the individuals and
crossover occurs between the remaining partial individuals to
create two partial children. These two partial children then
undergoes sequence based local search (SBLS) to create two
complete children.

e-SBOX is illustrated using the following example. Let
ia and ib represent the parents (P1, P2) andchilda, childb

represent the children (C1, C2). Let the sequenceSsel be
CDBE, then the crossover performs as follows:

Algorithm 4 e − SBIM(im, inversions, Finsert)
1: Randomly selectSsel

2: S′

sel
:= reverse selectedSsel

3: itemp := remove the cities inSsel from individual im
4: for i := 0 to inversions do
5: Randomly select two pointsp1 andp2 (p1 < p2)
6: i′temp := inverse cities in between pointsp1 andp2 of itemp

7: if f(i′temp) < f(itemp) then
8: itemp := i′temp
9: end if

10: end for
11: Apply SBLS(itemp, S′

sel
, Finsert)

12: Evaluate(itemp)
13: im := itemp

Select Perents:
P1:=ABCDEFGHIJKLMNOP
P2:=PONMLKJIHGFEDCBA
Remove (CDBE):
P1tmp :=AFG | HIJK | LMNOP
P2tmp :=PON | MLKJ | IHGFA
After crossover:
C1tmp :=GFAHIJKPONML , C2tmp := NOPMLKJAFGHI
Apply:
SBLS(C1tmp, Ssel, Finsert) , SBLS(C1tmp, Ssel, Finsert)
C1 :=GFAHIJKCDBEPONML
C2 := NOPMLKJACDBEFGHI

The parameterFinsert supplied to the crossover operator
denotes the percentage of random locations that will be
checked for inserting the senquenceSsel in an individual.
The Finsert varies from 5% to 15% to the size of a TSP
instance. For example, for theeil101 TSP instance used in
the experimental study, 5 random locations will be checked
if Finsert = 5% since there are 101 cities in theeil101 TSP
instance.

3) embedded-Sequence based inversion mutation (e-
SBIM): After crossover, each offspring undergoes mutation
with a small probabilitypm. For TSPs, the Simple Inversion
Mutation (SIM) operator is one of the best performers [4].
In our approach, we perform embedded sequence based
inversion mutation (e-SBIM) on an individual for some iter-
ations, and preserve those inversions which have a positive
effect on the performance. This increases the convergence
speed although involving an extra overhead on the mutation
operator. The number of iterations of e-SBIM depends on

whether the best fitness changes. If the best fitness changes
for each generation, e-SBIM will not execute. So, the number
of executions will be in the range[0, Sseq]. The details of
e-SBIM is shown in Algorithm 4.

The overall procedure of e-SBIM is similar to that of
e-SBOX. The difference lies in that e-SBIM inverts the
sequence before inserting it in an individual. Here, if the
passing parameterinversions is equal to 0, e-SBIM will not
execute; otherwise, e-SBIM will be executed forinversions
iterations by selecting two random points in the remain-
ing nodes of the individual and performing the inversion.
Then, the fitness of the resultant individuali′temp, f(i′temp),
is calculated. If it is better than the fitnessf(itemp) of
itemp, that inversion is accepted; otherwise, the inversion is
rejected. Thereafter, SBLS is executed, where the inverted
Ssel is inserted into a best position among a set of different
random positions. Our approach guarantees possibly fruitful
individual as the position to insert the inversed sequence is
optimized.

A demonstration of a mutation operation is given below,
whereim denotes the parentP and itemp denotes the child
C.

Algorithm 5 SBLS(indi, Ssel, Finsert)
1: X := 2-Opt(indi, K)
2: Create a set of|X|×Finsert random locations, where|X| denotes the

number of cities inX
3: Find thebest position in X which gives the minimum length increase

after insertingSsel, according to the following equation:
IncLength = MinN−M

j=0
(dist[seq[0]][Xj]+

dist[seq[M − 1]][Xj+1] − dist[Xj ][Xj+1])
whereN is the total number of cities in the TSP andM is the number
of cities in Ssel

4: indi := insertSsel into X at the positionbest position
5: Evaluate(indi )

Parent: P :=ABCDEFGHIJKLMNOP
After removing (ECDB): Ptmp :=AFG | HIJKLMN | OP
After inversion: Ctmp :=AFG | MNLKJIH |OP
Apply: SBLS(Ctmp, Ssel, Finsert)
C :=AFGMNLKJIHBDCEOP

4) Sequence based local search (SBLS):Local search
(LS) is an efficient heuristics for combinatorial optimization
problems [6]. In SBGA, the set of sequences stored in the
memroy is applied in the LS to guide the generation of
children towards promising area of the search space. The
pseudocode of SBLS is shown in Algorithm 5.

SBLS takes an individualindi and first performs 2-Opt
improver for K times. Then, SBLS finds the best position
from a set of randomly selected positions to insert a selected
sequence intoindi. The distance between the first and
last nodes of the sequenceSsel is calculated according to
the distance matrix relevant to the adjacent nodes of the
individual indi where the sequence may be inserted. The
position corresponding to the minimum length increase value
IncLength is used to insert the sequenceSsel to indi.

5) Adapting Parameters and Maintaining the diversity:
In SBGA, we use adaptive techniques to adapt several key



parameters, including the step sizeK for the 2-Opt improver
used in SBLS, the size of sequencesSseq, and the crossover
and mutation probabilities. For the first parameter,K is
initially set to 5. When the best fitness of the population
does not imporve, the value ofK is increased by 5 until it
reaches 20. If the best fitness of generation improves,K is
reset to 5.

The size of sequencesSseq stored in the memory is
adapted also according to whether the best fitness of genera-
tion improves. Initially,Sseq is set to the value of⌊N/

√
N⌋,

whereN is the total number of cities in the TSP and⌊x⌋
returns an integer nearest or equal tox. We use a variable
tus to denote when to updateSseq, which is initialized
to 20. When the best fitness of the population does not
imporve, tus is decreased by one. Whentus = 15, we set
Sseq := ⌊0.75 × N/

√
N⌋. When tus is further reduced to

10, we setSseq := ⌊0.5 × N/
√

N⌋. When tus is further
reduced to 5, we setSseq := ⌊0.25× N/

√
N⌋. Whentus is

further reduced to 0,Sseq := 2, which means a sequence will
become an edge(i, j) and SBGA searches for the shortest
edge and re-inserts it in a proper position of an individual in
SBLS. If the best fitness of the population improves,tus is
reset to 20 andSseq is reset to⌊N/

√
N⌋.

Algorithm 6 Inver-Over(Pop(t))

1: for eachroutei in Pop(t) do
2: route∗ := routei

3: select randomly a cityC from route∗

4: while TRUE do
5: if rand(0, 1) < p then
6: select the cityC∗ from the remaining cities inroute∗

7: else
8: select randomly a route from the population
9: assign toC∗ the next city toC in the selected route

10: end if
11: if the next or previous city of cityC is C∗ in route∗ then
12: exit from the while loop
13: end if
14: inverse the section from the next city of cityC to city C∗ in

route∗

15: C := C∗

16: end while
17: if Length(route∗) < Length(routei) then
18: routei := route∗

19: end if
20: end for

We also adapt the crossover probabilitypc and mutation
probability pm as follows. Initially, we setpc = 0.55 and
pm = 0.05. If the best fitness of the population does not
imporve, we increasepc with a step size 0.05 until it reaches
0.8 andpm with a step size 0.005 until it reaches 0.5. If the
best fitness of the population improves,pc andpm are reset
to their initial values.

B. Phase 2: The modified Inver over (IO) algorithm

We have proposed two simple modification to the IO
algorithm. we have explained these modification along with
the origional IO algorithm in the following text repectively.

1) The Inver Over: Inver-over [11] is a smart operator
based on simple inversion. However, adaptive in nature,

knowledge taken from other individuals in the population.
IO is an unary operator, since the inversion is applied to a
segment of a single individual, however, the selection of a
segment to be inverted is population driven, thus the operator
displays some characteristics of crossover/recombination.
The outline of the IO operator is shown in Algorithm 6 and
it works with only two parameters, the population size and
the probability of random inversionp = 0.02.

2) Restricted Inver Over:It is clear from the above
Algorithm 6, that the main loop terminates only and only
if the next or previous city of cityC is C∗ in route∗ then
exit from the main loop. It does not consider which inversion
contributes in fitness gain or not. We have made the inversion
restricted by shifting the evaluating part of Algoithm 6 into
the mainwhile() loop before the assignment ofC := C∗. At
fist it seems to be an extra overhead on the IO and this would
increase the execution time. But it should be interesting to
compare with original IO or proposed restricted IO not even
decrease the computation time but also contributes in good
solution quality. From Table I this comparison is quite clear.

3) Restricted Inver Over with partial random initializa-
tion: As mentioned above, SBGA performs well at the
early stage of evolution and do fast conversion which is
obvious from Fig.3, which can get good fitness but reduce
the diversity as well. So, when IO is employed in the second
phase of our hybrid approach, it not only brings diversity but
also contributes better in obtaining good results in terms of
fitness.

Since the diversity of the population affects the perfor-
mance of IO greatly, in our hybrid approach, before giving
control to IO, along with previous parent and child popu-
lations, some percentage of random individuals are injected
into the population. If thepopsize is 30, then the total size
of the population for IO in the second phase will be 90 (30
parents, 30 children, and 30 random individuals respectively)
and for large benchmark the population size is 60 (20 parents,
20 children, and 20 random individuals respectively). This
approach is denoted by SBGA+IO+RI in this paper.

III. E XPERIMENTAL STUDY

A. Experimental setting

In this section, we present the experimental results of the
proposed hybrid approach SBGA+IO+RI in comparison with
other three relevant algorithms, which are the IO algorithm
[11], the original SBGA proposed in [1], and SBGA+IO that
is the proposed hybrid approach but without adding random
individuals into the population when the second phase (i.e.,
IO) is started.

The proposed approach was implemented in C++ on a
2.66 GHz PC under the Windows Visual Studio environ-
ment. All TSP problem instances (except CHN144) are
obtained from TSPLIB1 for the symmetric TSP. The number
of cities in these cases varies from 51 to 144 for small
problems and from 318 to 1173 for large problems. The
SBGA is not perfomed for large problems, because it takes

1Available from http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/



TABLE I

THE EXPERIMENTAL RESULTS OFIO, SBGA, SBGA+IO,AND SBGA+IO+RI

Instance Measure IO SBGA SBGA+IO SBGA+IO+RI

Best 544.369 553.097 546.886 544.369
EIL76 Err 0.0118 0.0280 0.0165 0.0118
(538) Avg 550.304 557.2756 556.401 548.294

Err 0.0228 0.0358 0.0342 0.0191
Avg Time 6.50 19.00 4.80 5.7
Best 644.275 663.867 645.919 645.205

EIL101 Err 0.0242 0.0554 0.0268 0.0257
(629) Avg 652.851 677.73 653.879 651.444

Err 0.0379 0.0774 0.0395 0.0356
Avg Time 6.80 23.00 5.60 6.3
Best 21285.4 21890.66 21285.4 21285.4

KROA100 Err 0.0001 0.0285 0.0001 0.0001
(21282) Avg 21328.8 21896.66 21430.5 21321.7

Err 0.0021 0.0288 0.0069 0.0018
Avg Time 6.80 23.09 5.60 6.16
Best 20769.9 21732.1 20750.8 20750.8

KROC100 Err 0.0010 0.0473 0.00001 0.00001
(20749) Avg 20879.1 21884.96 20921.7 20822.1

Err 0.0062 0.0547 0.0083 0.0035
Avg Time 6.70 23.00 5.40 6.2
Best 14397 14755 14397 14397

LIN105 Err 0 0.0248 0 0
(14397) Avg 14446.5 15276.7 14505.2 14426.4

Err 0.0034 0.0611 0.0075 0.0020
Avg Time 6.90 24.50 5.60 5.7
Best 31388.1 32169 30661.1 30353.9

CHN144 Err 0.0343 0.0600 0.0103 0.0002
(30347) Avg 31681.6 33470.9 30953.9 30698.7

Err 0.0439 0.1029 0.0199 0.0115
Avg Time 6.96 17.00 5.00 7.00

Best 43045.5 – – 42831.6 42964.4
LIN318 Err 0.02419 – – 0.01909 0.0222
(42029) Avg 43174.8 – – 42955.8 43070

Err 0.0272 – – 0.0220 0.0247
Avg Time 47.35 – – 47.84 37.36
Best 55625.7 – – 51868.3 51866.9

PCB442 Err 0.0954 – – 0.0214 0.0214
(50778) Avg 55868.9 – – 52013.46 52236.8

Err 0.1002 – – 0.0243 0.0287
Avg Time 74.26 – – 61.78 55.36
Best 12096 – – 7018.98 7031.91

RAT575 Err 0.7859 – – 0.0363 0.03822
(6773) Avg 12721.4 – – 7031.45 7048.58

Err 0.8782 – – 0.0381 0.0406
Avg Time 110.36 – – 98.08 76.29
Best 34093.5 – – 9526.48 9218.27

RAT783 Err 2.8716 – – 0.05115 0.0468
(8806) Avg 34946.3 – – 9267.84 9244.28

Err 2.9684 – – 0.05244 0.0497
Avg Time 190.57 – – 72.33 106.06
Best 140569 – – 43304.2 43441

U724 Err 2.3540 – – 0.0332 0.0365
(41910) Avg 145847 – – 43519.3 43485.8

Err 2.4800 – – 0.03839 0.0376
Avg Time 157.80 – – 139.94 92.84
Best 2.26e+06 – – 250757 252305

V1084 Err 8.4344 – – 0.0478 0.0543
(239297) Avg 2.29e+06 – – 251469 252955

Err 8.5698 – – 0.0508 0.0570
Avg Time 332.80 – – 196.98 159.20
Best 432382 – – 60223.4 60055.9

PCB1173 Err 6.5880 – – 0.0568 0.0539
(56982) Avg 440485 – – 60476 60481

Err 6.7302 – – 0.0613 0.0614
Avg Time 347.17 – – 217.36 172.37

longer time which can be seen from Table: I. The parameters for the algorithms were set as follows. The population size
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Fig. 1. Experimental results of IO, SBGA,SBGA+IO, and SBGA+IO+RI. The effect of our approach has more additive improvements the original IO.

was set to 30 for the first eight TSP instances in the four
techniques. For IO and SBGA+IO the population size is 60
in large problems. And for SBGA+IO+RI algorithm, initialy
the population size was set to 20 for the first phase and
for second phase the population size were increased to 60
for making the population size consistent for the three tech-
niques. The crossover probability and mutation probability
were initially set topc = 0.55 andpm = 0.055, respectively,
which are adapted by a small value to a maximum value
when the best fitness of the generation does not change. The
percentage of random locations to insert a sequence,Finsert,
was set to 5% for these experiments.

B. Experimental results and analysis

In Table I, we present the averaged results of IO, SBGA,
SBGA+IO, and SBGA+IO+RI over 30 independent runs. In
this table, “Best” denotes the best tour found and “Avg”
denotes the average fitness over 30 runs. The “Err” rows

give relative deviation to the global optimal fitness listedin
the table after the instance name. Finally, “Avg Time” is the
average time used by algorithms in seconds. Fig. 1 shows the
dynamic performance of algorithms regarding the average
fitness against the number of generations.

