
FOCUS

Learning behavior in abstract memory schemes for dynamic
optimization problems

Hendrik Richter Æ Shengxiang Yang

Published online: 26 March 2009

� Springer-Verlag 2009

Abstract Integrating memory into evolutionary algo-

rithms is one major approach to enhance their performance

in dynamic environments. An abstract memory scheme

has been recently developed for evolutionary algorithms

in dynamic environments, where the abstraction of good

solutions is stored in the memory instead of good solutions

themselves to improve future problem solving. This paper

further investigates this abstract memory with a focus on

understanding the relationship between learning and

memory, which is an important but poorly studied issue for

evolutionary algorithms in dynamic environments. The

experimental study shows that the abstract memory scheme

enables learning processes and hence efficiently improves

the performance of evolutionary algorithms in dynamic

environments.

Keywords Evolutionary algorithm �
Dynamic optimization problem � Learning �
Memory dynamics

1 Introduction

A main concern of evolutionary algorithms (EAs) for

solving dynamic optimization problems (DOPs) is to

maintain the genetic diversity of the population (Branke

2002; Jin and Branke 2005; Morrison 2004) in order to

guarantee continuing and sustainable evolutionary search

for optima that change with time. Next to standard adaptive

schemes that are also used in solving static optimization

problems, such as self-adaption of mutation (Arnold and

Beyer 2006; Boumaza 2005), for achieving the mainte-

nance of diversity, two main lines have been followed in

solving DOPs. One line is to preserve diversity by mainly

random means, which is realized by designs such as hyper-

mutation (Morrison and De Jong 2000) and random

immigrants (Tinós and Yang 2007). Another line is to

promote diversity by basically deterministic methods

through saving individuals or groups of individuals for

future re-insertion or mergence. Such ideas are imple-

mented in memory (Branke 1999; Lewis and Ritchie 1998;

Yang 2005) and multi-population approaches (Branke

et al. 2000).

Although both of the above concepts have shown to

be successful for certain dynamic environments, there are

some points of criticism. One is that they do not or do

not explicitly incorporate information about the dynamics

and hence do not discriminate between different kinds of

dynamic fitness landscapes. Another concern is the usage

of past and present solutions for improving the quality of

future solution finding. This aspect is not addressed by

random diversity enhancement at all. In contrast, mem-

ory techniques do use previous good solutions for later

reuse (Branke 1999; Simões and Costa 2007; Yang 2006;

Yang and Yao 2008). Here, it is natural to ask how and

why this brings improvements in performance and an

H. Richter (&)

HTWK Leipzig, Fachbereich Elektrotechnik

und Informationstechnik, Institut Mess-, Steuerungs-

und Regelungstechnik, Postfach 30 11 66,

04125 Leipzig, Germany

e-mail: richter@fbeit.htwk-leipzig.de

S. Yang

Department of Computer Science,

University of Leicester, University Road,

Leicester LE1 7RH, UK

e-mail: s.yang@mcs.le.ac.uk

123

Soft Comput (2009) 13:1163–1173

DOI 10.1007/s00500-009-0420-6

obvious answer is that by storing and reusing informa-

tion some kinds of learning processes take place.

However, the detailed relationships between memory and

learning in dynamic optimization are poorly studied. A

related example is an analysis of how self-adaptive

mutation steps reflect the movement of the optima

(Boumaza 2005), which can be regarded as an implicit

learning process. However, we intend to study learning

in a more literal sense as for instance considered in

machine learning (Michalski 2000; Mitchell 1997).

Therefore, we introduce a method for evaluating the

memory dynamics and the learning process based on

an information-theoretical quantity, the Kullback–Leibler

divergence.

This paper analyzes an abstraction based memory

scheme for EAs for multimodal DOPs, which was recently

proposed in (Richter and Yang 2008). In this abstract

memory scheme, the abstraction of good solutions (i.e., to

use their approximate location in the search space to

deduce a probabilistic model for the spatial distribution of

good solutions) is stored in the memory instead of good

solutions themselves. We show that such a memory

scheme enables learning processes conceptionally and

functionally similar to those considered in machine

learning. It explicitly uses the past and present solutions in

an abstraction process that is employed to improve future

problem solving and differentiates between different kinds

of dynamics of the fitness landscape. In particular, we

intend to study how learning takes place in the abstract

memory scheme.

