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Abstract

The maximum generalised network flow problem is to maximise the net flow into a specified
node in a network with capacities and gain-loss factors associated with edges. In practice, input
instances of this problem are usually solved using general-purpose linear programming codes, but
this may change because a number of specialised combinatorial generalised-flow algorithms have
been recently proposed. To complement the known theoretical analyses of these algorithms, we
develop their implementations and investigate their actual performance. We focus in this study
on Goldfarb, Jin and Orlin’s excess-scaling algorithm and Tardos and Wayne’s push-relabel algo-
rithm. We develop variants of these algorithms to improve their practical efficiency. We compare
the performance of our implementations with implementations of simple, but non-polynomial,
combinatorial algorithms proposed by Onaga and Truemper, and with performance of CPLEX, a
commercial general-purpose linear programming package.

Keywords: Network optimisation, Network flow algorithms, Generalised flow, Experimental
evaluation.

1 Introduction

In this paper we present our work on developing efficient implementations of recently proposed
polynomial-time combinatorial algorithms for the mazimum generalised flow problem. This problem
generalises the maximum network flow problem in the following way. Each edge e in the underlying
network has a gain factor y(e) associated with it, and if 2 units of flow enter edge e, then z -y(e) units
arrive at the other end. Each node has a specified amount of one common commodity, called the (ini-
tial) excess at this node. The objective is to design a flow which carries these node excesses through
the network to one distinguished node, the sink. The designed flow should maximise the amount of
the commodity arriving at the sink and should not violate the capacities of edges. The maximum
generalised flow problem models some optimisation problems arising in manufacturing, transportation
and financial analysis. The gain factors may represent the changes of the amount of the commodity
caused by physical transformations (for example, evaporation or deterioration during transportations,
or dissipation of energy during transmission) or administrative transformations (for example, currency
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exchanges). A comprehensive discussion of various applications of the generalised flow problem can
be found in [1], [3], and [12].

The maximum generalised flow problem is a special case of linear programming, so it can be solved
by any of the known general-purpose linear programming methods. The best asymptotic worst-case
time bound on computing maximum generalised flows using this approach is the O(m!-5n?log B)
bound of Kapoor and Vaidya’s algorithm [9, 19] which is based on Karmarkar’s interior-point method.
Here n is the number of nodes, m is the number of edges, and B is the largest integer in the repre-
sentations of the capacities and gain factors of edges and the excesses at nodes, assuming that these
numbers are given as ratios of two integers. From the practical point of view, one can solve instances
of the maximum generalised flow problem as linear programs using, for example, the commercial
general-purpose linear-programming package CPLEX [10].

A number of specialised “combinatorial” maximum generalised flow algorithms have been proposed
during the last decade. A combinatorial algorithm for the maximum generalised flow problem exploits
the combinatorial structures of the underlying network and the flows in this network, and often uses
as subroutines combinatorial algorithms for simpler network problems, such as the shortest paths
problem, the maximum (non-generalised) flow problem, and the minimum-cost (non-generalised) flow
problem. Two simple combinatorial maximum generalised flow algorithms are due to Onaga [13] and
Truemper [18]. Onaga’s algorithm uses shortest-path computations while Truemper’s algorithm uses
maximum flow computations, but both algorithms may need in the worst-case exponentially many
iterations.

Goldberg, Plotkin, and Tardos [4] designed the first two polynomial-time combinatorial algorithms
for the maximum generalised flow problem, which use shortest-path computations and minimum-
cost (non-generalised) flow computations. The running times of the theoretically faster of those two
algorithms is O(n?m(m + nlogn)lognlog B). Improved versions of Goldberg, Plotkin, and Tardos’
algorithms were proposed by Goldfarb and Jin [7] and Radzik [16]. Goldfarb, Jin and Orlin [§]
presented two simple excess-scaling algorithms which run in O(m?(m + nlogn)log B) time. Their
simplicity made them probably the first practical polynomial-time combinatorial algorithms for the
maximum generalised flow problem. Tardos and Wayne [17] (see also [20]) proposed a polynomial-time
variant of Truemper’s algorithm and an adaptation of Goldberg and Tarjan’s push-relabel method for
the minimum-cost (non-generalised) flow problem [6].

The aim of the work summarised in this paper is to investigate whether the recently proposed
polynomial-time combinatorial algorithms for the maximum generalised network flow problem can
lead to practically efficient implementations. We decided to focus on Goldfarb, Jin and Orlin’s [8]
excess-scaling algorithm and Tardos and Wayne’s [17] push-relabel algorithm, because of their relative
simplicity and because the minimum-cost flow algorithms which these algorithms generalise (Orlin’s
capacity-scaling algorithm [15] and Goldberg and Tarjan’s push-relabel algorithm [6], respectively)
were demonstrated to be practically efficient. Our first straightforward implementations were disap-
pointingly slow, so in order to obtain competitive implementations, we had to develop modifications
and new variants of those algorithms.

We compare the performance of our implementations with implementations of Onaga’s and Truem-
per’s algorithms and with performance of the linear-programming package CPLEX. The randomly
generated input networks which we use in our experiments are loosely based on possible applications
of the maximum generalised flow problem in the quantitative financial analysis. In our experiments our
fastest variant of Goldfarb, Jin and Orlin’s algorithm is usually considerably faster than the implemen-
tations of Onaga’s and Truemper’s algorithms. CPLEX performs better than our implementations,
but on large networks its dominance is small enough to believe that combinatorial generalised network
flow algorithms, most likely in combination with the ideas underlying general-purpose linear program-
ming methods, will soon lead to the fastest implementations for the maximum generalised network
flow problem.

In the next section we introduce the terminology of the generalised flows and show the linear-
programming and the combinatorial optimality conditions for maximum generalised flows. In Section 3
we describe Onaga’s and Truemper’s algorithms. In Section 4 we describe the framework of Goldfarb,
Jin and Orlin’s excess-scaling algorithm and presents within this framework their original algorithm



and its three variants proposed in this paper. In Section 5 we describe Tardos and Wayne [17]
push-relabel method and our implementation of this method. In Sections 6 we briefly describe the
generators of networks which we use in our experiments, and in Section 7 we present a few results from
our experiments. In the final Section 8 we mention some promising directions in further improving
implementations of combinatorial maximum generalised flow algorithms.

2 Definitions and Preliminaries

The input

An input instance of the mazimum generalised flow problem is an asymmetric generalised flow network
G = (V,E,t,e,u,7) with the following properties.

e (V, E) is a directed graph with a set of nodes V and an asymmetric set of edges E; that is, if
(v,w) € E, then (w,v) ¢ E.

e t € V is the sink, the destination of flow.

e:V — R> is an (initial) excess (or supply) function. We assume that e(t) = 0.
eu:E— R> is an edge capacity function.

v : E — R is an edge gain (or gain/loss) function. For an edge e € E, ~(e) is called the gain
(or gain/loss) factor of e.

Symbols R> and R stand for the nonnegative and the positive real numbers, respectively. The
meaning of the gain function - is that if = units of flow enter an edge (v, w) at node v, then z - vy(v, w)
units arrive at node w. The assumption that the set of edges is asymmetric is made for notational
convenience and without loss of generality. We also assume that for each node in v € V, there is a
path from v to the sink ¢ consisting of positive-capacity edges. We denote the number of nodes by n
and the number of edges by m. If we state running time bounds using also a parameter B, then we
assume that all input numbers (that is, the capacities and gain factors of edges and the excesses of
nodes) are given as fractional numbers with denominators and enumerators not greater than B.

A flow and the optimisation objective

A flow in network Gisa nonnegative function f : E— R> which satisfies the capacity constraints:
for each edge (v,w) € E, f(v,w), the amount of flow outgoing from node v along this edge, cannot be
greater than the capacity of this edge; and the flow conservation constraints: the net flow outgoing
from each node v cannot be greater than the initial excess at this node. The objective of the maximum
generalised flow problem is to find a flow which maximises the net flow incoming into the sink ¢. Such
a flow is called a mazimum (generalised) flow. Formally, the maximum generalised flow problem
can be expressed as the linear program (P) with decision variables f(v,w), for each (v,w) € E.
Constraints (2) and (3) are the flow conservation constraints and the capacity constraints, respectively.
In (2), the first sum is the flow outgoing from node v, the second one is the flow incoming into node v,
and their difference is the net flow outgoing from node v. The net flow incoming to a node is equal to
the inverse of the net flow outgoing from this node.

(P)  maximise: 3 v(z0fEH— S f(to) (1)
(2,t)€E (t,z)eE
subject to: Z flv,z) — Z v(z,v)f(z,v) < e(v), foreachwveV —{t}; (2)
(v,2)€E (z,v)€E
flv,w) < u(v,w), for each (v, w) € E; (3)
flv,w) > 0, for each (v,w) € E.



The dual problem

Let pu(v), for v € V — {t}, and A(v,w), for (v,w) € E, be the dual variables associated with con-
straints (2) and (3) of linear program (P). The dual problem of problem (P) has the following formu-
lation, simplified by introduction of a constant u(t) = 1.

(D) minimise: Ze(v),u(v) + Z w(v,w)A(v,w);

vev (v,w)e B

subject to:  p(v) — (v, w)p(w) + A(v,w) > 0, for each (v,w) € E;
u(v) >0 for each v € V;
Alv,w) > 0, each (v, w) € E;
u(t) = 1.

A non-negative vector u : V. — R>, with pu(t) = 1, is called a (node) labeling of network G. Tt is
clear from the formulation of problem (D) that for any node labeling of G, there exists a vector A such
that the pair (u, A) is a feasible solution of problem (D). If we fix node labeling u, then the objective
function of the dual problem (D) is minimised by setting

Au(w,w) = max{0, y(v,w)u(w) — u(v)}, for each (v, w) € E. (4)

Therefore we will refer only to p as the dual vector, assuming that vector A is as defined in (4).

A technical issue

For notational convenience, flow networks are often used in a special form with symmetric sets of
edges. In the context of the maximum generalised flow problem, a symmetric flow network is a
network H = (V, E,t,e,u,y) where the attributes have the same meaning as for the asymmetric
network G with the difference that the set of edges E is symmetric, that is, if (v,w) € E, then
also (w,v) € E, and for each (v,w) € E, v(w,v) = 1/v(v,w). For such a network, the maximum
generalised flow problem is formulated in the following way.

(Ps) maximise: Z v(z,t)f(2,1);

(z,t)EE
subject to:  f(w,v) = —y(v,w)f(v,w), for each (w,v) € E; (5)
Z fv,z) < e(v), for each v € V — {t}; (6)
(v,z)EE
flu,w) < wulv,w), for each (v,w) € E.

Only the positive edge flows are actual flows. Symmetric edges and Condition (5), which is sometimes
referred to as the skew symmetry of a flow function, are used to simplify the notions of residual paths
and residual networks defined below. In the case of an asymmetric network, we have to refer to
“sending flow along an edge (v, w),” as well as to “reversing some of the flow sent before along (v, w).”
In the case of a symmetric network, we can refer only to “sending flow along an edge,” either (v, w)
or its symmetric (w,v).

For an asymmetric input network G = (v, E_’,t,e,u,w), let G denote the symmetric network
(V,E,t,e,u,7), where E is obtained from E by adding to E the symmetric edge (w,v) for each
edge (v,w) € E, and setting u(w,v) = 0 and v(w,v) = 1/v(v,w). For a flow f in network G, that is,
for a feasible vector f : E —» R of problem (P,), the corresponding flow in network G is obtained
simply by restricting f from set E to set E. Conversely, for a flow f in network é, the corresponding



flow in network G is obtained by extending f from EtoE according to (5). It can be easily checked
that this natural correspondence shows that problems (P) and (P) are equivalent. For example, the
right-hand sides of (2) and (6) are different formulas for the same quantity, the net flow from a node v:

Z f(’l),."L')— Z ’Y(Zav)f(zav) = Z f(’U,.Z') + Z _W(Zvv)f(zav)

(v,z)€E (z,v)eE (v,z)€E, f(v,2)>0 (z,v)EE,f(2,0)>0
= Z f(U,ZL') + Z f('U,Z) = Z f(U,ZU)-
(v,z)EE,f(v,z)>0 (v,2)€EE, f(v,2)<0 (v,z)EE

We will use either network G and problem (P) or network G and problem (P,), whichever is more
convenient for a particular purpose. The reason for introducing first asymmetric networks is to have
a more natural notion of flow and a straightforward derivation of the dual problem.

Residual network

Let f be a flow in network G. The residual capacities uy of edges and the residual excesses ey of
nodes are defined in the following way.

ur(v,w) = u(v,w)— flv,w), for each (v,w) € E;
ef(v) = e(v) — Z flv,w), foreachwveV.
(v,w)EE

Note that ef(t) is the value of the objective function for flow f: the net flow incoming into the
sink ¢ (we assume that e(t) = 0). If e;(v) > 0 for a node v € Vy, then we say that v is a node
with (residual) excess. A residual edge is an edge in E with positive residual capacity and a residual
path (residual cycle) is a path (cycle) which consists only of residual edges. Let V; denote the set
of nodes which can reach the sink ¢ along residual paths, and let Ey = EN (Vy x V}) be the set of
the edges between the nodes in V. The residual network is the (symmetric) generalised flow network
Gy = (Vy,Eg,t,ep,uz,7), with functions ey, uy, and v restricted to sets Vy and Ejy.

If h is a flow in the residual network Gy, then f + h is a flow in network G, which creates the
excess ef(t) + ex(t) at the sink ¢. (Assume that h(v,w) = 0 for each (v,w) € E — E¢.) A process of
computing a flow h in the residual network Gy and adding it to the current flow f is often called an
augmentation of the current flow. If h is a maximum flow in the residual network Gy, then f+his a
maximum flow in network G.

Let eopt(t) denote the maximum possible net flow into the sink ez(t) over all flows f in network G.
We say that a flow f in network G is &-optimal, if ef(t)(1 + &) > eopt(t).

Flow generating cycles

The gain v(P) of a path or cycle P is equal to the product of the gains of the edges on P. If we send
z units of flow from a node v along a residual path P to the sink, then the residual excess at the sink
increases by - v(P) units. A flow generating cycle is a residual cycle with gain greater than 1. If we
send z units of flow around a cycle I' from a node v, then z - v(P) units come back to v. Thus if T’
is a flow generating cycle, then by sending flow around T' we can create (or increase) the excess at at
least one node on this cycle. This additional excess may be sent to the sink, so it may contribute to
the optimal net flow into the sink.

Let f be a flow in network GG and let h be a flow in the residual network Gy such that the residual
network G4 of the combined flow f' = f + h does not have flow generating cycles. We say that
such a flow h cancels, or saturates, (all) flow generating cycles in the residual network Gy, and the
computation of such a flow A is called canceling, or saturating (all) flow generating cycles.



Relabeled network

Let f and p be a flow and a positive node labeling in network G, respectively. The relabeled residual
capacities, the relabeled gain factors, and the relabeled residual excesses are defined as:

upp(v,w) = ug(v,w)p(v),
(v, w) = (v, w)p(w)/ ),
eru(v) = ep(v)pu(v).

The residual network Gy and the relabeled residual network Gy, = (Vy, Eg,t ey, ug 4, vu) are equiva-
lent instances of the maximum generalised flow problem. For a flow h in network G ¢, the corresponding
flow h, in network G,, is such that

hy(v,w) = h(v,w)u(v), for each (v,w) € Ey.

We actually consider functions h and h, as different ways of expressing the same flow; h expresses
that flow in terms of network Gy, while h, expresses it in terms of the equivalent network Gy ,.

Observe that for a path P from a node v to a node w, v,(P) = v(P)u(w)/u(v), and for a cycle
[, yu(T) = y(T). If there exists a positive node labeling of a residual network Gy such that the
relabeled gain of each residual edge in G is at most 1, then clearly network Gy does not have any
flow generating cycles. Such a node labeling is called a proper (node) labeling. Conversely, if a residual
network Gy does not have any flow generating cycles, then there exists a proper labeling of Gy. For
example, if network Gy does not have any flow generating cycle, then the node labeling u of Gy such
that p(v) is equal to the highest gain of a residual path from v € V to the sink ¢ in network G is
well defined and is proper. This labeling is called the canonical (node) labeling. If a network does not
have any flow generating cycle, then we call it a non-gain network.

A highest-gain tree in a non-gain network Gy is a subset of residual edges of Gy which form a
tree rooted at the sink ¢ with edges directed towards the root, such that the path in this tree from a
node v € V; to the root ¢ is a highest-gain residual path from v to ¢ in Gy. The canonical labeling
of a non-gain network Gy and a highest-gain tree can be computed by a shortest-path algorithm by
setting the weight of an edge e to —log(+y(e)). Using the Bellman-Ford-Moore single-source shortest-
paths algorithm, the computation of the canonical labeling and a highest-gain tree takes O(mn) time.
If we have a proper labeling (as often happens in maximum generalised flow algorithms), then this
computation can be done in O(m+n logn) time using Dijkstra’s single-source shortest paths algorithm
with Fibonacci heaps [2].

Complementary slackness conditions and other optimality conditions

Let f and p be feasible solutions of the primal problem (P) and the dual problem (D), respectively.
The following conditions are the linear-programming complementary slackness conditions for f and

b
1. For each (v,w) € E, if f(v,w) > 0, then (v, w)u(w) > u(v).
2. For each (v,w) € E, if f(v,w) < u(v,w), then v(v, w)u(w) < p(v).
3. For each v € V'\ {t}, if p(v) > 0, then ef(v) = 0.

These three conditions correspond to the three cases of a positive variable in one problem implying
that the corresponding bound in the other problem must be tight. Condition (2) is an equivalent
formulation of the condition that if A(v,w) > 0, then f(v,w) = u(v,w).

In the theorem below we state together “linear-programming” and “combinatorial” optimality
conditions for maximum generalised flows. The “combinatorial” Condition (2) is due to Onaga [14].

Theorem 1. If f is a flow in network G, then the following four conditions are equivalent.

0. Flow f is a maximum flow.



1. There exist a node labeling p of G such that the feasible solutions f and p of the primal and the
dual problems (P) and (D), satisfy the complementary slackness conditions 1-3.

2. (a) There is no node with positive residual excess in Vi, and

(b) there is no flow generating cycle in the residual network Gy.

3. (a) There is no node with positive residual excess in Vi, and

(b) there exists a proper node labeling of the residual network Gy.

). This is the linear-programming complementary slackness optimality condition.
(2) & (3). This equivalence is discussed above in section “Relabeled network.”
). If not (2a) or not (2b), then we would be able to send more flow into the sink.

(2) = (1). Compute the canonical labeling p of the residual network Gy, extend it to a labeling
of network G by setting pu(v) = 0 for each v € V — V¢, and check that vectors f and p satisfy the
complementary slackness conditions 1-3. B

The algorithms considered in this paper converge to optimal solutions by progressively coming
ever closer to satisfying the optimality condition 3. Onaga’s and Truemper’s algorithms described in
Section 3 and Goldfarb, Jin and Orlin’s excess-scaling algorithm and its variants described in Section 4
maintain a proper node labeling of the current residual network G, and keep reducing the residual
excesses at the nodes in Gy. Tardos and Wayne’s push-relabel algorithm discussed in Section 5 also
keeps reducing the residual excesses at the nodes in network Gy, but maintains only an “approximately
proper” labeling: for some small 8 > 0, v,(e) < 1+ 3 for each residual edge e in network Gy. If
a maximum generalised flow algorithm may be viewed as being based on the optimality condition 3,
then the relabeled residual excess in the residual network of the current flow may indicate the closeness
of this flow to an optimal one, as described in next paragraph.

Let f be a flow in network G such that the residual network G is a non-gain network and let p
be a proper labeling of Gs. Define the total relabeled residual excess as

ToTRESEXf,, = Z efu(v).
veV\{t}

The flow decomposition theorem for generalised flows (see, for example, [4] or [16] for details) implies
that
TOTRESEXy,,, > eopt(t) — ey (t). (7

This inequality implies that if
ToTRESEXy, <& -ef(t), (8)

then ef(t)(1+ &) > eopt(t), so flow f is {-optimal.

3 Onaga’s and Truemper’s algorithms

The first and the simplest combinatorial algorithm for the maximum generalised flow problem was
proposed by Onaga [13] and can be described in the following way. The algorithm starts with a
non-gain residual network Gy and iteratively augments the current flow by sending flow from a node
v € V¢ \ {t} with positive residual excess to the sink ¢ along a highest gain path P (see Figure 1).
The amount of flow sent in the current iteration from node v is such that either the residual excess
at node v becomes zero or at least one edge on path P becomes saturated. By using always only the
highest-gain residual paths, the algorithm maintains the invariant that there are no flow generating
cycles in the residual network. The computation terminates when Vy \ {¢} does not contain any
node with positive residual excess, or, if we need only an approximate solution, when TOTRESEXy ,



{ INPUT: a generalised flow network G }
f < a flow which cancels all flow generating cycles in G}
while there is a node v € V} \ {t} with positive residual excess do
1: compute a highest gain path P from v to ¢ in Gy;
2: update flow f by sending flow from v to t along P
(transferring as much of the excess from v to ¢ as the edge capacities on P allow);
{ invariant: there are no flow generating cycles in G }
end_while
{ ouTPUT: optimal flow f in G }

Figure 1: Onaga’s algorithm (code HIGHESTPATH).

{ INPUT: a generalised flow network G }
f < a flow which cancels all flow generating cycles in G;
while there is a node v € V; \ {¢t} with positive residual excess do
1: p < the canonical labeling of G'¢;
2: h < a maximum flow h in G, from the nodes with excesses to ¢
using only edges with (relabeled) gains equal to 1;
3 ff+h
{ invariant: there are no flow generating cycles in G }
end_while
{ ouTPUT: optimal flow f in G }

Figure 2: Truemper’s algorithm (code MAXFLOW).

decreases below the desired approximation level. In the former case, Condition 2 of Theorem 1 implies
that the computed flow is optimal. In the latter case, if we use the termination condition (8), then
the computed flow is £-optimal.

The running time of each iteration of Onaga’s algorithm is dominated by the computation of a
highest gain path from the selected node v to the sink. This computation is done by computing the
canonical labeling 1 and a highest-gain tree in the current residual (non-gain) network Gy. After
updating the flow along a highest-gain path from v to ¢, the labeling 1 remains a proper labeling,
since the relabeled gain of each new residual edge is equal to 1. Therefore the canonical labeling and
a highest-gain tree at the beginning of each iteration (except possibly the first iteration) can be done
using Dijkstra’s shortest-path computation.

Truemper [18] proposed an algorithm which also augments the current flow using only the highest-
gain paths (so it maintains the invariant that there are no flow generating cycles in the residual
network), but in each iteration all highest-gain paths to the sink are used. The pseudocode of Truem-
per’s algorithm is shown in Figure 2. Let f be the current flow and let u be the canonical labeling of
the residual network G'¢. The highest-gain paths to the sink are the paths to the sink which consist
only of edges with relabeled gains «y, equal to 1. Truemper’s algorithm computes in each iteration a
maximum flow in network Gy , from the nodes with positive residual excesses to the sink using only
the edges with relabeled gains v, equal to 1. This is a standard (non-generalised) maximum flow
computation. The remarks above regarding the termination conditions in Onaga’s algorithm and the
optimality of computed flows apply also to Truemper’s algorithm.

In the worst case, both Onaga’s and Truemper’s algorithms may have to perform exponentially
many iterations. Actually, in the model of computation which assumes that data can be not only
fractional but arbitrary real numbers, Onaga’s algorithm may not terminate in finite time.



{ INPUT: a generalised flow network G' and a number £ >0 }
f < a flow which cancels all flow generating cycles in G}
1 < the canonical labeling in G'¢;
while TOTRESEXy, > {-ef(t) do
A < ToTRESEX; ,/(2(m + n));
PHASE(A);
{ no flow generating cycles in G, p is the canonical labeling of G,
TOTRESEXy, < (m+n)A }
end_while
{ ouTpPUT: &-optimal flow f in G }.

PHASE(A):
{ no flow generating cycles in G¢, p — the canonical labeling of Gy }
while there exists v € Vy \ {t} such that ef ,(v) > A do
UpDATEFLOW; { a sequence of EDGEFLOW operations to decrease
|ToTrRESEXf ,/A] by at least 1 }
compute the canonical labeling p and a highest-gain tree in G'y;
end_while
for each (v,w) € E do LINKFLOW([v,w],v,ef ,(v,w)).

Figure 3: The general framework of Goldfarb, Jin and Orlin’s excess scaling algorithm.

4 Excess-scaling algorithms

Goldfarb, Jin and Orlin [8] proposed two excess-scaling algorithms. In our paper we consider the first
of those two algorithms and its variants, which have the following overall structure (see Figure 3).
First all flow generating cycles are canceled, that is, a flow f in an input network G is computed such
that the residual network Gy is a non-gain network. Throughout all subsequent computation, which
consist of a sequence of scaling phases controlled by the scaling parameter A, the residual network
always remains a non-gain network.

During one phase the value of the scaling parameter is fixed at

TOTRESEX:

A= 2(n +m)

: (9)
where f' is the flow in network G at the beginning of the phase and p' is the canonical labeling of
the residual network G 4. The computation performed during one phase is a sequence of applications
of operation UPDATEFLOW and re-calculations of the highest-gain tree and the canonical labeling of
the residual network. Operation UPDATEFLOW sends residual node excesses towards the sink ¢ along
edges of the current highest-gain tree using operation EDGEFLOW. Operation EDGEFLOW(v, w, k)
tries to send kA units of flow along a tree edge (v,w), where k is a positive integer. The current
phase continues for as long as there is a node in the residual network with the residual excess at least
A. When the phase ends, the value of the scaling parameter A is re-computed and the next phase
begins. The original Goldfarb, Jin and Orlin’s algorithm and its three variants which we propose in
this paper differ in the ways operation UPDATEFLOW sends the residual node excesses in the current
highest-gain tree. Before describing the details of the different variants of operation UPDATEFLOW,
we first discuss the convergence of the overall method, the crucial underlying idea of “storing” small
excesses at the edges, and the details of operation EDGEFLOW.

Let f', f” and p', p” denote the flows and the canonical labelings at the beginning and at the
end of one phase. The computation performed during this phase has the property that the total
relabeled residual excess TOTRESEXy» ,» at the end of the phase is less than (n +m)A, that is, less
than half of the total relabeled residual excess TOTRESEX: ,+ at the beginning of the phase; see (9).
Thus the value of the scaling parameter A decreases geometrically from phase to phase. There



kA mir{ e(v,w),u(v,w)} min{ e(w,v),kA}
t
v v fw,v] W

EDGEFLOW (v, w, k):
{ send kA units of flow along edge (v, w) from v towards w;
pre-conditions: v, (v,w) =1, ey, (v) > A, kis a positive integer, kA < ez ,(v) }
LINKFLOW(v, [v, w], kA);
LINKFLOW([v, w], [w, v], min{ey , (v, w), us . (v,w)});
LINKFLOW (v, [v, w], min{ey, ,(w,v), kA}).

LINKFLOW(z,y,0):
{w(z,y) =1; 6 <minfes,(2),upu(z,y)} }
eru(@) « epu() — 05 efru(y) < efu(y) +6;
fu(z':y) — fu(w,y) +6; fu(yaw) ~ fu(y,x) — 4.

Figure 4: Sending flow along one edge.

are two main options for the termination condition, which correspond to two possible definitions
of an approximate flow. The computation may terminate when the total relabeled residual excess
ToTRESEX( ,, decreases below ¢ times its initial value (the value at the beginning of the first phase),
or when it decreases below £ times the current accumulated excess at the sink ¢, where £ > 0 is
the input parameter indicating the allowed approximation of the computed solution. If the former
termination condition is used, the computation terminates in log(1/£) phases. In Figure 3 and in our
implementations we use the latter stopping condition, which ensures that the final flow is £&-optimal.

We discuss now how the residual node excesses are sent towards the sink ¢ during the execution of
operation UPDATEFLOW. Denote the number of full A-unit portions of residual excess at the nodes

in V¢ \ {t} by

ToTRESEXf,a = Y, lesu(v)/Al
veVy\{t}

Operation UPDATEFLOW sends residual node excesses towards the sink ¢ along the edges of the current
highest-gain tree, having an underlying aim of decreasing TOTRESEX; , A by at least 1 (to ensure
progress of computation). This aim could be easily achieved if the residual capacities of all tree
edges were at least A, because sending A units of flow from a node v € V'\ {t} to the sink ¢ decreases
ToTRESEXy 4 A by exactly 1. Thus the question is how to handle the edges which have small residual
capacities. Goldfarb, Jin and Orlin [8] proposed a very elegant solution, which is based on storing
some small excesses at the edges and can be described in the following way. Imagine that each edge
(v, w) is split into three links by introducing two new nodes [v,w] and [v,w]; see Figure 4. Links
(v, [v,w]) and ([w,v],w) have infinite capacity in both directions and the gain factors equal to 1. The
middle link ([v, w], [w,v]) takes the capacity and the gain factor of the edge (v, w). The excesses at
[v,w] and [v,w] are initially zero. It is easy to see that such transformation does not change in any
essential way the task of sending excesses through the network to maximise the total amount reaching
the sink. Nodes [v,w] and [v,w] are introduced to store small excesses.

The computation of operation UPDATEFLOW is a sequence of operations EDGEFLOW (v, w, k) ap-
plied to some edges (v, w) of the current highest-gain tree. The formal pre-conditions of this operation
are: y,(v,w) =1, ef,(v) > A, and k is a positive integer such that kA < ef ,(v). This operation
sends kA units of flow from a node v into an edge (v,w) in the following way. First KA units of
flow are sent from v to [v,w]. Then flow of value equal to the minimum of ey ,(v,w), the current
excess at [v,w], and uy,,(v,w), the current residual capacity of edge (v, w) (and of link ([v, w], [w,v])
as well) is sent from [v,w] to [w,v]. Finally, flow of value equal to the minimum of ey ,(w,v), the
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current excess at [w,v], and kA is sent from [w,v] to w. The details of operation EDGEFLOW(v, w, k)
are shown in Figure 4. To clarify the meaning of the attribute “current” which we use here, we
note that, for example, the current excess at [v,w] after sending kA units of flow from v to [v,w] is
equal to ey, (v,w) = e ,(v,w) + kA, where f’ is the flow right before the application of operation
EpGEFLOW(v, w, k) and p is the current node labeling, which does not change during the execution
of operation UPDATEFLOW. Note also that we simplify notation by writing ey ,(w,v) instead of
s ulw, ).

