
474 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

Constraint Satisfaction Adaptive Neural Network and
Heuristics Combined Approaches for Generalized

Job-Shop Scheduling
Shengxiang Yang and Dingwei Wang

Abstract—This paper presents a constraint satisfaction adaptive
neural network, together with several heuristics, to solve the gener-
alized job-shop scheduling problem, one of NP-complete constraint
satisfaction problems. The proposed neural network can be easily
constructed and can adaptively adjust its weights of connections
and biases of units based on the sequence and resource constraints
of the job-shop scheduling problem during its processing. Several
heuristics that can be combined with the neural network are also
presented. In the combined approaches, the neural network is used
to obtain feasible solutions, the heuristic algorithms are used to im-
prove the performance of the neural network and the quality of
the obtained solutions. Simulations have shown that the proposed
neural network and its combined approaches are efficient with re-
spect to the quality of solutions and the solving speed.

Index Terms—Adaptive neural network, constraint satisfaction,
generalized job-shop scheduling problem, heuristic.

I. INTRODUCTION

PRODUCTION scheduling is the allocation of resources
over time to perform a collection of tasks [1]. Of all kinds

of production scheduling problems, the job-shop scheduling
problem is one of the most complicated and typical. It aims to
allocate machines to perform jobs in order to optimize
certain criterion [2].

Traditionally there are three kinds of approaches for the
solution of job-shop scheduling problems: priority rules,
combinatorial optimization, and constraints analysis [3]. More
recently intelligent knowledge-based scheduling systems have
been presented [4], [5]. Since Hopfield first used a neural net-
work to solve an optimization problem [6], Hopfield networks
have been successfully applied to a variety of problems, such
as the analog-to-digital conversation problem [7], the traveling
salesman problem [8], the resource allocation problem [9], the
linear and nonlinear programming problems [10]. However,
Hopfield networks have drawbacks such as failing to converge
to a valid solution, an inability to locate the global minimum

Manuscript received December 26, 1997; revised February 11, 1999 and Oc-
tober 21, 1999. This work was supported by the Chinese National Natural Sci-
ence Foundation under Grant 69684005 and the Chinese National High-Tech
Program under Grant 863-511-9609-003, the EPSRC under Grant GR/L81468,
and was done while S. Yang was pursuing the Ph.D. degree at Department of
Systems Engineering, Northeastern University, Shenyang 110006, China.

S. Yang is now a Postdoctoral Research Accociate at Department of Com-
puter Science, King’s College London, University of London, U.K. (e-mail:
yang@dcs.kcl.ac.uk).

D. Wang is with Department of Systems Engineering, School of Information
Science and Engineering, Northeastern University, Shenyang 110006, China.

Publisher Item Identifier S 1045-9227(00)01742-2.

and poor scaling properties due to the use of quadratic energy
functions [11].

Foo and Takefuji [12] first used a neural network to solve
job-shop scheduling problems. Following that, several neural-
network architectures have been presented to solve job-shop
scheduling problems [13]–[20]. Willemset al. [18], [19], first
proposed a constraint satisfaction neural network for solving tra-
ditional job-shop scheduling problems with no free operations.
Yu, in his Ph. D. dissertation [20], developed Willems’s neural
network by adding a block (called the job constraint block),
which is structurally similar to the RC-block of Willems’s net-
work but its function is to deal with the problem of accomo-
dating free operations. Additionally, Haibin introduced the gra-
dient optimization function into its neural network for job-shop
scheduling problems.

The above mentioned neural networks are basically nonadap-
tive networks, of which the neural units’ connection weights
and biases must be prescribed in advance before application
of the networks to a particular problem. In this paper we pro-
pose a constraint satisfaction adaptive neural network (CSANN)
for the generalized job-shop scheduling problem, accomodating
free sequence operation pairs or free operations of each job.
The proposed CSANN has the ability to easily map the con-
straints of a scheduling problem into its architecture and remove
the violation of the mapped constraints during its processing
and as such is based on “constraint satisfaction.” Additionally
CSANN has ability to adaptively adjust its connection weights
and bias of neural units according to the actual constraint vio-
lations present during processing. This removes the violations
in an adaptive manner. To improve the performance of CSANN
for job-shop scheduling problems a mechanism of combining
several heuristic algorithms with CSANN is presented. In these
combined approaches CSANN is used to obtain feasible solu-
tions and heuristic algorithms are used to improve the perfor-
mance of CSANN and the quality of obtained solutions. Sim-
ulations have shown that CSANN has good performance with
respect to the quality of solutions and the computing speed, es-
pecially when combined with presented heuristic algorithms,
the optimal or near-optimal solutions can be found. Simulations
have also shown that the proposed combined approaches can
guarantee to obtain feasible solutions to realistic problems.

The organization of this paper is as follows. Section II first
describes some basic concepts of job-shop scheduling, and
then presents the mathematical formulation of the generalized
job-shop scheduling problem. Section III presents in detail the
model of CSANN including its neural unit model, its adaptive

1045–9227/00$10.00 © 2000 IEEE

YANG AND WANG: CONSTRAINT SATISFACTION ADAPTIVE NEURAL NETWORK AND HEURISTICS COMBINED APPROACHES 475

connections between neural units, its architecture, and its space
complexity. In Section IV we describe the heuristic algorithms
that can be combined with CSANN for better performace, the
combined approaches for the job-shop scheduling problem are
also described in this section. Section V presents the computer
simulation results with several examples to show the perfor-
mance of the proposed combined approaches for job-shop
scheduling. Section VI is devoted to the empirical study of the
computational complexity analysis of CSANN. Finally Section
VII concludes this paper.

