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Abstract. In recent years, there has been an increasing concern from
the evolutionary computation community on dynamic optimization prob-
lems since many real-world optimization problems are time-varying. In
this paper, a triggered memory scheme is introduced into the particle
swarm optimization to deal with dynamic environments. The triggered
memory scheme enhances traditional memory scheme with a triggered
memory generator. Experimental study over a benchmark dynamic prob-
lem shows that the triggered memory-based particle swarm optimization
algorithm has stronger robustness and adaptability than traditional par-
ticle swarm optimization algorithms, both with and without traditional
memory scheme, for dynamic optimization problems.

1 Introduction

In recent years, there has been an increasing concern from the evolutionary com-
putation community on problem optimization in dynamic environments since
many real-world problems are dynamic optimization problems (DOPs), where
stochastic changes may occur regarding the optimization goal, the problem in-
stance, or some restrictions. For DOPs, the goal of evolutionary algorithms (EAs)
is no longer to find a satisfactory solution, but to track the trajectory of the
moving optimum in the search space. This poses a great challenge to traditional
EAs. To address this challenge, several approaches have been developed into
EAs to improve their performance in dynamic environments [2,3,9,10,13,16]. A
comprehensive survey can be found in [4].

The genetic algorithm (GA) was the first evolutionary computation approach
used to explore DOPs. Recently, particle swarm optimization (PSO), as another
evolutionary computation technique, has been applied to DOPs. In this paper,
a triggered memory-based approach is introduced into the PSO to improve its
performance in dynamic environments. The triggered memory scheme enhances
traditional memory scheme with a triggered memory generator. Experimental
study over a benchmark dynamic problem shows that the triggered memory
scheme efficiently improves the performance of PSOs in dynamic environments.
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The rest of this paper is outlined as follows. The next section briefly describes
the PSO and surveys the literature on PSOs for DOPs. Section 3 proposes a
variety of triggered memory-based methods for PSOs to handle dynamic envi-
ronments. Then, the experimental settings and results are reported in Section
4 and Section 5 respectively. Finally, Section 6 concludes this paper with some
suggestions for future work.

2 Particle Swarm Optimization in Dynamic Environments

Particle swarm optimization was first introduced by Kennedy and Eberhart
[7,12]. PSO simulates the social behaviour among particles that “fly” through a
solution space. Each particle accomplishes its own updating based on its current
velocity and position, the best position seen so far by the particle, and the best
position seen so far by the population (or by the local neighbourhood in the
local version of PSOs. In this paper, only the global version is discussed). The
behaviour of a particle can be described as follows:

vi(t + 1) = ωvi(t) + c1ξ(pi(t) − xi(t)) + c2η(pg(t) − xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

where vi(t) and xi(t) represent the current velocity and position of particle i at
time t respectively, pi(t) is the position of the best solution discovered so far by
particle i, pg(t) is the position of the best solution found so far by all particles,
ω is the inertia weight that controls the degree a particle’s previous velocity will
be kept, c1 and c2 are individual and social learning factors, and ξ and η are
random numbers in the range [0, 1].

As a kind of robust optimization technique, PSO has been widely used for
stationary optimization problems where the fitness landscape does not change
during the course of the computation. Recently, the application area of PSOs
has been extended to time-varying systems. When applied for DOPs, traditional
PSOs face a big problem, that is, the whole population will eventually converge
to a small area, from which it is very difficult for PSOs to jump out to fol-
low the changes. This is a challenge to traditional PSOs for DOPs. Recently,
researchers have developed a number of PSO approaches for DOPs, which are
briefly reviewed below.

Eberhart and Shi [8] put forward the first work, where the PSO was investi-
gated to track a single peak that varies spatially. Based on a parabolic function
f(·) = x2 + y2 + z2, they observed that the tracking errors achieved by the stan-
dard PSO are several order of magnitude less than those achieved by comparable
GA-based approaches.