At the end of each phase the excesses accumulated at the added nodes are sent to the original
nodes: the excess from [v,w] is sent to node v and the excess from [w,v] is sent to node w (see the
last line in the pseudocode PHASE(A) in Figure 3). To be able to claim that each phase decreases
substantially the total residual excess, we have to ensure that only small excesses can accumulate at
the added nodes. Goldfarb, Jin and Orlin [8] send always exactly A units of flow from a node v into
an edge (v,w), that is, in our terminology, they use operation EDGEFLOW (v, w, 1), and they prove
that such operation preserves the following condition.

efn(v,w) +ep ,(w,v) <A, (10)

Observe that Condition (10) is also preserved by the re-calculation of the canonical labeling, because
the new canonical labels can be only the same or smaller than the previous ones, so the relabeled
node excesses either remain the same or decrease. Since Condition (10) is true for every edge (v, w)
at the beginning of the phase (the excesses at the added nodes are zero), this condition is an invariant
of the computation performed during one phase, so it holds in particular also at the end of the phase.
Thus at the end of the phase, the residual excess at each node v € V; \ {t} is less than A and the
residual excess stored on each edge is less than A, so the total residual excess is less than (n +m)A,
as claimed above.

We implemented Goldfarb, Jin and Orlin algorithm, but the initial experiments showed that
using solely the operation of sending only A units of flow along one edge results in a slow and
non-competitive code. We have obtained substantially faster implementations by sending excesses
equal to multiplicities of A. The following lemma shows values of k£ which ensure that operation
EDpGEFLOW (v, w, k) preserves Condition (10). This lemma and its proof generalise Lemma 4 and its
proof presented in [8]. The lemma says that operation EDGEFLOW (v, w, k) preserves also an additional
condition (12). One can easily verify that Condition (12) holds for each edge at the beginning of a
phase and is preserved by re-calculations of the canonical labeling. Thus both Conditions (10) and (12)
are invariants throughout the whole computation of one phase, provided that for each application
of operation EDGEFLOW (v, w, k) the pre-conditions of this operation and the bound (11) on k are
satisfied. The importance of Invariant (12) lies in ensuring that if ey ,(v) > A and uy,,(v,w) > 0,
then the upper bound (11) on k is always at least 1.

Lemma 2. Let f and p denote the current flow and labeling. If nodes v,w € V; and an integer k are
such that v, (v,w) =1, ef ,(v) > A and 1 < k < |es,(v)/A] (that is, the pre-conditions of operation
EpGEFLOW (v, w, k) are satisfied), and additionally

k< [(uf,u(v,w) - ef#(va w))/A]a (11)
then operation EDGEFLOW (v, w, k) preserves Condition (10) and the following Condition (12):

up(v,w) >0 = efu(v,w) <ugp,(v,w), and

12
u.faﬂ/(w’v) > 0 = ef’l"/(w7 v) < u.faﬂ/(w’v)' ( )

Proof. Let v, w, and k be as required by the lemma, and assume that Conditions (10) and (12) hold
before the execution of operation EDGEFLOW (v, w, k). Let f' and f" be the flows before and after the
execution of this operation, respectively. The computation begins with sending kA units of flow from
v to [v,w]. The amount of flow sent subsequently from [v,w] to [w,v], and further on to w, depends
on the relative value of the residual capacity uy ,(v,w). Consider two cases.

If kA +ep p,(v,w) <uypr (v, w), then kA 4+ eg (v, w) units of flow are sent from [v, w] to [w,v],
and kA units of flow are sent from [w, v] to w. Thus egr ,(v,w) = 0 and epr ,(w,v) = ep ,(w,v) +
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ep n(v,w) < A, so Condition (10) holds after the operation. Since upr ,(w,v) > kA +ep (v, w) >
A > egn ,(w,v), Condition (12) holds as well.

If kA + ep p(v,w) > uypr (v, w), then ugp ,(v,w) units of flow are sent from [v,w] to [w,v],
saturating edge (v, w). Thus e ,(v,w) = ep ,(v,w) + kA —uypr ,(v,w). Consider two sub-cases. If
kA <egpr p(w,v) +up ,(v,w), then kA units are sent from [w, v] to w. In this sub-case, egr , (w,v) =
epr p(w,v) +up ,(v,w) — kA, so e, (v,w) + epr y(w,v) = ep ,(v,w) + ep ,(w,v) < A, which
means that Condition (10) holds after the operation. We also have ug» (v, w) = 0 and epr ,(w,v) =
epr u(w,v) +up ,(v,w) — kA <up ,(v,w) <ugpn ,(w,v), so Condition (12) holds as well.

If kA > epr y(w,v) +ug u(v,w), then all epr ,(w,v) + ugr 4 (v, w) units of flow are sent from [w, v]
tow. Thus epr ,(w,v) = 0and egr (v, w)+epr ,(w,v) =epr ,(v,w) = ep y(v,w)+EA—up ,(v,w) <
A, where the last inequality follows from (11). This means that Condition (10) holds after the
operation, and since us» ,(v,w) = 0 and efr ,(w,v) = 0, then Condition (12) holds as well. ®

We describe below four variants of operation UPDATEFLOW, which define the algorithm proposed
by Goldfarb, Jin and Orlin [8] and its three variants. Each variant of operation UPDATEFLOW is
dominated by O(n) applications of operation EDGEFLOW, and decreases TOTRESEXy , A at least
by 1. The re-calculation of the canonical labeling and the highest-gain tree performed after each
application of operation UPDATEFLOW may decrease further TOTRESEXy ;, A, but it cannot increase
this quantity. At the beginning of a phase,

TOTRESEXf A < TOTRESEX;,/A = 2(n+m).

This means that the number of applications of operation UPDATEFLOW in one phase is at most
2(n 4+ m), so the running time of one phase is at most 2(n + m)(O(n) + O(m + nlogn)) = O(m(m +
nlogn)). (Operation UPDATEFLOW changes the flow only on edges which have the relabeled gain
equal to 1, so the current labeling remains proper and the new canonical labeling and the new highest-
gain tree can be computed using Dijkstra’s shortest-paths algorithm.) In the worst case, all variants
of operation UPDATEFLOW have the same performance: they reduce TOTRESEX , A only by 1 and
they have the same worst-case asymptotic time bound. Thus all variants of Goldfarb, Jin and Orlin’s
algorithm presented in this paper have the same worst-case asymptotic time bounds, but their actual
performances are considerably different. The idea underlying the proposal of new variants of the
original algorithm was to maximise the usage of the current highest-gain tree, since the computation
of the new one is a relatively costly procedure.

To show that a particular variant of operation UPDATEFLOW decreases TOTRESEXy , A at least
by 1, we use the following two straightforward lemmas.
Lemma 3. If the pre-conditions of operation EDGEFLOW (v, w, k) are satisfied, then this operation
does not increase TOTRESEXy , .
Proof. This operation sends kA units of flow from node v and at most kA units of flow into
node w (the difference stays at the intermediate nodes [v,w] and [w, v]). This means that ey, ,(v)/A]
decreases by k, |ey,,(w)/A] does not increase by more than k and |ey ,(z)/A] remains the same for
each z € V' \ {v,w}, so TOTRESEX¢ , A cannot increase. W

Lemma 4. If the pre-conditions of operation EDGEFLOW (v, w, k) are satisfied, then this operation
decreases TOTRESEXy , A by k, if w =1t or ef ,(w) < A right after the execution of this operation.
Proof. In both cases |ef,(v)/A] decreases by k. If w # t and right after the execution of this
operation ey, (w) < A, then |es ,(w)/A] does not change. W

We describe now the four variants of Goldfarb, Jin and Orlin’s algorithm, defined by four variants of
operation UPDATEFLOW. Each variant of operation UPDATEFLOW decreases TOTRESEX ¢, A at least
by 1 (as required for the claim that there are only O(n +m) applications of operation UPDATEFLOW
during each phase) because it performs at least one operation EDGEFLOW (v, w, k) of the type specified
in Lemma 4 for £ > 1. One can easily verify using Lemma 2 that Condition (10) is an invariant of
each variant of operation UPDATEFLOW (we leave this to the reader), so whichever variant is used,
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UPDATEFLOWO:
v < anode in v € V; \ {t} such that ey ,(v) > A;
PatHFLOW(v, 1).

PATHFLOW(v, k):
T ;
repeat
EpGeEFLOW(r, next(r), k);
r + next(r);
until r =t or ey, (r) < A.

Figure 5: Operation UPDATEFLOWO used by Goldfarb, Jin and Orlin’s excess scaling algo-
rithm [8] (algorithm EXSc0).

UpPDATEFLOWL:
v < anode in v € V; \ {t} such that ey ,(v) > A;
PaTHFLOW(v, 1);
¢ < the residual capacity of the highest-gain path from v to t;
k « [min{ey . (v), c}/AJ;
if k>1 then PATHFLOW(v,k).

Figure 6: Operation UPDATEFLOW1 used by algorithm ExSc1.

the total relabeled residual excess is reduced at least by half during each scaling phase, as discussed
above.

Algorithm ExSc0

Algorithm EXScO is exactly the algorithm proposed by Goldfarb, Jin and Orlin [8]. The pseudocode of
operation UPDATEFLOWO, the variant of operation UPDATEFLOW used by this algorithm, is shown in
Figure 5. Operation UPDATEFLOWO selects an arbitrary node v which has the residual excess at least
A and sends A units of flow from v towards the sink ¢ along the path in the current highest-gain tree,
applying operation EDGEFLOW(r, next(r), 1) to the consecutive nodes r on this path. Node nezt(r) is
the parent of a node r in the current highest-gain tree. The computation ends when the sink ¢ has
been reached or the residual excess at the current node is less than A. Operation UPDATEFLOWO
decreases TOTRESEXy , A at least by 1 because the last application of operation EDGEFLOW is of
the type specified in Lemma 4 with k = 1.

Algorithm ExScl

Our first variant of Goldfarb, Jin and Orlin’s algorithm is obvious and straightforward, and should
actually be considered as the natural way of implementing this algorithm. The tree path from the
selected node v to the sink ¢ may have a large residual capacity, which allows sending a multiplicity
of A units in one go. Operation UPDATEFLOW1 used by algorithm EXSc1 first sends A units of
flow from the selected node v towards the sink ