
An Analysis of the XOR Dynamic Problem

Generator Based on the Dynamical System

Renato Tinós1 and Shengxiang Yang2

1 Department of Physics and Mathematics, FFCLRP, University of São Paulo (USP)
14040-901, Ribeirão Preto, S.P., Brazil

rtinos@ffclrp.usp.br
2 Department of Information Systems and Computing, Brunel University

Uxbridge, Middlesex UB8 3PH, U.K.
shengxiang.yang@brunel.ac.uk

Abstract. In this paper, we use the exact model (or dynamical system
approach) to describe the standard evolutionary algorithm (EA) as a
discrete dynamical system for dynamic optimization problems (DOPs).
Based on this dynamical system model, we analyse the properties of the
XOR DOP Generator, which has been widely used by researchers to cre-
ate DOPs from any binary encoded problem. DOPs generated by this
generator are described as DOPs with permutation, where the fitness
vector is changed according to a permutation matrix. Some properties
of DOPs with permutation are analyzed, which allows explaining some
behaviors observed in experimental results. The analysis of the proper-
ties of problems created by the XOR DOP Generator is important to
understand the results obtained in experiments with this generator and
to analyze the similarity of such problems to real world DOPs.

1 Introduction

The study of evolutionary algorithms (EAs) for dynamic optimization problems
(DOPs) has attracted a rapidly growing interest in recent years due to its im-
portance to real world applications of EAs, where, often, new solutions should
be found in short time after a change in the problem [2]. Most researches on
EAs for DOPs focus on experimental investigation, and very few investigate the
theory behind DOPs [8, 9, 7, 1, 3, 6].

In [7], the standard genetic algorithm (GA) with mutation and selection is
investigated in DOPs with regular changes (see Section 3) based on the dynami-
cal system approach (or exact model) of the GA [11]. Despite demanding a large
number of equations to track all possible solutions represented by the individu-
als of the GA, the use of the exact model is attractive as it allows a complete
description of the population dynamics [5].

In this paper, we use the dynamical system approach to analyze the XOR
DOP Generator [12, 14]. In the XOR DOP Generator, DOPs are created from
any binary encoded stationary problem, which allows comparing different al-
gorithms in environments with different properties. This paper investigates the
properties of the problems generated by the XOR DOP Generator, which is rel-
evant in order to understand the results obtained in the experiments with this
generator and to analyze the similarity of such problems to real world problems.



2 R. Tinós and S. Yang

The rest of this paper is organized as follows. The exact model for the GA
in stationary environments (see [5] and [11] for details) is briefly presented in
Section 2. Some concepts of DOPs are discussed and formally described based
on the dynamical system approach in Section 3. Section 4 presents the analysis
of the XOR DOP Generator based on the developed dynamical system model
and some experiments are presented in Section 5. Finally, the conclusions of this
work with discussions on relevant future work are presented in Section 6.

2 Exact Model of the GA in Stationary Environments

In the exact model proposed by Vose [11], the standard GA is described as a
discrete dynamical system [5]. In a GA with binary codification, an individual
of a population codifies a possible solution x ∈ {0, 1}l. In the exact model, all
possible solutions are represented in an n-dimensional discrete space χ, where
each possible solution is enumerated as {0, 1, . . . , n − 1} and n = 2l. A popula-
tion is then defined by an n-dimensional vector p, where each element defines
the proportion of each possible solution in the population with size N . As the
sum of the elements of p is equal to 1, population vectors can be described as
members of a simplex Λ. This way, the population evolution can be described
as a trajectory in the simplex and population vectors can be used to describe
the probability distribution of the individuals in the search space. Thus, a gen-
erational operator G : Λ → Λ can be defined. The vector G(p) describes the
expected next population [11], i.e., the average over all possible populations of
the next generation with variance inversely proportional to the population size
N . In the limit N → ∞ (infinite population), the variance goes to zero, and
the evolution in the stationary case is deterministically described by the trajec-
tory p, G(p), G2(p), . . .. In this way, in generation t for the stationary case, the
expected population vector for the infinite population model is given by:

pt = Gt(p0), (1)

where p0 is the initial population vector. When fitness proportional selection
and flip mutation are employed, the generational operator can be written as:

G(p) =
UF p

fTp
, (2)

where F = diag(f) is a diagonal matrix generated from the fitness vector f and
U is the mutation matrix. The analysis of Eq. (2) can provide insights in un-
derstanding the behavior of the GA. The fixed points of G, i.e., points where
G(p) = p, are given by the eigenvectors of UF . For each eigenvector p, an eigen-
value fTp, corresponding to the average fitness of p, can be computed. As UF
has only positive values, there is only one eigenvector in Λ, corresponding to the
eigenvalue with the largest absolute value [5]. Then, all trajectories in Λ converge
to this fixed point, i.e. the system is asymptotically stable [11]. The remaining
eigenvectors are not properly fixed points, as, for example, they can lie outside
the simplex. However, they play an important role in the evolutionary process as
they can change the trajectory in the simplex and can create metastable states
that can trap finite populations for several generations [4].



An Analysis of the XOR DOP Generator Based on the Dynamical System 3

3 Dynamic Optimization Problems

A DOP is an optimization problem where at least one change occurs during
the evolutionary process. When a change occurs, the generational operator G
is altered and at least one possible trajectory realized by the population in the
simplex Λ is affected. It can be observed that not all modifications in the gener-
ational operator can be described as a change. Another important observation
is that a change does not necessarily imply a modification in the population or
in its current trajectory. For example, if the change does not modify the current
trajectory of the population to the fixed point, no effect will be observed in the
evolutionary process. The same occurs if the population has converged to the
fixed point and this one is not modified by the change.

As the generation operator is modified after a change, Eq. (1) is not valid
anymore for every generation t in a DOP. If we consider that changes occur only
between the application of two consecutive generational operators, the following
equation is valid for the infinite population case:

pt = Gt(pt−1), (3)

where Gt is the generational operator in generation t ≥ 1.
A series of generational operations between two consecutive changes is called

here a change cycle. The first change cycle begins in the first generation of the
evolutionary process and ends one generation before the first change, while the
last change cycle begins in the generation after the last change and ends until
the last generation of the evolutionary process.

The change cycle duration de is the number of consecutive generations in
change cycle e. If change cycle e begins at generation te, then

Gte
= Gte+1 = Gte+2 = . . . = Gte+de−1, (4)

where de > 0. In abuse of notation, we define now Ge as the generational operator
in change cycle e. In this way, for the infinite population case, the population in
generation t is now given by:

pt = G
(t−

P

e−1

i=1
di)

e G
de−1

e−1 . . .Gd3

3 Gd2

2 Gd1

1 (p0), (5)

where e > 0. It can be observed that a DOP can be viewed as a sequence of
stationary processes, where the initial population in the i-th change cycle is the
last population generated in the change cycle i− 1. The minimum value of di is
one generation, which is the case where the generational operator is modified just
one generation after the prior change, while the maximum value of di is equal
to the index of the current generation, which is the case where the problem is
stationary (until the current generation) and Eq. (5) reproduces Eq. (1).

In this paper, we are interested in a class of dynamic problems defined here
as DOPs with permutation, which is defined below.

Definition 1. A DOP with permutation is a DOP where the fitness land-
scape in change cycle e − 1 is modified according to a permutation matrix, i.e.,

fe = σke
fe−1,



4 R. Tinós and S. Yang

where σke
is a permutation matrix mapping the element at position i of the vec-

tor fe−1 to the element at position i⊕ ke of the vector fe, where ⊕ is the bitwise
exclusive-or (XOR), or addition modulo 2, operator. The vector i ∈ {0, 1}l in-
dicates the position of the element in the fitness vector. The vector ke ∈ {0, 1}l

controls the permutation of the elements of the fitness vector.

In a DOP with permutation, the fitness values are preserved in the search
space, i.e., they are only resorted. In [7], DOPs with regular changes, which are
a special subset of DOPs with permutation (Definition 1) where the transitional
rule is deterministic and belongs to a permutation group where σke+t

= (σke
)t

for t ≥ 0, are defined. As a consequense, in DOPs with regular changes, the fixed
points can be computed and the asymptotic states can be then analyzed [7].

4 The XOR DOP Generator

The XOR DOP Generator [14] can generate DOPs from any binary encoded
problem. In the XOR DOP Generator, given a stationary problem with fitness
function f(xt) and the solution xt ∈ {0, 1}l, the fitness function fe(xt) of an
environment, which is periodically changed every τ generations, is computed by:

fe(xt) = f
(

xt ⊕ me

)

, (6)

where t is the generation index, e = ⌈t/τ⌉ is the change cycle index, and me is
a binary mask for change cycle e, which is incrementally generated by:

me = me−1 ⊕ re, (7)

where re is a binary template randomly created for change cycle e containing
⌊ρ × l⌋ ones, and {ρ ∈ R | 0.0 ≤ ρ ≤ 1.0} controls the degree of change for the
DOP. If ρ = 0.0, the problem stays stationary, while if ρ = 1.0, the extreme
fitness landscape change in the sense of Hamming distance occurs. For the first
change cycle, m1 is equal to the zero vector.

The main characteristic of the XOR DOP Generator is that each individual
of the current population is moved to a new location in the fitness landscape
before being evaluated [10]. Instead of evaluating the fitness of the individual at
xt, the fitness is evaluated at xt ⊕ me. It can be observed that the XOR DOP
Generator produces DOPs with changes in the fitness landscape. Based on the
XOR DOP Generator properties, the following theorem is proposed.

Theorem 1. The XOR DOP Generator produces DOPs with permutation.

Proof : It can be observed that only the fitness vector is modified by Eq. (6).
The fitness vector in change cycle e > 1 for a DOP generated by the XOR DOP
Generator from a stationary problem with fitness function f(xt) is given by:

fe =











fe(0)
fe(1)

...
fe(n−1)











=











f(x(0) ⊕ me)
f(x(1) ⊕ me)

...
f(x(n−1) ⊕ me)











=











f(x(0) ⊕ me−1 ⊕ re)
f(x(1) ⊕ me−1 ⊕ re)

...
f(x(n−1) ⊕ me−1 ⊕ re)











, (8)



An Analysis of the XOR DOP Generator Based on the Dynamical System 5

where x(i) is the i-th possible solution in the n-dimensional discrete space χ and
fe(i) is its respective fitness.

Defining the i-th solution in change cycle e − 1 as xe−1(i) = x(i) ⊕ me−1,
Eq. (8) can be written as:

fe =











f(xe−1(0) ⊕ re)
f(xe−1(1) ⊕ re)

...
f(xe−1(n−1) ⊕ re)











= σre











fe−1(0)

fe−1(1)

...
fe−1(n−1)











= σre
fe−1, (9)

where σre
is a permutation matrix mapping the element at position j of the vector

fe−1 to the element at position j ⊕ re of the vector fe. Equation (9) indicates
that the fitness of the i-th solution in change cycle e is equal to the fitness of
the i-th solution in change cycle e − 1 moved according to the permutation re.
That is, the XOR DOP Generator produces DOPs with permutation. �

One can still observe that the XOR DOP Generator produces stationary
environments for ρ = 0.0 and DOPs with regular changes for ρ = 1.0. In the
latter case, the DOP switches between two environments. For 0.0 < ρ < 1.0, the
changes are not regular because the template re is randomly generated, and, as
a consequence, the metastable points for the stationary environments generated
for each template re are generally different.

As the DOP is viewed as a sequence of stationary environments, the analysis
of how the fixed points and metastable states for each stationary environment
are related can provide insights in understanding GA’s behavior on the DOP
generated by the XOR DOP Generator. Here, the state of the DOP in a change
cycle corresponding to the fixed point in the respective stationary environment is
called main metastable state. It is important to observe that the main metastable
states are not fixed points of the DOP, as the problem changes and the population
generally does not converge to a fixed point. However, the metastable states
control the trajectory of the population during each change cycle.

In a DOP with permutation, the points of the search space in change cycle
e > 1 are obtained by the permutation, according to σke

, of the points of the
search space in change cycle e − 1. As a consequense, the i-th eigenvector pe(i)

of UeFe in change cycle e can be obtained by the permutation, according to σke
,

of the respective eigenvector for the environment in change cycle e − 1, i.e.,

pe(i) = σke
pe−1(i). (10)

Besides, the eigenvalues of UeFe for two environments defined by change
cycles e − 1 and e are equal. As the metastable states of Ge are given by the
eigenvectors of UeFe, the metastable states of Ge and Ge−1 in a DOP with per-
mutation are related by the permutation matrix σke

(or σre
for environments

created by the XOR DOP Generator). Besides, the average fitness (eigenvalue)
at the main metastable remains the same.

Theorem 2. Consider the standard GA with mutation and fitness proportional
selection is applied in: i) a DOP with permutation (Definition 1), where the



6 R. Tinós and S. Yang

duration and permutation matrix of change cycle e are, respectively, de and σke
;

ii) in a stationary environment where the population is permuted according to
the permutation matrix σke

after every cycle e = 1, 2, . . . with duration de. If both
evolutionary processes have the same initial population and parameters, and the
fitness function in the first change cycle for the first process is equal to the fitness
function in the second process, then the evolution of the population in the two
processes is identical, i.e., the two evolutionary processes are equivalent.

Proof : According to Eqs. (3) and (2), the population for the infinite population
case in generation t > 1 for a DOP with fitness landscape changes is given by:

pt =
UFe pt−1

fT
e pt−1

. (11)

For a change cycle e > 1 in a DOP with permutation (Definition 1), fe =
σke

fe−1, and, as a consequense, Fe = σke
Fe−1σke

. Then, we can write Eq. 11 as:

pt =
Uσke

Fe−1σke
pt−1

fT
e−1σke

pt−1
. (12)

Defining qt = σke
pt and considering that U and σke

commute, then:

qt =
UFe−1 qt−1

fT
e−1qt−1

. (13)

It can be observed that Eqs. (11) and (13) are similar. If, after the change
e, we transform the final population at the last generation of change cycle e −
1 according to qt = σke

pt, then, we can use Eq. (13) with the same fitness
landscape of change cycle e − 1 to reproduce the dynamics of the population in
the infinite population case for change cycle e. �

As a consequence of Theorem 2, the XOR DOP Generator can be simplified.
Instead of computing the fitness of each individual xt of the population at the
position xt ⊕me in every generation, each individual of the initial population in
change cycle e is moved to xt = xt ⊕ re, i.e., the population is moved only one
time, and the fitness is computed as f(xt), like in the stationary environment.
In this way, the complexity of the procedure is reduced from O(lNde) to O(lN).

5 Experimental Study

In this section, we present simulations for the evolution of the standard GA with
mutation and fitness proportional selection in a DOP created by the XOR DOP
Generator from a deceptive fitness function defined by:

f(x) =

{

l, if u(x) = l

(l − 1) − u(x), otherwise,
(14)

where u(x) is the unitation function of a binary vector x of length l. This function
has one global optimum and one local optimum. In the simulations presented
in this section, l = 8, the mutation rate is 0.01, and the initial population (p0)



An Analysis of the XOR DOP Generator Based on the Dynamical System 7

0 50 100 150 200 250 300
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Generation

F
itn

es
s

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

Generation

D
is

ta
nc

e

Fig. 1. Mean fitness of the population (left) and distance to the current first (solid) and
second metastable states (dotted) for five change cycles with τ = 60 and ρ = 0.875

is uniformly distributed. For all simulations, Eq. 11 is employed to generate the
population vector p(t), i.e., the exact model with infinite population is employed
in the simulations in order to generate the expected next population during
the evolutionary process. In the simulations, the problem changes, according to
fe = σre

fe−1, every τ generations with change degree ρ. Twenty values of τ (from
τ = 3 to τ = 60 with a step size 3) and seven values of ρ (from ρ = 0.125 to
ρ = 0.875 with a step size 0.125) are considered. In this way, 140 simulations were
executed, one for each pair of τ and ρ. Each evolutionary process is simulated
for 30 change cycles of the infinite population model.

Figure 1 shows a simulation with ρ = 0.875 and τ = 60, where the mean
fitness of the population during the evolution and the Euclidean distance be-
tween the population in the current generation and the two eigenvectors with
the largest eigenvalues are presented. The first eigenvector corresponds to the
current main metastable state (where the number of individuals of the popu-
lation at the global optimum is larger than the number of individuals at any
other place), while the second eigenvector is the metastable state with the sec-
ond largest eigenvalue (where the number of individuals of the population at
the local optimum is larger than the individuals at any other place). It can be
observed that, in some change cycles, the population goes to the neighborhood
of the second metastable state and, after some generations, goes to the main
metastable state. When Eq. (13) is used, i.e., evolution in a stationary environ-
ment where the population is permuted according to the permutation matrix
σke

after every cycle e with duration de = 60, the same graphics presented in
Fig. 1 are obtained if the same parameters are employed (those graphics are not
shown here), as stated by Theorem 2.

Figure 2 presents the results for all simulations. The first graph shows the
value of fopt − f(pe) averaged over all change cycles e, where fopt is the current
mean value of fitness in the main metastable state and f(pe) is the mean fitness
of the population pe in the end of change cycle e. The second graph presents
the respective mean distance between the current main metastable state and the
state pe in the end of change cycle e. From Fig. 2, some observations can be
made. When τ is close to 60 generations, i.e., in slow changing environments, the



8 R. Tinós and S. Yang

0.20.40.60.8

0

20

40

60

0

1

2

3

rho
tau

F
it
n
e
s
s
 E

rr
o
r

0.20.40.60.8

0

20

40

60

0

0.2

0.4

0.6

0.8

1

rho
tau

D
is

ta
nc

e

Fig. 2. Fitness error (left) and distance to the current main mestastable (right) in the
simulations for different τ and ρ. The values are relative to the average (over 30 change
cycles) obtained by the population vector in the generation before the change

population always reaches the main metastable state after changes with small
degree of change ρ. When τ is large, there is enough time for the population
to go from the neighborhood of the main metastable state (where most of the
population is at the global optimum) in change cycle e−1 to the neighborhood of
the main metastable state in change cycle e. As a consequence, the fitness error
in the end of each change cycle is zero when τ is large and ρ is small (see Fig. 1).
In the XOR DOP Generator, the parameter ρ controls the degree of change. As
ρ controls the percentage of changed bits from template re−1 to template re,
the hamming distance between re−1 and re is h(re, re−1) = ⌊ρ× l⌋. In this way,
larger ρ imply larger hamming distance between the optima in two consecutive
change cycles and in longer trajectories of the population in the simplex, and,
thus, more time to reach the neighborhood of the main metastable point.

However, it can be observed that a higher degree of modification in the fitness
landscape (larger ρ) does not necessarily imply a worse performance of the GA in
the DOP for medium and small τ . One can observe that for medium and small τ ,
the simulations with ρ = 0.375 presented worse performance than those for larger
ρ. This behavior can be found in experiments with the XOR DOP Generator
for different algorithms (for example, see [13]). The performance of the GA is
related to trajectories of the population in the simplex, and the trajectories
are related to the fitness vector and the transformation operators. In a medium
velocity or fast changing environment, generally, when the population reaches the
neighborhood of the main metastable point in change cycle e−2, the population
after the change is closer to the second metastable state in the next change cycle
when ρ is large. In this case, the population does not have enough time to be
closer to the new main metastable state neighborhood in change cycle e−1 than
to the old main metastable neighborhood. However, when the problem changes
again, the population is close to the neighborhood of the main metastable state
in change cycle e for ρ close to 1. The mean Hamming distance of template re

between two change cycles, which is given by h̄(re, re−2) = 2l(ρ − ρ2), explains
the behavior of the GA in this case. It can be observed that the mean fitness
generally alternates between two different values for larger ρ and medium or
small τ (see, for example, Fig. 1). One can observe that the values of distance



An Analysis of the XOR DOP Generator Based on the Dynamical System 9

in Fig. 2 are higher for ρ close to one than for ρ close to zero, as in part of
the change cycles, the population remains in the neighborhood of the second
metastable state for larger ρ.

Two observations can be made for the previous analysis. First, a higher de-
gree of modification (ρ) in the templates re does not necessarily imply a worse
performance of the GA. This result has been observed in several experiments
with the XOR DOP Generator (for example, see [13]). The performance of the
GA is related to the trajectories of the population in the simplex, which makes
more complex the analysis of the performance of the algorithms. Second, the
metrics used to compare the algorithms in DOPs cannot be adequate for some
problems. For example, in the problem investigated here, an algorithm that keeps
the population close to the second metastable neighborhood for a high degree
of change in a fast changing environment can have higher mean fitness than an
algorithm that allows the population escaping from the local optima, but does
not have enough time to reach the main metastable state neighborhood.

6 Conclusion and Future Work

In this paper, DOPs are defined based on the dynamical system (or exact model)
[11] and the class of DOPs with permutation is defined. Such definition, and oth-
ers that can be defined based on the same approach, can be useful to classify real
world DOPs and, hence, allow a systematic analysis of such problems based on
the properties of each class. Here, the XOR DOP Generator, which allows cre-
ating DOPs from any binary encoded stationary problem, is analyzed based on
the dynamical system approach and the definition presented in Section 3. In this
paper, the optimization process of the GA on the DOP is viewed as a sequence
of evolutionary processes, each one described as a stationary optimization prob-
lem, where the initial population in a change cycle with duration de ≥ 1 is given
by the last population in the previous change cycle. In the problems generated
by the XOR DOP Generator, the duration of all change cycles is equal and the
fitness vector of the problem in change cycle e > 1 is related to the fitness vector
in change cycle e− 1 by a random template re. Thus, a problem created by the
XOR DOP Generator is identified as a DOP with permutation (Definition 1),
where the fitness vector changes according to fe = σre

fe−1.
When the standard GA with proportional fitness selection and mutation is

applied to a DOP with permutation, the eigenvectors of the fixed point equation
between two consecutive change cycles are related by the permutation matrix σke

(or σre
in DOPs created by the XOR DOP Generator). This way, the metastable

points in change cycle e can be obtained by the permutation (according to σke
)

of the same points in change cycle e − 1, and the evolution in a DOP with per-
mutation is equivalent to that in a stationary environment where the population
is permuted by the permutation matrix σke

after each cycle e = 1, 2, . . . with
duration de. Hence, the XOR DOP Generator can be simplified by moving the
initial population of a change cycle instead of computing the fitness function of
each individual in each generation in a new position. In this paper, the influence
of the parameter ρ in the XOR DOP Generator is also analyzed, and the results



10 R. Tinós and S. Yang

obtained in experiments related in the literature, where the worst performance
for some algorithms are obtained for medium ρ, is explained.

It can be observed that algorithms exploring the properties described on the
analysis of the XOR DOP Generator can be proposed. However, it is not clear
if such algorithms are useful in real world DOPs. To answer this question, the
real world DOPs identified as permutation DOPs should be described, which
should allow the use of the XOR DOP Generator to reproduce such problems.
In this way, a very relevant future investigation is to analyze real world DOPs,
to classify them according to their properties, and to develop DOPs generators
based on the identified class of DOPs. Another relevant future work is to ana-
lyze algorithms proposed for DOPs, e.g., GA with hypermutation and GA with
random immigrants, according to the dynamical system approach.

Acknowledgment

This work was supported by Brazil FAPESP under Grant 04/04289-6 and by
UK EPSRC under Grant EP/E060722/2.

References

1. Arnold, D. V., Beyer, H.-G.: Random dynamics optimum tracking with evolution
strategies. In: Parallel Problem Solving from Nature VII, pp. 3–12 (2002)

2. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer (2001)
3. Droste, S.: Analysis of the (1+1) EA for a dynamically changing onemax-variant.

In: 2002 Congr. on Evol. Comput., pp. 55–60 (2002)
4. Van Nimwegen, E., Crutchfield, J. P., Mitchell, M.: Finite populations induce

metastability in evolutionary search. Physics Letters A, 229(3), 144–150 (1997)
5. Reeves, C. R., Rowe, J. E.: Genetic algorithms - principles and perspectives: a

guide to GA theory. Kluwer Academic Publishers (2003)
6. Rohlfshagen, P., Lehre, P. K., Yao, X.: Dynamic evolutionary optimisation:

an analysis of frequency and magnitude of change. In: 2009 Genetic and
Evol. Comp. Conf., pp. 1713–1720 (2009)

7. Ronnewinkel, C., Wilke, C. O., Martinetz, T.: Genetic algorithms in time-
dependent environments. In: Kallel, L., Naudts, B., Rogers, A. (eds), Theor. As-
pects of Evol. Comp., pp. 263–288, Springer (2001)

8. Rowe, J. E.:.: Finding attractors for periodic fitness functions. In: 1999 Genetic
and Evol. Comp. Conf., pp. 557–563 (1999)

9. Rowe, J. E.: Cyclic attractors and quasispecies adaptability. In: Kallel, L., Naudts,
B., Rogers, A. (eds), Theor. Aspects of Evol. Comp., pp. 251–259, Springer (2001)

10. Tinós, R., Yang, S.: Continuous dynamic problem generators for evolutionary
algorithms. In: 2007 Congr. on Evol. Comput., pp. 236–243 (2007)

11. Vose, M. D.: The Simple Genetic Algorithm: Foundations and Theory. The MIT
Press (1999)

12. Yang, S.: Non-stationary problem optimization using the primal-dual genetic al-
gorithm. In: 2003 Congr. on Evol. Comput., pp. 2246–2253 (2003)

13. Yang, S., Tinós, R.: A hybrid immigrants scheme for genetic algorithms in dynamic
environments. Int. J. of Autom. and Comput., 4(3), 243–254 (2007)

14. Yang, S., Yao, X.: Experimental study on population-based incremental learning al-
gorithms for dynamic optimization problems. Soft Comput., 9(11), 815–834 (2005)