Hu and Eberhart [11] introduced an adaptive PSO, which automatically tracks
various changes in a dynamic system. They tested different environmental detec-
tion and re-randomization strategies, which effectively respond to a wide variety
of changes, and reported and analyzed the experimental results on the parabolic
function and Rosenbrock’s benchmark function with various severities of envi-
ronmental changes.
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Parott and Li [14] investigated a PSO model for tracking multiple peaks in a
continuously changing dynamic environment. Multiple parallel subpopulations
were constructed by a form of speciation and encouraged to simultaneously track-
ing multiple peaks by preventing overcrowding at peaks in this model. The ex-
periments in dynamic multimodal environments indicated that the technique
was capable of tracking multiple changing peaks simultaneously.

A method of adapting PSO for dynamic environments was present by Carlisle
and Dozier [6]. In their PSO, each particle can reset the record of its best position
and avoid making direction and velocity decisions based on outdated informa-
tion as the environment changed. Two resetting methods were examined and
experimental results show that both were able to improve the performance of
PSO in both static and dynamic environments.

Blackwell and Branke [1] proposed several new variants of PSOs specifically
designed for non-stationary environments, where the single population PSO and
charged PSO (CPSO) were extended by constructing interacting multi-swarms.
In addition, a new multi-quantum swarm optimizer, which broadens the implicit
atomic analogy of CPSO to a quantum model, was also introduced. Their ex-
perimental study on the Moving Peaks Benchmark problem indicates that the
multi-swarm optimizers significantly outperform single population PSOs.

3 The Triggered Memory-Based PSO for DOPs

Among the approaches developed for EAs in dynamic environments, the mem-
ory scheme is a major approach that has proved beneficial for many DOPs [15].
In memory enhanced EAs, good individuals from the population can be stored
into a memory at regular interval during the course of evolution and can be re-
trieved once a change occurs in the environment. Intuitively, when an optimum
reappears in a previous location or nearby, the memory can remember that loca-
tion and guide the population to move to that optimum. Memory can also help
maintain the population diversity and adapt to environmental changes quickly
because useful past information has been saved and can be reused. In this sec-
tion, we discuss how a triggered memory mechanism can be applied to the PSO
in order to make it suitable for dynamic problems.

A disadvantage of the memory schemes is that memory might mislead evolu-
tion and prevent the population from exploring new peaks in the search space,
though it might be propitious to the exploitation of knowledge gained in the
past. Intuitively, restarting evolution from scratch once a change in the environ-
ment has occurred will have a chance to find new peaks. However, it may be
too time-consuming to reach the new optima. In [2], a tri-island model has been
proposed for the memory-enhanced GA in dynamic environments and proved an
efficient way to maintain the tradeoff between exploration and exploitation.

The idea of the tri-island memory model can be combined into the PSO for
DOPs. For the memory-enhanced PSO with the tri-island model, the whole
population is also divided into three parts: “explore”-population, memory and
“exploit”-population, which are respectively used to explore the search space,
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store good solutions, and exploit the memory in this paper. The memory is also
used to detect the environmental changes. A change is detected to have occurred
whenever the fitness of at least one solution in the memory has changed. Once
an environmental change is detected, all individuals will be re-evaluated. In
order to enforce exploration, the “explore”-population needs to be randomly
re-initialized frequently. Thus, the re-initialization period, that is, when the
“explore”-population should be re-initialized, becomes an important parameter.
A simple scheme is to re-initialize the “explore”-population after every envi-
ronmental change. However, there may be some problems for this scheme. For
example, if the environment changes slowly, the population might always stay
in a peak and might not jump out to search for other peaks for a long time.