II. DESCRIPTION OFJOB-SHOP SCHEDULING

A. Basic Concepts of Job-Shop Scheduling

Traditionally, the job-shop scheduling problem can be stated
as follows [2]: given jobs to be processed on machines in a
prescribed order under certain restrictive assumptions. The ob-
jective of job-shop scheduling is to optimally arrange the pro-
cessing order and the start times of operations to optimize cer-
tain criteria. In general, there are two types of constraint for the
job-shop scheduling problem. The first type of constraint states
that the precedence between the operations of a job should be
guaranteed, this is asequence constraint. The second type of
constraint is that no more than one job can be performed on
a machine at the same time, this is aresource constraint. A
job-shop scheduling problem is completely solved if the starting
times of all operations are determined, and the sequence and re-
source constraints are not violated. Of course, the schedule ob-
tained should also optimize certain manufacturing system cri-
terion, such as the stocksize to be maintained, the due date re-
liability, the mean lead time, and the makespan (the time re-
quired to process all of the given set of jobs) [23]. Minimizing
the makespan will be considered as the optimization criterion in
this paper.

For atraditional job-shop scheduling problem, there are se-
quence constraints for the operations of each job [21], that is, for
any two operations of a job there is a sequence constraint. In this
paper we consider thegeneralized job-shop scheduling problem:
there may be free sequence operation pairs or free operations
for each job; there may be different number of operations for
each job; there may be a release date or due date restriction for
each job; and there may exist the situation that each machine
can process more than one operation of a job. A free sequence
operation pair of a job is a pair of two operations that have no
sequence constraint. A free operation of a given job means that
the operation has no sequence constraints with other operations
of that particular job and can be processed before or after any
other operations of the job.

Generally speaking, traditional job-shop scheduling belongs
to a large class of NP-complete (nondeterministic polynomial
time complete) problems. Because of the NP-complete char-
acteristic of job-shop scheduling, it is difficult to find an op-
timal solution. However an optimal solution in the mathemat-
ical sense is not always required at the practical level. Thus
research has concentrated on searching its near-optimal solu-
tions using heuristic algorithms [21]. The generalized job-shop

scheduling problem is much more complicate than the tradi-
tional job-shop scheduling problem and obviously belongs to
NP-complete problems.

The notation system of Conway [2] will be used to represent
the job-shop scheduling problem. This notation system uses four
parameters of the form to represent a scheduling
system, in which is the number of jobs, is the number of ma-
chines, is the operation pattern (e.g.,means job-shop), and

is the optimization criterion (e.g., means minimizing
the maximal completion time or makespan).

B. Mathematical Formulation of Job-Shop Scheduling

To map job-shop scheduling problems onto neural networks,
several pure and mixed integer programming models have been
used to represent job-shop scheduling problems [14]–[17], [17],
[19], and [20]. In this paper we have used the pure integer mathe-
matical model to translate the sequence constraints, the resource
constraints, the release date, and due date constraints of jobs into
integer linear inequalities. This model can easily map job-shop
scheduling problems onto CSANN as described in Section III.

First some notations are defined for the convenience of for-
mulating the job-shop scheduling problem as follows: we de-
note and as the job set and
the machine set, where and are the numbers of jobs and
machines, respectively. Let be the operation number of job

represents operationof job to be processed on machine
and represent the starting time and processing time

(which is known in advance) of , respectively, and
represent the starting time and processing time of the last

operation of job, respectively. Denoting and as the release
date (earliest starting time) and due date (latest ending time) of
job Let denote the set of operation pairs with
precedence restriction of job, where operation must pre-
cede operation , and denote the set of operation pairs

without precedence restriction of job, where op-
eration and operation of job can be processed in
any orders. Let be the set of operations that will be
processed on machineWe also assume that the starting times
and the processing times of all operations are integer, and that
operations cannot be interrupted once started.

Taking minimizing the makespan as the optimization crite-
rion, the mathematical formulation of the job-shop scheduling
problem considered is presented as follows:

Minimize
subject to

(1)

or

(2)

or

(3)

(4)

476 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

and

(5)

where (1) means that two operations with precedence restriction
of a job cannot be processed at the same time and must be pro-
cessed according the sequence constraint; (2), in a disjunctive
type, means that two operations without sequence constraint of
a job cannot overlap in time; (3), in a disjunctive type, means
that a machine can only process one operation at a time, this rep-
resents the resource constraints; (4) represents the release date
constraints and (5) represents the due date constraints. The cost
function is the ending time of the latest operation or opera-
tions, i.e., the maximal complete time of a given job-shop sched-
uling problem. Minimizing means minimizing the makespan.

From above description and mathematical model, we can see
that the problem considered is extended above the traditional

problem where each job passes through each ma-
chine once in a prescribed sequencing order, that is, without free
operations or free sequence operation pairs. In the traditional
problem there is no sequence constraint inequality of equation
type (2). With the increase in the free operations or free se-
quence operation pairs, the number of sequence constraint in-
equalities of equation type (1) decreases, while the number of
sequence constraint inequalities of equation type (2) increases.
And to the limit, when all operations become free, the problem
becomes theopen-shopscheduling problem without sequence
constraint inequalities of equation type (1).

III. CONSTRAINT SATISFACTION ADAPTIVE NEURAL NETWORK

To solve the job-shop scheduling problem, the integer math-
ematical representation has to be mapped to CSANN. In this
section CSANN will be discussed in detail with respect to its
basic components of units and connections, its architecture and
complexity.

A. Neural Units

Generally a neural network consists of many interconnected
parallel processing elements called neural units [24]. These
units compute from local information stored and transmited
via connections. In general, a unitconsists of two parts: a
linear summator and a nonlinear activation function which
are serialized (see Fig. 1). The summator of unitreceives
all activations from connected units, and
sums the received activations, weighted with corresponding
connection weights together with a bias The output of
summator is the net input of unit This net input is passed
through an activation function resulting in the activation

of unit The summator and the activation function are
respectively defined as follows:

(6)

(7)

where is the connection weight from unit to unit Dif-
ferent unit functions are realised by the use of several types of

activation function, such as linear threshold function, linear-seg-
mented function and S-shaped function [25]. In this paper two
kinds of linear-segmented functionand [see Fig. 2(a) and
Fig. 2(b)] are used as the activation functions of neural units.The
proposed CSANN contains three kinds of unit, based on the
general neural unit. The first kind of unit are called -units,
representing the starting times of all operations. Each ST-unit
represents one operation of the job-shop scheduling problem,
with its activation corresponding to the starting time of the par-
ticular operation. The second kind of unit, -units, represent
whether the sequence constraints are violated. The third kind of
unit, -units, represent whether the resource constraints are
violated.