From Fig.1 and Fig.2 the behaviour of SBGA shows that
SBGA gives a better convergence speed at the initial stage of
the solving progress. The convergence speed is also visible
from Fig.3, which is ploted from10k evaluations of both the
algorithms forchn144andpcb1173Then, it behaves similar
to the IO operator. In terms of the number of evaluations,
the ratio between IO and SBGA is 1:3, as SBGA using
the traditional binary operator with an additional embedded
SBLS. But due to adaptive behaviour of IO, it gives a better
solution quality at the later stage of the hybrid approach. The
hybrid approach combines both the features of SBGA and
IO. First, SBGA brings the fitness to a near-optimal level in
a few generations and then IO further works and improves
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Fig. 2. Experimental results of IO,SBGA+IO, and SBGA+IO+RI. The effect of our approach is more prominent in larger problems. The arrow shows
the switchover from Phase:1 to Phase:2.
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the fitness to give a better solution quality.
It can also be observed that when the new population is

selected from parent and child, lots of information is lost.
So, by keeping parent and child population and introduc-
ing some random individuals,the SBGA+IO+RI outperforms
SBGA and SBGA+IO. From Table 1, it can be seen that
SBGA+IO+RI achieves better solutions than IO on all test
instances, while SBGA+IO is slightly worse (first eight small
and medium instances), but comparatively better then SBGA.
However, from the results of Table 1 and Fig.1, we can
see that our hybrid approach SBGA+IO+RI outperforms IO
regarding both the convergence speed and solution quality
and time.

It should be interesting to compare original IO and our var-
ious proposed approaches which is mentioned above. Figure
1 and 2 shows the plots between average tour length and
generation for 13 problems. The three types of refinement
can enhance the performance, both converged more rapidly
than original IO. The use of SBGA, restrictive IO and
RI also have additive effects on performance gain and the
contribution is dominating. From these preliminary results,
one may speculate that our approach is more effective and
increase the“Adaptive Power” of the IO which is not fully
contributed by the original IO in case of small as well as in
large TSPs instances.

In terms of computational time, it is obvious that per-
forming extra steps in our proposed approach would increase
the execution time. But from Table I the characteristics are
totally opposite. The IO takes longer time on all the instances
small and large. In case of rat575,rat783,u724,v1084 and
pcb1173 the IO is unable to achieve acceptable fitness, but
due the additive effect of our approaches with IO, it not
only gets better fitness but the execution time is reduced
remarkably. We may speculate that most of the time in
wasted in inversions which is not fruitful regarding fitness
gain.

From Fig 1 and Fig 2, various algorithms are shown
in different line styles. It is obvious from the plots that
our proposed approaches are not overlapping. Which means
that each and every refinement can contribute to additional
performance gain. These contributions are more effective for
large problems. However, with these refinement not only
decrease the error rate but the CPU time used are reduced
almost in all problems.

CONCLUSION AND FUTURE WORK

This paper proposes a hybrid approach for the TSP based
on a sequence based genetic algorithm (SBGA) and IO
operator. In the first phase, SBGA is used with an embedded
local search scheme to solve the TSP. Within the SBGA,
a memory is introduced to store good sequences extracted
from previous good solutions. The stored sequences are used
to guide the generation of offspring during the crossover
and mutation operations. After each crossover and mutation
operation, a sequence based local search scheme runs to
improve the fitness of newly created child. Some effective
ideas are proposed for adapting the key parameters and

maintaining the population diversity. After SBGA finishes,
the second phase uses the inver over (IO) algorithm [11]
with some extra refinements i-e. restrictive inversions and
random immigrants like scheme, (IO) which is a state-of-
the-art algorithm for the TSP, to further improve the solution
quality of the population.

In order to investigate the performance of the proposed
hybrid approach for the TSP, experiments are carried out
to compare it with three relevant algorithms on a set of
benchmark TSP instances. Experimental results show that the
proposed hybrid approach is superior to the IO algorithm and
the original SBGA regarding both the convergence speed and
solution quality on most test TSP instances.

There are several issues for future research. Firstly, our
concept totally depends on the formation of the set of
sequences. It is interesting to further study when a new
set of sequences should be introduced to SBGA in the
first phase of our hybrid approach. Secondly, during the
experiments it has been observed that some of the sequences
contain redundant information which causes the premature
convergence at some stage of the solving process. Finally,
in this study, we investigate the hybrid approach for solving
small, medium and large scale TSP instances. However, for
larger scale instances, more time is needed and the speed is
comparatively slow. One future research would be to study
more complex TSPs and related problems like asymmetric
TSPs, sequential ordering, and capacitated vehicle routing
etc.
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