In order to solve the above problem, we introduce a new triggered generator for
the memory-based PSO, where the re-initialization of the “explore”-population
will be immediately initiated once a peak has been found. Thus, the triggered
generator can be more efficient in exploring the search space than the simple
re-initialization method, especially when the environment does not change fre-
quently. The next question is how to judge that a peak has been found by the
“explore”-population. Here, we deem that a peak has been found if some re-
strictions on its performance are fulfilled. For the re-initialization conditions, we
consider the following two alternatives:

First, compute the running average of the fitness of the best individuals over
a period of five generations. If the increase degree of the running average of
the best-of-generation fitness is less than a threshold b1, the re-initialization is
started (this method will subsequently be termed averfit). The increase of the
running average of the best-of-generation fitness is calculated as follows:

e(t) =

1
5

4∑

i=0
fb(t−i) − 1

5

4∑

i=0
fb(t−i−1)

1
5

4∑

i=0
fb(t − i)

=

4∑

i=0
fb(t−i) −

4∑

i=0
fb(t−i−1)

4∑

i=0
fb(t − i)

(3)

where fb(t) denotes the fitness of the best solution achieved in generation t.
Second, compute the Euclidean distance between the best individual and the

worst individual in the “explore”-population. If the value is below a threshold b2,
the population will be re-initialized. This method will subsequently be termed
maxdist in this paper.

With respect to which individuals should be stored in the memory, we only
consider the best individuals achieved by the “explore”-population. And since
the memory space is fixed and limited, we need to consider which solutions in
the memory should be replaced to make space for new ones. In this paper, in
order to maintain the diversity of the memory, we apply the replacement strategy
where the less fit solution of the two solutions that are closest to each other in
the memory is removed from the memory.

For further questions as to when and how to use the memory, we propose two
memory retrieval schemes: called memory-based resetting and memory-based im-
migrants. Both schemes happen at the same time when the “explore”-population
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is re-initialized. The memory-based resetting scheme is to reset the record of the
best global position using the memory, where all the solutions in the memory
will be re-evaluated and the best one will be chosen as the new best global solu-
tion in the “exploit”-population if it is better than the old one. In this scheme,
all particles together share a memory base that stores the best peaks achieved
by the “explore”-population in the past. Therefore, the particles can adjust the
direction of flying according to the memorial information. For the memory-based
immigrants retrieval scheme, all the solutions in the memory are re-evaluated
and injected into the “exploit”-population to replace the same amount of worst
individuals in the “exploit”-population. Compared to the memory-based reset-
ting scheme, this scheme seems more efficient since the solutions in the memory
are explicitly immigrated to the population.

4 Experimental Settings

For the experiments, the Moving Peaks Benchmark by Branke [5] is used as the
dynamic test problem. The base landscape of the moving peaks function consists
of m peaks defined in the n-dimensional real space as follows:

F (x, t) = max
i=1,...,m

Hi(t)
1 + Wi(t)

∑n
j=1 (xj(t) − Xij(t))2

(4)

where Wi(t) and Hi(t) are the height and width of peak i at time t respectively,
and Xij(t) is the j-th element of the location of peak i at time t. Each peak can
independently change its height and width and move its location around in the
search space.

The parameter settings of the Moving Peaks Benchmark used in this paper
correspond to Scenario 1 as specified on the benchmark website [5]. The test
function has 5 peaks defined on a 5-dimensional real space. Every Δe generations,
the height and width of each peak are changed by adding a random Gaussian
variable and the location of each peak is moved by a shift vector vi of fixed
length s. More formally, a change of a single peak can be described as follows:

⎧
⎪⎪⎨

⎪⎪⎩

σ ∈ N(0, 1)
Hi(t) = Hi(t − 1) + 7 · σ

Wi(t) = Wi(t − 1) + 0.01 · σ
Xi(t) = Xi(t − 1) + vi(t),

(5)

vi(t) =
s

|r + vi(t − 1)| ((1 − λ)r + λvi(t − 1)) (6)

where the shift vector vi(t) is a linear combination of a random vector r and the
previous shift vector vi(t − 1) and is normalized to length s. The random vector
r is created by drawing random numbers for each dimension and normalizing
its length to s. Hence, the parameter s allows controlling the severity of changes
and Δe determines the frequency of changes. The parameter λ allows controlling
whether changes exhibit a trend (λ is always set to 0.5 in our experiments).
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The experiments are designed to investigate the performance of different
memory-based algorithms: a simple PSO model (SPSO) where each change
is regarded as the arrival of a new optimization problem and is solved from
scratch, a traditional memory-based PSO model (SMPSO) that is adapted from
Branke’s tri-island memory model for GAs [2], the triggered memory-based PSO
models both with the resetting scheme (TMRPSO) and the immigrants scheme
(TMIPSO). For all PSO models, the learning factors c1 and c2 are set to 2.0
and the inertia weight ω is initialized to 0.5, decreases linearly over the first
100 generations till 0.2, and then remains at 0.2 till the end of a run. The
total number of particles is 50: the size of both the “explore”-population and
“exploit”-population is set to 20. Unless stated otherwise, the size of memory is
always 10.

To measure the performance for the algorithms, an offline performance func-
tion e∗, which is the average fitness error between the optimal fitness of the
current environment and the best-of-generation fitness at each generation, is re-
ported here since for DOPs a single, time-invariant optimal solution does not
exist, the goal is not to find the optima but to track their progression through the
space as closely as possible. The average fitness error at time t can be calculated
as follows:

e∗(t) =
1
t

t∑

i=1

|f∗
b − fb(t)| (7)

where f∗
b is the fitness of the optimum and fb(t) is the fitness of the best solution

achieved at generation t. If several populations are used, fb(t) is the best solution
over all populations at generation t.

5 Experimental Results

The preliminary experiments were first carried out on TMIPSO under the two
triggered generators with different settings, where s is set to 1.0 and Δe is set
to 100. The maximum generation is set to 1000, which equals 10 environmental
changes. Each experimental result is averaged over 100 runs with the same set
of different random seeds. The experimental results are shown in Fig. 1.

From Fig. 1, it can be seen that the approach of restricting the running aver-
age fitness (averfit, see the lower 3 curves) performs significantly better than the
approach of restricting the maximum distance (maxdist, see the upper 3 curves)
in the competition between the two different triggered generators. And the ef-
fectiveness of varying the threshold b2 settings in the maxdist scheme seems
to be very small since the performance curves always wind together. That is,
varying b2 does not affect the performance of algorithms much. However, the
situation is different for the averfit scheme. It can be seen that the performance
curves almost superpose together when b1 is small (i.e., 0.001 or 0.01), but the
performance declines clearly when b1 becomes too large (i.e., 0.1). Therefore, b1
should not be set too large. For our following experiments, the averfit triggered
generator will be used and the threshold b1 is always set to 0.001.
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Fig. 1. Experimental results on the triggered memory-based immigrants PSO with
different triggered generators in the dynamic environments
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Fig. 2. Experimental results on the triggered memory-based immigrants PSO with
different triggered generators in the dynamic environments with Δe = 100 and different
severities of changes: (a) s = 0.5, (b) s = 1.0, and (c) s = 2.0

Fig. 2 plots the results of PSOs on the dynamic problems with different sever-
ities and Δe=100. From Fig. 2, several results can be observed.

First, SPSO slightly outperforms the memory-enhanced PSOs just for the sta-
tionary period (i.e., the first environment), but the memory-based PSOs always
perform much better than SPSO for the dynamic periods. In the stationary pe-
riod, all PSO models randomly search for the optimum in the solution space
because the memory is empty and scanty. Hence, SPSO can more easily find
a peak in the original fitness landscape since it has a single population whose
size is much larger than each one of the populations in the memory-based PSOs.
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Fig. 3. Experimental results on four different PSO models in the dynamic environments
with s = 1.0 and different frequencies of changes: (a) Δe = 50, (b) Δe = 100, and (c)
Δe = 200

But in the dynamic periods, memory can help the population remember the past
information and restart from the promising area closer to the new optimum. But
SPSO will restart evolution from scratch here, which makes the population take
a long time to reach an optimum (even a local optimum in most cases). This is
also the reason why the performance curve of SPSO seems a little oscillatory.

Second, the triggered memory-based PSOs perform better than traditional
memory-based PSO. In the triggered memory methods, the “explore”-population
could contribute its best solution to the memory once a peak is affirmed to be
found and the “exploit”-population is also injected with the new memory in-
formation at once. However, in the traditional memory method, the “explore”-
population will contribute its solution and be re-initialized until a change is
detected, which means that it could have stayed in a peak, if the peak is found,
for a long time and lost the chance of finding a higher peak. Hence, the trig-
gered memory methods can explore the solution space more efficiently and more
quickly than the traditional memory method.

Third, the triggered memory-based resetting scheme performs worse than the
triggered memory-based immigrants scheme over all the periods except at the
beginning of evolution. In the memory-based resetting scheme, the information
in the memory is reintroduced into the “exploit”-population just as an alter-
native of the global solution. This seems to just contribute an attractor to the
population. However, whether the population could reach the neighbourhood of
the attractor and keep the correct evolution in direction is not clear. Compared
to the resetting scheme, the immigrants scheme employs a more efficient way
where all the solutions in the memory are explicitly replaced into the “exploit”-
population. On the other hand, the injection of more memorial information also
helps the population maintain a high diversity in the immigrants scheme than
in the resetting scheme.

Fourth, the change severity, which is one aspect of the environmental dy-
namism, affects the performance of all PSOs. And it seems natural that for
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a fixed value of Δe, the performance of PSOs decreases when the value of s
increases.

The experimental results on PSOs in the dynamic problems with different
frequencies of environmental changes and s = 1.0 are plotted in Fig. 3. Similar
results can be observed from Fig. 3 as from Fig. 2. The frequency of changes
is another aspect of the environmental dynamism, and also naturally, when the
frequency of change decreases, i.e., when Δe increases, the performance of all
PSOs increases.

6 Conclusions

This paper investigates the application of PSOs with the tri-island memory
model for DOPs. For this memory-based PSO model, a traditional way is to
re-initialize the “explore”-population and retrieve the memory whenever an en-
vironmental change is detected. However, there may be some problems for this
scheme. When the environment changes slowly, the population might have al-
ways stayed in a peak instead of searching for other peaks for a long time. In
order to solve this problem, a new triggered memory scheme is proposed for the
memory-based PSO in dynamic environments, where a triggered memory gener-
ator is designed for the retrieval period of memory. In this scheme, whenever the
“explore”-population finds a peak, it will be immediately re-initialized and the
memory will be retrieved. In order to determine that a peak has been found by
the “explore”-population, two measures are also proposed. To retrieve the mem-
ory this paper proposes two strategies: the memory-based immigrants scheme
replaces the solutions in the memory explicitly into the “exploit”-population
and the memory-based resetting scheme only resets the record of the best global
solution for the “exploit”-population using the best re-evaluated solution in the
memory.

Based on the Moving Peaks Benchmark function [5], experiments were car-
ried out to compare the performance of several PSOs including the proposed
triggered memory-based PSOs in dynamic environments. From the experimen-
tal results, we can draw the following conclusions on the dynamic test problems.
First, the memory mechanism can improve the performance of PSOs in dynamic
environments. Second, the triggered memory method is more efficient than the
traditional memory method in exploring the solution space. Hence, the triggered
memory-based PSOs have stronger robustness and adaptability than the tradi-
tional memory-based PSO and simple PSO in dynamic environments, especially
when the environment does not change frequently. Third, the memory-based
immigrants scheme is more efficient than the memory-based resetting scheme
for enhancing the performance of the triggered memory-based PSO in dynamic
environments.

For future work, it is valuable to examine the performance of hybrid ap-
proaches that combine the triggered memory method and other approaches al-
ready known from the literature, e.g., the random immigrants scheme, for PSOs
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in dynamic environments. In addition, it is also interesting to construct new
triggered generators and examine them under the same framework.
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