The rest of this paper is outlined as below. The next

section reviews the relationship between memory and

learning and links it to solving DOPs with a memory

enhanced EA. The abstract memory scheme is given in

Sect. 3, where we also show how it can be described by the

memory dynamics. Experiments are reported and discussed

in Sect. 4. Section 5 concludes the paper with discussions

on future work.

2 Memory and learning

When tackling similar problems repeatedly, it is natural to

credit the long-term success in problem solving to

learning in both its conceptual and metaphorical meaning.

By long-term success we mean that the obtained results

become increasingly better over time with respect to

some performance criteria. Evolutionary optimization in

dynamic fitness landscapes implies the repeated solution

of a multi-modal optimization problem and hence meets

this description. As we are using a memory scheme in the

EA to improve its performance, it makes sense to ask

about the relationships between memory and learning for

DOPs.

In cognitive science, learning is understood as a

change of behavior as a result of experience, while

memory is a record of events leading to experience

(Lieberman 2004). So, learning emphasizes acquiring

experience with the aim of extracting information from

past and current events likely to be useful in the future

behavior, while memory emphasizes retaining experi-

ence with the function to carry it forward in time. A

computer science example that is related to this study

and applies these principles is the memory design of

autonomous agents in artificial life for dynamic envi-

ronments (Ho et al. 2005). In machine learning, this

matter can be formalized further by defining the learning

problem as finding a mapping between inputs and out-

puts (Mitchell 1997). This mapping is constructed from a

training set of past and current inputs and outputs and

can be used to predict future outputs using future inputs

alone. The quality of the mapping is evaluated by per-

formance measures; the quality becoming better over

training time is the learning process. In this way, the

experiences in the cognitive science view roughly relate

to the training set of inputs and outputs and the perfor-

mance evaluation of the mapping between them in

machine learning. Moreover, the memory in the former

functionally corresponds to the mapping in the latter,

which applies almost literally in machine learning using

artificial neural networks. Our aim is to employ these

concepts in the design of and the numerical experiments

with the abstract memory scheme.

Memory schemes that only store good solutions as

themselves, known as direct memory (Branke 1999;

Simões and Costa 2007; Yang 2005), for later reuse

carry out learning processes implicitly at best. Learning

is something different than memorizing all previous

solutions. In cases, this might be helpful. In general,

every realizable memory will soon prove insufficient in a

more complex context; if not by the storing capacity

itself, then by a timely retrieval of the stored content for

further usage. In the wider sense discussed above,

learning refers to detecting the essence and meaning of a

solution.

The abstract memory scheme proposed in (Richter and

Yang 2008) intends to address and employ these relations.

Abstraction means to select, evaluate and code informa-

tion before storing. A good solution is evaluated with

respect to physically meaningful criteria and in the result

1164 H. Richter, S. Yang

123

of this evaluation, storage is undertaken but no longer as

the solution itself but as the information coded with

respect to the criteria. So, abstraction means a threshold

for and compression of information, e.g., see Fitch et al.

(2005) which proposes similar ideas for reinforcement

learning. The filling of the abstract memory takes place

during the run-time of the EA in the dynamic fitness

function. It gradually builds a mapping between the

search space elements and good solutions. This mapping

is constructed via the abstract memory. So, the scheme

we present is not merely concerned with anticipating the

dynamics of the fitness function alone, as considered in

(Bosman 2007), but to predict where good solutions of

the DOP are likely to occur. Hence, we bring together

learning and memory for evolutionary optimization in

dynamic environments.

3 The abstract memory scheme

The main idea of the abstract memory scheme is that it

does not store good solutions directly but as their

abstraction. The abstraction of a good solution is based on

its approximate location in the search space. Hence, we

need to partition the relevant (bounded) search space into

rectangular (hyper-) cells. Each cell can be addressed by

an element of a matrix. Hence, for an n-dimensional

search space M we obtain an n-dimensional matrix, whose

elements represent the search space sub-spaces. This

matrix acts as our abstract memory, called the memory

matrix, and is meant to represent the spatial distribution

of good solutions.

The EA we use has a real number representation of k
individuals xj 2 R

n, j ¼ 1; 2; . . .; k, which form the popu-

lation PðtÞ 2 R
n�k at generation t 2 N0. The pseudo-code

of the EA with the abstract memory scheme is briefly

outlined in Algorithm 1. The storage, retrieval, and

dynamics of the abstract memory are described in the

following sections, respectively.

3.1 Abstract memory storage

The abstract memory storage process consists of two steps,

a selecting process and a memorizing process. The

selecting process picks the best individuals from the

population PðtÞ while the EA runs. In terms of the run-time

between changes only the best over the run-time or the best

over a few generations before a change occurs could be

taken. We define the number of the individuals selected for

memorizing as well as the number of generations where

memorizing is carried out.

In the memorizing process, the selected individuals are

sorted according to the partition in the search space they

represent. In order to obtain this partition, we assume that the

search space M is bounded in each direction by ½ximin; ximax�,
i ¼ 1; 2; . . .; n. With the grid size �, we obtain for every gen-

eration t the memory matrix MðtÞ 2 R
h1�h2�...�hn , where

hi ¼ dximax�ximin

� e. In MðtÞ, each element m‘1‘2...‘n
ðtÞ is a

counter count‘1‘2...‘n
ðtÞ, ‘i ¼ 1; 2; . . .; hi, which is empty

initially, i.e., count‘1‘2...‘n
ð0Þ ¼ 0 for all ‘i. For each indi-

vidual xjðtÞ 2 PðtÞ selected to take part in the memorizing,

the counter of the element representing the partition cell

that the individual belongs to is increased by one. That is,

we calculate the index ‘i ¼ dxij�ximin

� e for all xj ¼
ðx1j; x2j; . . .; xnjÞT and all 1� i� n and increment the

corresponding count‘1‘2...‘n
ðtÞ. Note that this process might

be carried out several times in a generation t if more than one

individual selected belongs to the same partition. The

abstraction storage process retains the abstraction of good

solutions by accumulating locations where they occurred. In

this way, we encode and compress the information about good

solutions.

Learning behavior in abstract memory schemes for dynamic optimization problems 1165

123

3.2 Abstract memory retrieval

After a change is detected, the abstract memory is retrieved

as follows. First, an adjunctive memory matrix MlðtÞ is

calculated by dividingMðtÞ by the sum of all elements in

MðtÞ, i.e., MlðtÞ ¼ 1P
hi
MðtÞMðtÞ. Hence, each element

in MlðtÞ is an approximation of the natural measure

l 2 ½0; 1� of a good solution belonging to the correspond-

ing partition cell M‘1‘2...‘n
of the search space. This natural

measure can be viewed as the probability of the occurrence

of a good solution within the partition over time. Hence,

MlðtÞ can be regarded as a mapping between a search

space cell and the probability of a good solution within the

cell at time t þ 1. It hence allows the dynamic prediction of

good solutions which is employed in the retrieval process.

Next, we fix the number of individuals to be generated

by s ð1� s� kÞ and generate these individuals randomly

such that their statistical distribution regarding the partition

matches that stored in the memoryMlðtÞ. This is done as

follows. We first determine the number of individuals to be

created for each cell by sorting l‘1‘2...‘n
ðtÞ in the decreasing

order and set the number dl‘1‘2...‘n
ðtÞ � se of new individuals

for high values of l and the number bl‘1‘2...‘n
ðtÞ � sc for low

values, respectively. The rounding needs to ensure that
P
dl‘1‘2...‘n

ðtÞ � se þ
P
bl‘1‘2...‘n

ðtÞ � sc ¼ s. Then, we fix

the positions of the new individuals uniformly randomly

within each partition cell M‘1‘2...‘n
. This means the s indi-

viduals are distributed such that the number within each

cell approximates the probability of the occurrence of good

solutions. These individuals are inserted in the population

PðtÞ after mutation has been carried out.

This abstract retrieval process can create an arbitrary

number of individuals from the abstract memory. In the

implementation considered here we upper bound this cre-

ation by the number of individuals in the population. As

the abstract storage can be regarded as encoding and

compression of information about good solutions in the

search space, the abstract retrieval becomes decoding and

expansion.

3.3 Abstract memory dynamics

Using the scheme described above leads to a considerable

reduction of the information content to be processed by the

memory, which is typical for abstraction. The storing

capacity needed depends on the coarseness of the parti-

tioning, but not on the number of individuals taken to the

memory. This also means that the number of individuals

that take part in the memorizing and the number of indi-

viduals that are retrieved from the memory and inserted in

the population are completely independent of each other.

Also, in the memory matrix not the good solutions are

stored but the events of occurrence of the solution at a

specific location in the search space. This means a change

of representation (EA uses real, memory uses integer),

which is another feature of abstraction. Such a change of

representation requires less storage capacity and is partic-

ularly interesting for higher-dimensional search spaces. As

the memory matrix MlðtÞ is filled over the run-time t,

learning as discussed in Sect. 2 takes place and can be

quantified by studying the relationship between the per-

formance and the matrix filling.