The net input of a ST-unit, e.g., , is calculated by

(8)

where the net input of the unit is the sum of three terms,
as shown in the right side of (8). The first term represents the
weighted activations of SC-units connecting with unit ,
which implements feedback adjustments because of sequence
violations. The second term represents the weighted activa-
tions of RC-units connected with the unit , implementing
feedback adjustments because of resource violations. The third
term represents the previous activation, with the weight being

1, of the unit itself.
The activation function of ST-units is a deterministic linear-

segmented function of type [as illustrated in Fig. 2(b)] and is
defined as follows:

(9)

where and are the release date and due date, respectively, of
job to which the operation corresponding to unit belongs.

is the processing time of the operation corresponding to
unit This activation function represented by (9) imple-
ments the release date and due date constraints described by (4)
and (5).

The SC-units receive the incoming weighted activations from
the connected ST-units, representing operations of the same
job. The RC-units receive the incoming weighted activations
from the connected ST-units, representing operations sharing
the same machine. The net input of a SC-unit or a RC-unit has
the form of (10).

(10)

where represents a SC-unit or a RC-unit , and
is the bias of or The bias is added to the incoming
weighted activations of the connected ST-units and equals to the
processing time of a relative operation.

The activation function of a SC-unit or a RC-unit is a
deterministic linear-segment function of type[as shown in
Fig. 2(a)], defined as follows:

(11)

YANG AND WANG: CONSTRAINT SATISFACTION ADAPTIVE NEURAL NETWORK AND HEURISTICS COMBINED APPROACHES 477

Zero activation of a SC-unit or a RC-unit means that the cor-
responding sequence constraint or resource constraint is satis-
fied and there are no feedback adjustments from this SC-unit
or RC-unit to connected ST-units. While greater than zero acti-
vation of a SC-unit or a RC-unit means that the corresponding
sequence constraint or resource constraint is violated and there
are feedback adjustments from this SC-unit or RC-unit to con-
nected ST-units through the adaptive weighted connections.

B. Adaptive Connection Weights and Unit Biases

The connections of a unit transmit the activation of the unit
to its connected units. The efficiency of a connection depends
on the weight imposed on the connection. The received input
is multiplied by this weight before it is sent to the computing
unit. The connection weight can have an inhibitory effect for
the computing unit when its value is negative or excitatory effect
when its value is positive. The weights of connections have to be
determined to achieve the desired functionality of the resulting
network. Generally for constraint satisfaction neural networks,
the determination of weights is executed by the designer of the
neural network and the weights are determined in advance, i.e.,
before the network begins to solve a specific constraint satisfac-
tion problem [15], [19], [20]. In the proposed CSANN, the con-
nection weights and biases of neural units are adaptively valued
according to the actual activations of ST-units whilst the net-
work is running, together with the sequence and resource con-
straints of the specific problem.

All units of CSANN, including ST-units, SC-units, and
RC-units, are connected according to the two kinds of
sequence and resource constraint of a specific job-shop
scheduling problem, resulting in two blocks: SC-block (se-
quence constraints block) and RC-block (resource constraints
block). The SC-block consists of ST-units and SC-units.
The RC-block consists of ST-units and RC-units. Each unit
of an SC-block contains two ST-units, responding to two
operations of a job, and one SC-unit, representing whether
the sequence constraint between these two operations is
violated (see Fig. 3). Each unit of an RC-block contains
two ST-units, responding to two operations sharing the
same machine, and one RC-unit, representing whether the
resource constraint between these two operations is violated
(see Fig. 4). Figs. 3 and 4 show how the adaptive weights
are valued. Fig. 3 illustrates an example of a SC-block unit,
denoted by , and Fig. 4 an example of a RC-block
unit, denoted by In Figs. 3 and 4, is
the initial value set for the ST-unit , responding to
the initial starting time of the operation In
Fig. 3, the two ST-units and represent the
two operations and of job Their activations

and represent the starting times and
of and , respectively. The SC-unit

represents whether the sequence constraint between
and is violated, with being its bias. Then at
time during the processing of network, the connection
weights , , the feedback connection weights ,

, and the bias of are adaptively valued
as shown by the following three cases.

Fig. 1. General neural unit model.

Fig. 2. Linear-segmented activation functions.

Fig. 3. A SC-block unit.

Fig. 4. A RC-block unit.

Case S1: If the weights and bias are
valued as follows:

(12)

478 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

where is a positive changeable parameter (e.g., 0.5) used for
feedback adjustment (the same with following equations where

appears). In this case represents the sequence con-
straint of (1). If there is no sequence constraint violation be-
tween and the activation of equals zero. If
there exists the sequence constraint violation, the activation of

is calculated by

(13)

and the feedback adjustments from to and
are shown as follows:

(14)

(15)

From the above equations we can see that the effect of unit
to unit is inhibitory, which leads the starting time of

operation being put back on the time axis. While the effect
of to is excitatory, putting forward Thus the
sequence violation between and can be removed.

Case S2: If and , the
adaptive weights and bias are valued the same withCase S1,
using (12). In this case represents the sequence con-
straint of first disjunctive equation of (2). If there exists the vio-
lation, the activation of and its feedback adjustments are
calculated the same way as withCase S1, using (13)–(15).

Case S3: If and , the
weights and bias are adaptively valued by

(16)

In this case represents the sequence constraint of
second disjunctive equation of (2). If there exists a violation,
the activation of and the feedback adjustments are calcu-
lated by

(17)

(18)

(19)

Similarly in Fig. 4, represents the resource con-
straint between and on machine At time during

the processing of the network, the adaptive weights and bias are
valued as shown by the following two cases.

Case R1: For and if we
get

(20)

In this case represents a sequence constraint de-
scribed by the first disjunctive equation of (3). If there exists
a violation, the activation of and the feedback adjust-
ments from to and are calculated by

(21)

(22)

(23)

Case R2: For and , if , we
get

(24)

In this case represents a sequence constraint de-
scribed by the second disjunctive equation of (3). If there exists
a violation, the activation of and the feedback adjust-
ments are calculated by

(25)

(26)

(27)

C. Architecture of CSANN

To sum up, the architecture of the network proposed in this
paper is simpler than those of three-layer networks proposed
by Willems et al. [18], [19] and Yu [20]. The architecture of
the proposed network consists of two layers. The bottom layer
consists only of ST-units, corresponding to the starting times
of all operations. The top layer contains both SC-units and
RC-units, which represent sequence and resource constraints,
respectively, and provide feedback information to adjust
ST-units for sequence and resource constraints satisfaction
through SC-block and RC-block respectively.

YANG AND WANG: CONSTRAINT SATISFACTION ADAPTIVE NEURAL NETWORK AND HEURISTICS COMBINED APPROACHES 479

To solve a specific job-shop scheduling problem, CSANN can
be built up as follows: first compute the number of ST-units
are according to the specific problem (the number is given by

then build up the three sets of and ac-
cording to the actual sequence and resource constraints, finally
form the SC-block and RC-block, resulting in the problem-spe-
cific neural network.

D. Network Complexity Analysis

As previously mentioned in Section II, there are two limit
cases of the generalized job-shop scheduling problem described
by the mathematical model: the traditional job-shop scheduling
problem and the open-shop scheduling problem. Correspond-
ingly, there are also two limits for the network complexity of
CSANN.

For a traditional problem, we assume that
for all and each job passes through each machine

once in a prescribed sequencing order. There are
sequence constraint inequalities of equation type (1), which
requires SC-units; there are resource
constraint inequalities of equation type (3), which requires

RC-units; there are ST-units representing the
starting times of all operations. Thus the total number of neural
units is Because each SC-unit or RC-unit has
two incoming connections from, and two feedback connections
to two ST-units, the number of interconnections in SC-block is

, and the number of interconnections in RC-block is
Hence the total number of interconnections in the

CSANN network is
For an open-shop scheduling problem, we assume that
for all and each job passes through each machine once.

There are SC-units representing the
sequence constraint inequalities of equation type (2),

RC-units representing the resource constraint inequalities of
equation type (3), ST-units representing the starting times
of all operations, resulting in a total number of

neural units. Similarly, the number of interconnections in
SC-block is , and the number of interconnections
in RC-block is Hence the total number of inter-
connections in the CSANN network is

For a generalized job-shop scheduling problem, we also as-
sume that for all and each job passes through
each machine once, the number of SC-units is between
and and the total number of the neural units of the re-
sulting CSANN is between and
Obviously, the neural unit complexity of CSANN is
Similarly, the number of interconnections in SC-block is be-
tween and , the number of intercon-
nections in RC-block is The total number of inter-
connections in the CSANN network is between and

Hence the connection complexity of CSANN
is also

E. Mechanisms of Running CSANN

There are three mechanisms of running CSANN. In the first
mechanism, during each iteration cycle of calculating all units,
the activation of units is calculated in a fixed order of first calcu-
lating each ST-unit, then calculating each SC-unit, and finally

calculating each RC-unit. This simulation mechanism results in
a deterministic unique schedule. That is, under the same initial
conditions of ST-units, the network can converge to the unique
stable state responding to the unique solution. This is an asyn-
chronous processing mode.

The second mechanism calculates the activation of units in a
random order during each iteration cycle, which results in non-
deterministic schedules. That is, under the same initial condi-
tions of ST-units, the network always converges to nondeter-
ministic stable state, resulting in a feasible but not the same so-
lution. This kind of mode is also asynchronous.

In the third mechanism, the activation of units is calculated
in a synchronous parallel manner. During the simulation pro-
cessing of network, the activation of all units is calculated in
a random or fixed order, but the newly calculated activation of
a unit is not sent immediately to its connected units but stored
until all units have finished their calculations and stored their
activations. In the next calculation cycle the activation of a unit
is calculated using the stored activations of the connected units.

IV. COMBINED APPROACHES FORJOB-SHOPSCHEDULING

In this section the approaches of combining CSANN and
heuristic algorithms for job-shop scheduling problems are de-
scribed in detail.

A. Structure of the Scheduling Approaches

The combined approaches for job-shop scheduling consist
of two parts: CSANN and several heuristics presented latter
in this section. In the combined scheduling approaches, the
heuristic algorithms can be used individually or all together
with CSANN. CSANN is used to remove the violations for
sequence and resource constraints resulting in the generation
of feasible solutions to the specific problem, and the heuristics
are used to improve the performance of the CSANN or the
quality of the feasible solutions obtained by CSANN. Fig. 5
shows the maximal structure of the combined approach where
all heuristics are used. In Fig. 5, Alg. is the abbreviation of
“algorithm.”

B. Heuristic Algorithms

As shown in Fig. 5, in the combined approach for the job-shop
scheduling, three relative heuristic algorithms that can be used
individually or all together with CSANN are proposed.

Algorithm 1: Exchange the orders of two near operations by
exchanging their starting times. There are two cases when this
algorithm works. The first case is when the operation pairs are
of the same job. The second case is when the two operations are
of different jobs sharing the same machine.

For the first case, assume the operation pairs be
At time during the processing of CSANN, if
and or and
the following two equations begin to work:

(28)

(29)

480 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

Fig. 5. The maximal combined approach structure.

where variable sums up the times that, at timeduring
the processing of CSANN, operation pairs
have their starting times and continuously changed
with the same adjusting effect ever since the previous zero-reset
because of sequence conflict., a prescribed positive integer, is
used as the judging condition for algorithm 1 to be entriggered.
That is, when reaches the algorithm works and resets

to zero meanwhile.
For the second case, assume At time

during the processing of CSANN, if , the fol-
lowing two equations begin to work:

(30)

(31)

where variable is the summed times that operation
pairs and have their starting times continuously
changed with the same adjusting effects at timeever since the
previous zero-reset because of resource conflict on machine

during the processing of CSANN. The parameteris a
prescribed positive integer with the same functionality as

Algorithm 1 can be used together with CSANN to guarantee
the generation of feasible solutions. During the processing of
CSANN there may appear the phenomenon of so-called “dead
lock” which can result in no feasible solution. This phenomenon
results from the conflicts of feedback adjustments themselves
while removing sequence and resource constraint violations.
For example, assume or
and During the processing of CSANN, the
SC-unit may put forward the starting time of opera-
tion through feedback adjustment because of sequence vi-
olation, while the RC-unit may put back through
feedback adjustment because of resource violation. Thus there
may exist conflicts resulting from the two kinds of adjustments
which result in “dead lock.” “Dead lock” leads to the noncon-
vergence of CSANN to its stable station, which corresponds to
the feasible solution of specific job-shop scheduling problem.
By using algorithm 1, when the phenomenon of “dead lock”
happens and has been continuously put back times be-
cause of resource violation between and , that is, at
time reaches , the starting time of may
be exchanged with of Thus “dead lock” can be ef-
fectively avoided and the feasible solution is guaranteed.

Algorithm 2: Compact away the idle times. That is to elim-
inate the time segments in the feasible solution obtained by
CSANN, during which all machines are idle. Thus an improved
feasible solution with shorter makespan can be obtained.

Let be the number of idle time segments existing in the
feasible solution, and be the time length
of th idle time segment with the starting point and ending point
being and , respectively, then algorithm 2 is presented
as follows:

if (32)

where is the starting time of in the
old feasible solution, and is the new starting time of
in the improved feasible solution with all idle time segments
within compacted away.

Algorithm 3: Shorten the starting times of those operations
with maximal complete time in the obtained feasible solution.
That is, for the latest operations of all jobs, if the equation of

holds, (33) will
work

(33)

where is the new starting time,δ is a positive changeable
parameter.

Algorithm 3 is originated from literature [20] and is used to
obtain a new initial solution, which can be reused by CSANN in
order to solve better solutions. In fact, the cost functionof the
job-shop scheduling model presented in Section II can be seen
as the energy function of CSANN. The functionality of (33) is
to decrease the energy of the network and direct it toward the
optimal solution.

C. Description of the Combined Approaches

The basic steps of the combined approaches for solving the
job-shop scheduling problem are shown as follows:

Step 1) Build up CSANN model, set the values for param-
eters and δ, and prescribe an expected
makespan;

Step 2) Randomly initialize or specify by hand the initial
starting time for each operation

and let be the initial
net input of each ST-unit

Step 3) Run each SC-unit of SC-block, calculate its
activation with (13) or (17).

means the dissatisfaction of sequence constraint
corresponding to (1) or (2), then adjust activations of
relative ST-units with (14) and (15) or (18) and (19),
or with (28) and (29) if algorithm 1 is comdined in
the approach and its conditions are satisfied;

Step 4) Run each RC-unit of RC-block, calcu-
late its activation with (21) or (25).

means the dissatisfaction of re-
source constraint corresponding to (3). In this case
adjust and with (22), (23)
or (26), (27) according to the actual situation or
with (30), (31) if algorithm 1 is combined and its
conditions are satisfied;

Step 5) Repeat Steps 3) and 4) until all units are in stable
states without changes, which means that the se-
quence and resource constraints are satisfied and the

YANG AND WANG: CONSTRAINT SATISFACTION ADAPTIVE NEURAL NETWORK AND HEURISTICS COMBINED APPROACHES 481

feasible solution is obtained. If algorithms 2 and 3
are not used, stop the program now;

Step 6) If algorithm 2 is used, run algorithm 2 in order to
obtain an improved feasible solution. If algorithm 3
is not used, stop the program now;

Step 7) If algorithm 3 is used, judge whether the prescribed
stop criterion is achieved. If the stop criterion is
achieved, stop the program; otherwise, take the
makespan of the newly obtained solution as new
expected makespan, use algorithm 3 to obtain a new
initial solution and return Step 3).

In Steps 1) and 7), the expected makespan is the makespan the
scheduler want to achieve. For a scheduling problem without
due date constraints, the expected makespan can be used as the
common due date of all jobs. For a scheduling problem with
common or different due dates, the expected makespan can be
set to the biggest due date of all jobs. In Step 7), the stop crite-
rion used is the continuous run times, e.g., ten times, with the
makespans of feasible solutions obtained keeping the same with
ever obtained shortest makespan of feasible solutions.

V. SIMULATION STUDY

A. Simulation Examples

Four job-shop scheduling problems of ,
, , and are presented

as simulation examples.
Example 1: Table I presents the original data of a

generalized job-shop scheduling problem,
where there are free operations and different number of
operations for different jobs. In Table I, the previous or next
operation being equal to zero represents the case that the re-
sponding operation has no previous or next operation sequence
constraint. If an operation has neither previous operation nor
next operation sequence constraint, it is called a free operation,
e.g., the two operations of job 2. Of job 3 the operation 3 has
two previous operations 1 and 2, operation 1 and operation 2
are free sequence operation pair. Each of job 1 and job 3 has
three operations, while job 2 has two operations.

Example 2: Table II presents a problem,
which is also a generalized job-shop scheduling problem with
different due dates and different number of operations for jobs.
In Table II, means that the relevant operation of some job
will be processed on machine with its processing time being

(the same with following Tables III and IV). The sequence
constraints of all jobs are the same: in order from operation 1
to operation 3. In this example, job 3 has only two operations,
job 4 has its first operation and third operation to be processed
on machine 3. The due dates for the five jobs are 23, 25, 15,
30, and 30, respectively.

Example 3: Table III presents a traditional
problem from literature [26]. The sequence constraints of all
jobs are the same: in order from operations 1 to 6. This example
has the optimum (i.e., minimal makespan) of 55, which is
already known.

Example 4: Table IV presents a traditional
problem, with its data measured from the feasible schedule pre-
sented by Zhouet al. [16]. The sequence constraints of all jobs

TABLE I
ORIGINAL DATA OF

EXAMPLE 1

TABLE II
ORIGINAL DATA OF EXAMPLE 2

TABLE III
ORIGINAL DATA OF EXAMPLE 3

are the same: in order from operation 1 to operation 10. The
makespan of the feasible schedule given by Zhouet al. [16] is
98.

B. Simulation Environment

Because of the adaptive property, it is very suitable to
realize the proposed CSANN in software. Because of the
object-oriented characteristics of units, it is relatively easy
to simulate the CSANN with an object-oriented developing
language. The simulation of CSANN was implemented on an
Intel 586 PC running at 133 MHz. The development of CSANN
was undertaking using Microsoft Visual C++ 5.0 development
environment. The first task was to build three classes: class
CSTunit, class CSCunit and class CRCunit according to the
characteristics of the summation and activation functions of
ST-units, SC-units and RC-units, then build up the class CNet-
work as their friend class. While building these four classes,
the sequence and resource constraints of a specific problem are
considered. Thus the problem-specific CSANN can be built up.

In order to determine the performance of CSANN and
compare between the proposed heuristic algorithms, in our
simulations the deterministic fixed-order mechanism of running
CSANN is used, under which the proposed network converges
to an unique solution from an initial solution.

For the simulations, CSANN and proposed algorithms were
used with four combination methods. Method 1 is CSANN

482 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

TABLE IV
ORIGINAL DATA OF EXAMPLE 4

alone. Method 2 is the combination of CSANN and Alg.1.
Method 3 is the combination of CSANN, Alg.1 and Alg.2.
Method 4 is the combination of CSANN, Alg.1, Alg.2 and
Alg.3. Of all simulations, the four parameters are valued as
follows: In all the figures and
tables given subsequently in this paper, the program run time is
rounded up to the next smaller integer value (in seconds). And
in all the Gantts the blocks represent individual operations.
The length of a block equals the processing time of relative
operation, and represents operationof job

C. Simulation Results and Analyses

For Example 1, different methods were used to solve the
problem from the same randomly initialized solution with
the expected makespan prescribed to be 120. Fig. 6 shows
the feasible solution in the mode of Gantt chart, obtained by
Method 2. The obtained solution has six idle time segments
that can be compacted away. Fig. 7 shows the solution obtained
by Method 3. From Fig. 7, we can see, with algorithm 2 used,
the idle times are compacted away, resulting in a makespan
of 43 which is much shorter than that of 102 in Fig. 6. Fig. 8
presents a solution obtained by Method 4. From Fig. 8 we can
see, with algorithm 3 used, the optimal solution is obtained
with makespan of 26.

ForExample 2, we use CSANN alone to solve from a random
initial solution. Fig. 9 shows the simulation result. Obviously,
Fig. 9 is an optimal solution with the due dates of all jobs satis-
fied.

From Figs. 7–9, we can see that the approaches are efficient
for the generalized job-shop scheduling problem.

ForExample 3, in order to show the performance of the pro-
posed approaches, different methods were first used to solve
from zero initial solution under different expected makespans.
Zero initial solution means that the initial starting times of all
operations is set to zero. The simulation results are shown in
Table V. From Table V it can be seen that searching from zero
initial solutions, CSANN can always find good schedules by dif-
ferent methods with all expected makespans in a short time.

Second, the use of different methods to solveExample 3from
randomly initial solutions under different expected makespans:
300 (equivalent to ; for Example 3), 100 (quite loose value)
and 58 (near-optimal value) was investigated. A randomly ini-

Fig. 6. A solution ofExample 1by Method 1.

Fig. 7. A solution ofExample 1by Method 3.

Fig. 8. A solution ofExample 1by Method 4.

Fig. 9. A solution ofExample 2by CSANN.

tial solution is that the initial starting times of all operations
are valued in a random and uniformed distribution in the region
of [0,100]. With each method 100 experiments were executed.
For each experiment the expected makespan was used as the
common due date for all jobs. For all experiments the release
dates for all jobs were set to zero. The statistics of the simu-
lation results with respect to average, minimum and maximum

YANG AND WANG: CONSTRAINT SATISFACTION ADAPTIVE NEURAL NETWORK AND HEURISTICS COMBINED APPROACHES 483

TABLE V
SIMULATION RRESULTS OFEXAMPLE 3 WITH ZEROINITIAL SOLUTIONS

of obtained makespans, the program runtimes and the times of
not converged in 100 experiments, respectively, are shown in
Table VI. Fig. 10 shows the running result from a randomly ini-
tialized solution by Method 1 with the expected makespan pre-
scribed to be 58. Fig. 11 is the optimal solution obtained from
a randomly initialized solution by Method 4 with the expected
makespan prescribed to 300.

From Table VI, Figs. 10 and 11, we can see that when
searching from randomly initial solutions, we can get the
following points.

1) By Method 1 (CSANN alone), the quality of obtained so-
lutions heavily depends on the expected makespan. When
the expected makespan is suitably prescribed, near-op-
timal or optimal solutions can be found.

2) By Method 1, there may appear the phenomenon of “dead
lock” with the percentage of about 8%.

3) While combined with algorithm 1, CSANN can always
converge to feasible solutions.

4) By Method 4, near-optimal or optimal solutions can al-
ways be found, independent on the expected makespan
and initial conditions.

5) The solving speed of the proposed approaches for
job-shop scheduling problems is high.

Additionally, from Figs. 6 and 7 and Tables V and VI, we can see
that while the expected makespan is quite loose and the initial
starting times of operations were randomly generated from a
quite wide time region (e.g., [0, 100] is a quite wide region for
Example 1), algorithm 2 can be of great effect, but while the
expected makespan is quite tight or the initial starting times of
operations is randomly generated from a quite tight time region
(e.g., [0, 100] is a quite tight region forExample 3), algorithm
2 can be of little effect.

For Example 4, to compare our proposed approaches with
other neural networks, we first use Method 1 (only CSANN)
to solve it from a randomly initial solution with the expected
makespan set to 100, which is near the makespan given in lit-
erature [16]. The simulation result is given in Fig. 12. Second
we use Method 4 to solveExample 4 from a randomly initial
solution with the initial expected makespan set to 1000, which
is much greater than the sum of processing times of all opera-
tions and equivalent to The simulation result is shown in
Fig. 13. From Fig. 12, we can see that CSANN obtained a quite

Fig. 10. A near-optimal solution ofExample 3by Method 1.

Fig. 11. An optimal solution ofExample 3by Method 4.

good result, based on the comparison with the total processing
time of the longest job. The total processing time of the longest
job, i.e., job 9, is 68. From Fig. 13, we can see that the makespan
of the obtained solution ofExample 4is 95, which is better than
the schedule result given in literature [16].

Simulations of above four examples proved the efficient per-
formance of proposed CSANN and its combined approaches
with several algorithms for job-shop scheduling problems as to
good solutions and high solving speed.

VI. COMPUTATIONAL COMPLEXITY ANALYSIS

As mentioned in Section III, there are three mechanisms of
running CSANN. The first mechanism was used in the simula-
tions. Similarly in this section the computational complexity of
CSANN was invetigated with this mechanism. Computational
complexity of CSANN consists of two factors. One is the cal-
culating times that CSANN requires during each iteration cycle.
The other one is the total number of iterations that CSANN
needs to obtain a feasible solution.

We first discuss the computational complexity of each iter-
ation cycle. For the convenience of discussions and without
the lose of generality, we take as the analysis example a tra-
ditional problem where for all

and each job passes through each machine in a prescribed
sequencing order. As described in Section III, there are
ST-units, SC-units and RC-units. We as-
sume that in the worst case, in which during an iteration cycle
for each SC-unit or RC-unit there are constraint violation and
feedback adjustments. In this case for each iteration cycle, first

484 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

TABLE VI
SIMULATION RESULTS OFEXAMPLE 3 WITH RANDOMLY INITIAL SOLUTIONS

Fig. 12. A feasible solution ofExample 4by CSANN.

ST-units are calculated, then SC-units are calcu-
lated and feedback adjustments are calculated, finally

RC-units and feedback adjustments are
calculated. So for each iteration, the total number of calculations
is , which is on the order of

Second, the total number of iterations needed by CSANN to
obtain a feasible solution is discussed. Usually the total number
of iterations varies with the problem size (i. e., the total opera-
tions in our discussions) and the parameter value of CSANN.
In order to test the relation between the total number of iter-
ations and the problem size, we simulated under the same pa-
rameter value with randomly generated eight tra-
ditional job-shop scheduling problems: from to

For all these problems, each job passes through
each machine once in the order of from the first operation to the
last operation. In all the simulations the expected makespans
were set to be and the solution starts from random ini-
tial solutions. The simulation results are shown in Table VII.
Table VII shows that the relation between the iteration times

and the problem size is approximately linear with the ratio of
the total iteration number to the problem size being about five.
That is, the total number of iterations is on the order of
to the problem size.

The total computational complexity of CSANN is the product
of the number of iterations and the complexity per iteration,
which is approximately

VII. CONCLUSIONS

The proposed approaches for job-shop scheduling are origi-
nated from the idea of combining CSANN and several heuristic
algorithms. CSANN has the property of easily mapping the se-
quence and resource constraints of specific job-shop scheduling
problem onto its architecture and removing the violations of
these constraints during its processing to obtain feasible solu-
tions. The adaptive property of CSANN makes it different from
other constraint satisfaction neural networks in a simpler archi-
tecture.

YANG AND WANG: CONSTRAINT SATISFACTION ADAPTIVE NEURAL NETWORK AND HEURISTICS COMBINED APPROACHES 485

Fig. 13. A solution ofExample 4by Method 4.

TABLE VII
SIMULATION RESULTS OFCOMPUTATIONAL COMPLEXITY

When only CSANN is used for job-shop scheduling prob-
lems, the quality of feasible solutions obtained somewhat de-
pends on the choice of an expected makespan which may be the
scheduler’s desired objective. When the expected makespan is
suitably chosen, the desired objective can always be achieved.
But when the specification of the expected makespan is too
loose the feasible solution searched may be not good enough,
and when too tight or shorter than the optimum, the feasible
solution cannot be obtained. Meanwhile there may appear the
phenomenon of nonconvergence among many runs.

To improve the performance of CSANN and the quality of
solutions searched, we can combine CSANN with the proposed
heuristics. While combined with these algorithms, CSANN can
always find good schedules (including near-optimal and optimal
solutions) with the expected makespan chosen quite loose or
even equivalent to

For practical scheduling problems we can apply the following
strategy: first use only CSANN to obtain a feasible solution from
the zero initial solution, then use the obtained makespan as the
expected makespan to run Method 4 from randomly initial so-

lutions several times, finally take the obtained best solution as
the practical schedule.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
helpful comments and suggestions that contributed to improve
the quality of this paper.

REFERENCES

[1] K. R. Baker, Introduction to Sequence and Scheduling. New York:
Wiley, 1974.

[2] R. W. Conway, W. L. Maxwell, and L. W. Miller,Theory of Sched-
uling. Reading, MA: Addison-Wesley, 1967.

[3] D. Dubois, H. Fargier, and H. Prade, “Fuzzy constraints in job-shop
scheduling,”J. Intell. Manufacturing, vol. 6, pp. 215–234, 1995.

[4] P. V. Hentenryck, Constraint Satisfaction and Logic Program-
ming. Cambridge, MA: MIT Press, 1989.

[5] M. S. Fox and M. Zweben,Knowledge-Based Scheduling. San
Manteo, CA: Morgan Kaufmann, 1993.

[6] J. J. Hopfield and D. W. Tank, “‘Neural computation of decisions in
optimization problems,”Biol. Cybern., vol. 52, pp. 141–152, 1985.

[7] D. W. Tank and J. J. Hopfield, “Simple neural optimization networks: An
A/D converter, single decision circuit and a linear programming circuit,”
IEEE Trans. Circuits Syst., vol. 33, pp. 533–541, 1986.

[8] J. H. Park and H. Jeong, “Solving the TSP using an effective Hop-
field network,” inProc. IEEE Int. Conf. Neural Networks, Paris, France,
1990.

[9] G. A. Tagliarini and E. W. Page, “Solving constraints satisfaction prob-
lems with neural networks,” inProc. IEEE 1st IJCNN, vol. III, 1987, pp.
741–747.

[10] M. P. Kennedy and L. O. Chua, “Neural networks for nonlinear program-
ming,” IEEE Trans. Circuits Syst., vol. 35, pp. 554–562, 1988.

[11] G. V. Wilson and G. S. Pawley, “On the stability of the TSP algorithm
of Hopfield and Tank,”Biol. Cybern., vol. 58, pp. 63–70, 1988.

[12] S. Y. Foo and Y. Takefuji, “Neural networks for solving job-shop sched-
uling: Part 1. Problem representation,” inProc. IEEE IJCNN, vol. II, San
Diego, CA, 1988, pp. 275–282.

[13] , “Stochastic neural networks for solving job-shop scheduling: Part
2. Architecture and simulations,” inProc. IEEE IJCNN, vol. II, San
Diego, CA, 1988, pp. 283–290.

486 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000

[14] , “Integer linear programming neural networks for job-shop sched-
uling,” in Proc. IEEE IJCNN, vol. II, San Diego, CA, 1988, pp. 341–348.

[15] S. Y. Foo, Y. Takefuji, and H. Szu, “Job-shop scheduling based on mod-
ified Tank-Hopfield linear programming networks,”Engineering Appli-
cation and Artificial Intelligent, vol. 7, no. 3, pp. 321–327, 1994.

[16] D. N. Zhou, V. Charkassky, T. R. Baldwin, and D. E. Olson, “A neural-
network approach to job-shop scheduling,”IEEE Trans. Neural Net-
works, vol. 2, no. 1, pp. 175–179, 1991.

[17] C.-S. Zhang and P.-F. Yan, “Neural network method of solving job-shop
scheduling problem,”ACTA Automation Sinica, vol. 21, pp. 706–712,
1995.

[18] T. M. Willems, “Neural networks for job-shop scheduling,”Contr. Eng.
Practice, vol. 2, no. 1, pp. 31–39, 1994.

[19] T. M. Willems and L. E. M. W. Brandts, “Implementing heuristics as
an optimization criterion in neural networks for job-shop scheduling,”
J. Intell. Manufacturing, vol. 6, pp. 377–387, 1995.

[20] H.-B. Yu, “Research of Intelligent Production Scheduling Methods and
Their Applications,” Ph.D. dissertation, Northeastern University of P.R.
China, 1997.

[21] S. French,Sequencing and Scheduling: An Introduction to the Mathe-
matics of the Job-Shop. New York: Wiley, 1982.

[22] H.-L. Fang, P. Ross, and D. Corne, “A promising genetic algorithm ap-
proach to job-shop scheduling, rescheduling and open-shop scheduling
problems,” inProc. 5th Int. Conf. Genetic Algorithms, vol. 67, 1994, pp.
81–100.

[23] S. C. Graves, “A review of production scheduling,”Operations Res., vol.
29, pp. 646–675, 1981.

[24] R. H. Nielsen, Neurocomputing. Reading, MA: Addison-Wesley,
1989.

[25] R. P. Lippmann, “An introduction to computing with neural nets,”IEEE
ASSP Mag., pp. 4–22, Apr. 1987.

[26] J. F. Muth and G. L. Thompson,Industrial Scheduling. Englewood
Cliffs, NJ: Prentice-Hall, 1963.

Shengxiang Yang was born in Anhui Province,
China, in 1972. He received the B.S. and M.S.
degrees in automatic control and the Ph.D. degree
in control theory and control engineering from the
Northeastern University, Shenyang, China, in 1993,
1996 and 1999, respectively.

He is now a Postdoctoral Research Associate at
Department of Computer Science, King’s College
London, University of London, U.K. His current
research interests include artificial neural networks,
production scheduling, combinational optimization,

genetic algorithms, and network flow theory and algorithms.

Dingwei Wang received the Ph. D. degree in control
theory and application from the Northeastern Univer-
sity, Shenyang, China.

He has been a Postdoctoral Fellow at North
Carolina State University, Raleigh. He is currently
Professor at the Department of Systems Engineering,
School of Information Science and Engineering,
Northeastern University, Shenyang, China. He has
authored three books and has had more than 100
papers published in international and domestic
journals, including the IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS, International Journal of Production
Research, Fuzzy Sets and Systems, etc. His current research interests include
MRP-II, JIT manufacturing systems, production planning and scheduling,
fuzzy optimization, and genetic algorithms.

Dr. Wang is a member of the New York Academy of Sciences and a member
of Automatic Association of China. He serves on the editorial boards of Chinese
Journal of Control and Desision.