To compare the memory dynamics to a reference, we

introduce a master memory (or demon) DlðtÞ, which has

the elements d‘1‘2...‘n
ðtÞ. It is a matrix of the same dimen-

sion and size as MlðtÞ and is built exactly the same way

with the difference being that the solution trajectory is

stored in DlðtÞ. Hence, it is a probabilistic mapping

between search space cells and the solution of the DOP.

With MlðtÞ and DlðtÞ, we have two spatial probability

distributions which represent the online calculated memory

and the solution. By measuring the degree of the difference

between these quantities, we have a way to establish

how good the memory is and to evaluate the memory

dynamics. Such a difference measure is the Kullback–

Leibler divergence (KLD), e.g., see Cover and Thomas

(2006), p. 19:

KLDðtÞ ¼
X

i
‘i

d‘i
ðtÞlog2

d‘i
ðtÞ

l‘i
ðtÞ

� �

; ð1Þ

where the measures d‘i
ðtÞ and l‘i

ðtÞ are the elements of

DlðtÞ andMlðtÞ, respectively. In the following, we report

numerical experiments with the abstract memory scheme

and study its learning behavior. Therefore, we will partic-

ularly look at the memory dynamics.

4 Experimental study

4.1 Experimental setup and performance measurement

The experimental results given here are obtained with an

EA that uses the tournament selection of tournament size

2, the fitness-related intermediate sexual recombination

(which is operated k times and for each recombination

two individuals are chosen randomly to produce an

offspring that is the fitness-weighted arithmetic mean of

both parents), a standard mutation with the mutation rate

0.1, and the proposed abstract memory (AM) scheme.

The dynamic fitness landscape is an n-dimensional ‘‘field

of cones on a zero plane’’, where N cones with coordi-

nates ciðkÞ, i ¼ 1; . . .;N, are moving with discrete time

k 2 N0. These cones are distributed across the landscape

and have randomly chosen initial coordinates cið0Þ,

1166 H. Richter, S. Yang

123

heights hi, and slopes si. So, the dynamic fitness function

is given as:

f ðx; kÞ ¼ max 0; max
1� i�N

hi � sikx� ciðkÞk½ �
� �

: ð2Þ

We study four types of dynamics regarding the coordinates

ciðkÞ of the cones: (1) chaotic dynamics generated by the

Hénon map, see Richter (2005) for details of the generation

process, (2) random dynamics with each ciðkÞ for each k

being an independent realization of a normally distributed

random variable, (3) random dynamics as in (2) but with a

uniformly distributed random variable, and (4) cyclic

dynamics where each ciðkÞ is consequently forming a circle.

We consider the dynamic fitness function (Eq. 2) with

dimension n ¼ 2 and the number of cones N ¼ 7. The

upper and lower bounds of the search space are set to

x1min ¼ x2min ¼ �3 and x1max ¼ x2max ¼ 3. The best three

individuals of the population take part in the memorizing

process for all three generations before a change in the

environment occurs. Further, dynamic severity is normal-

ized for all considered dynamics and hence has no

differentiating influence. The scales t and k are related by

the change frequency c 2 N as t ¼ ck. The performance of

the algorithms is measured by the mean fitness error

(MEF), defined as below:

MFE ¼ 1

R

XR

r¼1

1

T

XT

t¼1

f ðxsðkÞ; kÞ � max
xjðtÞ2PðtÞ

f ðxjðtÞ; kÞ
� �" #

k¼bc�1tc

;

ð3Þ

where max
xjðtÞ2PðtÞ

f xjðtÞ; bc�1tc
� �

is the fitness value of the

best-in-generation individual xjðtÞ 2 PðtÞ at generation t,

f xsðbc�1tcÞ; bc�1tcð Þ is the maximum fitness value at

generation t, T is the number of generations used in the run,

and R is the number of consecutive runs. We set R ¼ 50

and T = 2,000 in all experiments.

4.2 Properties of the abstract memory

The first set of experiments examines the relationships

between the population size k, the number of individuals s
retrieved from the memory, and the performance measure

0
20

40
60

80
100

20
40

60
80

100
120
0.5

1

1.5

2

2.5

3

τ/λ [in %]λ

M
F

E

0
20

40
60

80
100

20
40

60
80

100
120
0.5

1

1.5

2

2.5

3

τ/λ [in %]λ

M
F

E

(a) (b)

0
20

40
60

80
100

20
40

60
80

100
120
0.5

1

1.5

2

2.5

3

τ/λ [in %]λ

M
F

E

0
20

40
60

80
100

20
40

60
80

100
120
0.5

1

1.5

2

2.5

3

τ/λ [in %]λ

M
F

E

(c) (d)

Fig. 1 The MFE against the population size k and the number of individuals retrieved from the memory s, given as percentage s=k in %.

a Chaotic, b normal, c uniform, d cyclic

Learning behavior in abstract memory schemes for dynamic optimization problems 1167

123

MFE. Figure 1 shows the results for the fixed change fre-

quency c ¼ 15 and the grid size � ¼ 0:1. From Fig. 1, it can

be observed that an exponential relationship exists between

MFE and k, which is typical for EAs. Along this general

trend, the number of retrieved individuals, here given in

percent of the total population, has only a small influence on

the MFE, where in general a medium and large number gives

slightly better results than a very small percentage.

Next, we look at the influence of the grid size � on

performance of the AM scheme, see Fig. 2. Here, the MFE

is given over � and different c on a semi-logarithmic scale

while we set here and subsequently k ¼ 50 and s ¼ 20. For

all types of dynamics and all change frequencies we obtain

a kind of bath-tub curves, which indicates that an optimal

grid size depends on the type of dynamics and the size of

the bounded region in the search space where the memory

is considered. This gives raise to the question of whether an

adaptive grid size would increase the performance of the

abstraction memory scheme. Also, it can be seen that a

drop in performance is more significant if the grid is too

large. For smaller grid the performance is not decreasing

very dramatically, but the numerical effort for calculation

with small grids becomes considerable. This result allows

us to choose an � that compromises between the perfor-

mance and the numerical effort. In the following

experiments, we set � ¼ 0:1.

In the second set of experiments, the abstract memory

scheme (AM) is tested and compared with a direct memory

scheme (DM) that stores good solutions and inserts them

again in a retrieval process, an EA with no memory (NM)

that uses hypermutation (Morrison and De Jong 2000) with

base mutation � 0:1Nð0; 1Þ and hypermutation � 3Nð0; 1Þ,
and an evolutionary strategy with self-adaptive mutation

(SA) with 12 parents and 48 offspring candidates. Note that

by these parameters, we have a comparable number of

fitness function evaluations. In Fig. 3, the MFE over the

change frequency c for all four types of dynamics con-

sidered is given and the 95% confidence intervals are also

shown.

From Fig. 3, it can be seen that the memory schemes

outperform the no memory scheme for all dynamics. This is

particularly noticeable for small change frequencies c and

means that by memory the limit of c for which the algorithm

still performs reasonably can be considerably lowered. It

can also be seen that the abstract memory gives better

results than the direct memory for irregular dynamics, i.e.,

10
−3

10
−2

10
−1

10
0

10
1

10
2

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

log(ε)

M
F

E

γ = 25

γ = 15

γ = 5

10
−3

10
−2

10
−1

10
0

10
1

10
2

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

log(ε)

M
F

E

γ = 25

γ = 15

γ = 5

(a) (b)

10
−3

10
−2

10
−1

10
0

10
1

10
2

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

log(ε)

M
F

E

γ = 25

γ = 15

γ = 5

10
−3

10
−2

10
−1

10
0

10
1

10
2

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

log(ε)

M
F

E

γ = 25

γ = 15

γ = 5

(c) (d)

Fig. 2 Comparison of performance of abstraction memory scheme (AM) measured by the MFE for different grid size � and different types of

dynamics and c ¼ 5, c ¼ 15 and c ¼ 25. a Chaotic, b normal, c uniform, d cyclic

1168 H. Richter, S. Yang

123

chaotic and random. For chaotic dynamics, this is even

significant within the given bounds. For regular, cyclic

dynamics, we find the contrary, with direct memory being

better than abstract. A comparison to the self-adaptive

scheme yields that memory schemes are better than self-

adaption for chaotic and uniform random dynamics. For

normal random dynamics, memory outperforms self-adap-

tion for small change frequencies, while for large c, for

instance c ¼ 25 and c ¼ 30, it is the other way around.

Finally, for circle dynamics, self-adaption is the best option

yielding results far better than all other tested schemes.

However, in our experiments with the self-adaptive

scheme we observed that for a small but existing percent-

age of runs the EA diverged and produced invalid results.

These runs were not taken into account in the performance

evaluation. A possible explanation for this behavior is that

a self-adaptive mutation rate evolves towards optimal

values in between changes, but may become ill-posed after

the change. This leads in some cases to diverging popu-

lation dynamics because there is no direct feedback

between the population dynamics and mutation rate. Note

that such a behavior was not observed with the other three

schemes. The aim here, however, is not to argue that one

scheme is superior over another but to study the underlying

working mechanisms and particularly the effect of learn-

ing. For self-adaption this has been done by analyzing the

evolution of self-adaptive mutation steps depending on the

dynamics of the fitness landscape (Boumaza 2005), which

can be regarded as an implicit learning process. Our

approach to study learning is different, inspired by machine

learning (Mitchell 1997; Michalski 2000) and will be

introduced and discussed next.

4.3 Learning behavior

To quantify learning depends on metrics for performance,

which ideally shows improvement over time. For evaluat-

ing the effect of learning and obtaining the learning curve,

the experiment has to enable learning for a certain time,

then turn learning off and measure the performance using

the learned ability (Mitchell 1997). Regarding the abstract

memory scheme, learning takes place as long as the

memory matrix MlðtÞ is filled. This gives raise to the

following measure for learning success. We define tL to be

0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

NM

DM

AM

SA

γ

M
F

E

0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

NM

DM

AM

SA

γ

M
F

E

(a) (b)

0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

NM

DM

AM

SA

γ

M
F

E

0 5 10 15 20 25 30 35
0.5

1

1.5

2

2.5

3

3.5

4

NM
DM
AM
SA

γ

M
F

E

(c) (d)

Fig. 3 Performance of the EA measured by the MFE over change frequency c for different types of dynamics and no memory but hypermutation

(NM), direct memory (DM), abstract memory (AM) and self-adaption (SA). a Chaotic, b normal, c uniform, d cyclic

Learning behavior in abstract memory schemes for dynamic optimization problems 1169

123

the learning time. For 0\t� tL the matrix MlðtÞ is filled

as described in Sect. 3. For tL\t� tL þ T the storage

process is discarded and only retrieval using the now fixed

memory is carried out. We calculate the MFE in Eq. 3

for t [tL only and denote it MFEL. It is a performance

measure for the learning success, where MFEL over tL
shows the learning curve.

Figure 4 depicts the results for fixed k ¼ 50, s ¼ 20 and

several change frequencies c on semi-logarithmic scale.

These learning curves are an experimental evaluation of the

learning behavior. We see that the MFEL gets gradually

smaller with the learning time tL becoming larger, which

confirms the learning success. We find a negative linear

relation between MFE and logðtLÞ, which indicates an

exponential dependency between tL and MFE. Also, it can

be seen that the learning curves are slightly steeper for

larger change frequencies. An exception to this general

trend is cyclic dynamics, where the learning curves are

almost parallel for all c and a large proportion of the tested

tL. A comparison of the learning success between the dif-

ferent kinds of landscape dynamics suggests that the

uniform random movement is the most difficult to learn.

The results in Fig. 4 clearly indicate the positive effect of

learning on the performance of the EA.

Next, we are interested in how the memory reflects the

learning process. We consider the memory dynamics which

can be quantified by the KLD in Eq. 1. The KLD for the

learning time tL, that is, KLD ¼ KLDðtLÞ, over tL on semi-

logarithmic scale is plotted in Fig. 5. As the KLD may

differ in every run, we record the mean over R ¼ 50 runs

and the 95% confidence intervals. The KLD measures the

difference between the spatial probability distribution

stored in the memoryMlðtLÞ compared to the reference of

the master memory (or demon) DlðtLÞ that stores the

solution of the DOP for the learning time tL. The KLD is a

measure of the degree of similarity between the ‘‘true’’

distribution in DlðtLÞ and the ‘‘estimated’’ distribution in

MlðtLÞ; KLD = 0 defines that both distributions are equal.

The results in Fig. 5 show that the memory gets gradually

better with the learning time becoming larger, following

similar characteristics as the learning curves. For a small c,

the KLD goes near zero, indicating that the distribution in

10
1

10
2

10
3

10
1

10
2

10
3

10
1

10
2

10
3

10
1

10
2

10
3

1.5

2

2.5

3

3.5

4

4.5

5
M

F
E

L

γ = 5

γ = 15

γ = 25

1.5

2

2.5

3

3.5

4

4.5

5

M
F

E
L

γ = 5

γ = 15

γ = 25

(a) (b)

1.5

2

2.5

3

3.5

4

4.5

5

log(tL) log(tL)

log(tL)log(tL)

M
F

E
L

γ = 5

γ = 15

γ = 25

1.5

2

2.5

3

3.5

4

4.5

5

M
F

E
L

γ = 5

γ = 15

γ = 25

(c) (d)

Fig. 4 Learning curves for the abstract memory scheme showing the learning success measured by MFEL over the learning time tL. a Chaotic,

b normal, c uniform, d cyclic

1170 H. Richter, S. Yang

123

the memory almost fits the distribution obtained for the

solution of the DOP. The reason for this result lies most

likely in that for a smaller c, a larger variety of the land-

scape’s dynamics is feeded to the memory for a constant

learning time compared to a larger c, which causes it to

become better.

We finally relate the memory dynamics to the learning

success. In Fig. 6, the relationship between the learning

success MFEL and the memory dynamics KLD is shown.

Note that as both quantities are the result of numerical

experiments, the means over R ¼ 50 runs are recorded and

we get vertical as well as horizontal confidence intervals. The

general trend is that both quantities are directly proportional

for a constant c, which implies that a good memory results in

a good performance of the EA. The most striking detail is that

KLD is the smallest for the smallest change frequency, while

this is not accompanied by the MFEL being the smallest, too.

One explanation is that the change frequency affects the

performance much stronger than the quality of memory. In

other words, a good memory does not guarantee for high

performance if the EA does not have a certain run time

between changes in the landscape.

5 Conclusions

This paper investigates an abstract memory scheme for

EAs in dynamic environments, where memory is used to

store the abstraction of good solutions (i.e., to use their

approximate location in the search space to deduce a

probabilistic model for the spatial distribution of good

solutions) instead of good solutions themselves. This

abstraction is employed to generate solutions to improve

future problem solving. In order to understand the rela-

tionship between memory and learning in dynamic

environments, experiments were carried out to study how

learning takes place in the abstract memory and how the

performance changes over time for different kinds of

dynamics in the fitness landscape. The experimental study

revealed several results on the dynamic test environments.

First, the abstraction based memory scheme enables

learning processes, which efficiently improves the perfor-

mance of EAs in dynamic environments. Second, the effect

of the abstract memory on the performance of the EA

depends on the learning time and the frequency of envi-

ronmental changes.

10
1

10
2

10
3 10

1
10

2
10

3

10
1

10
2

10
3

10
1

10
2

10
3

0

1

2

3

4

5

6

7

log(tL) log(tL)

log(tL)log(tL)

K
LD

γ = 5

γ = 15

γ = 25

0

1

2

3

4

5

6

7

K
LD

γ = 5

γ = 15

γ = 25

(a) (b)

0

1

2

3

4

5

6

7

K
LD

γ = 5

γ = 15

γ = 25

0

1

2

3

4

5

6

7

K
LD

γ = 5

γ = 15

γ = 25

(c) (d)

Fig. 5 Memory dynamics measured by the KLD over the learning time tL. a Chaotic, b normal, c uniform, d cyclic

Learning behavior in abstract memory schemes for dynamic optimization problems 1171

123

We studied the relationship between learning and the

abstract memory in dynamic environments. For the future

work, it is valuable to compare and combine the abstract

memory scheme with other approaches developed for EAs in

dynamic environments. Also, if the dynamics is non-stationary

in a strict statistical sense, that is, the statistical properties

change fast over the algorithm’s run-time, as for instance in the

translatory movements, then forecasting the movements

requires other schemes, for instance prediction by a linear

estimator. However, if the changes of statistical properties are

rather slow, it might be helpful if the memory matrix has some

evaporation to prevent unlimited accumulation of its elements.

This would mean that in the storage process a third step is

needed to add: an amnesia (or forgetting) process.

Acknowledgments The work by S. Yang was supported by the

Engineering and Physical Sciences Research Council (EPSRC) of UK

under Grant EP/E060722/1.

References

Arnold DV, Beyer HG (2006) Optimum tracking with evolution

strategies. Evol Comput 14(3):291–308

Bosman PAN (2007) Learning and anticipation in online dynamic

optimization. In: Yang S, Ong YS, Jin Y (eds) Evolutionary

computation in dynamic and uncertain environments, chap 6.

Springer, Berlin, pp 129–152

Boumaza AM (2005) Learning environment dynamics from self-

adaptation. GECCO workshops 2005. pp 48–54

Branke J (1999) Memory enhanced evolutionary algorithms for

changing optimization problems. In: Proceedings of the 1999

IEEE congress on evolutionary computation. pp 1875–1882

Branke J (2002) Evolutionary optimization in dynamic environments.

Kluwer, Dordrecht

Branke J, Kaußler T, Schmidt C, Schmeck H (2000) A multi-

population approach to dynamic optimization problems. In:

Proceedings of the 4th international conference on adaptive

computing in design and manufacturing. pp 299–308

Cover TM, Thomas JA (2006) Elements of information theory.

Wiley, Hoboken

Fitch R, Hengst B, Suc D, Calbert G, Scholz J (2005) Structural

abstraction experiments in reinforcement learning. In: AI 2005

advances in artificial intelligence. pp 164–175

Ho WC, Nehaniv C, Dautenhahn K (2005) Autobiographic agents

in dynamic virtual environments—performance comparison for

different memory control architectures. In: Proceedings of

the 2005 IEEE congress on evolutionary computing, pp 573–

580

Jin Y, Branke J (2005) Evolutionary optimization in uncertain

environments—a survey. IEEE Trans Evol Comput 9(3):

303–317

0 1 2 3 4 5 6 7
1.5

2

2.5

3

3.5

4

4.5

5

γ = 5

γ = 15

γ = 25

M
F

E
L

KLD
0 1 2 3 4 5 6 7

1.5

2

2.5

3

3.5

4

4.5

5

γ = 5

γ = 15

γ = 25

M
F

E
L

KLD

(a) (b)

0 1 2 3 4 5 6 7
2

2.5

3

3.5

4

4.5

5

5.5

γ = 5

γ = 15

γ = 25

M
F

E
L

KLD
0 1 2 3 4 5 6 7

1.5

2

2.5

3

3.5

4

4.5

5

γ = 5

γ = 15

γ = 25

M
F

E
L

KLD

(c) (d)

Fig. 6 Relationship between learning success MFEL and memory dynamics KLD. a Chaotic, b normal, c uniform, d cyclic

1172 H. Richter, S. Yang

123

Lewis EHJ, Ritchie G (1998) A comparison of dominance mecha-

nisms and simple mutation on non-stationary problems.

In: Parallel problem solving from nature-PPSN V, pp 139–148

Lieberman DA (2004) Learning and memory: an integrative

approach. Wadsworth, Belmont

Michalski RS (2000) Learnable evolution model: evolutionary

processes guided by machine learning. Mach Learn 38(1):

9–40

Mitchell TM (1997) Machine learning. McGraw-Hill, New York

Morrison RW, De Jong KA (2000) Triggered hypermutation revis-

ited. In: Proceedings of the 2000 IEEE congress on evolutionary

computing, pp 1025–1032

Morrison RW (2004) Designing evolutionary algorithms for dynamic

environments. Springer, Berlin

Richter H (2005) A study of dynamic severity in chaotic fitness

landscapes. In: Proceedings of the 2005 IEEE congress on

evolutionary computing, pp 2824–2831

Richter H, Yang S (2008) Memory based on abstraction for dynamic

fitness functions. In: EvoWorkshops 2008: applications of

evolutionary computing, LNCS, vol 4974, pp 597–606

Simões A, Costa E (2007) Variable-size memory evolutionary

algorithm to deal with dynamic environments. In: EvoWork-

shops 2007: applications of evolutionary computing, LNCS,

vol 4448, pp 617–626

Tinós R, Yang S (2007) A self-organizing random immigrants genetic

algorithm for dynamic optimization problems. Genetic Program-

ming and Evolvable Machines 8(3):255–286

Yang S (2005) Population-based incremental learning with memory

scheme for changing environments. Proc. of the 2005 Genetic

and Evol Comput Conf., vol 1, pp 711–718

Yang S (2006) Associative memory scheme for genetic algorithms in

dynamic environments. In: EvoWorkshops 2006: applications of

evolutionary computing, LNCS, vol 3907, pp 788–799

Yang S, Yao X (2008) Population-based incremental learning with

associative memory for dynamic environments. IEEE Trans Evol

Comput 12(5):542–561

Learning behavior in abstract memory schemes for dynamic optimization problems 1173

123

	Learning behavior in abstract memory schemes for dynamic optimization problems
	Abstract
	Introduction
	Memory and learning
	The abstract memory scheme
	Abstract memory storage
	Abstract memory retrieval
	Abstract memory dynamics

	Experimental study
	Experimental setup and performance measurement
	Properties of the abstract memory
	Learning behavior

	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

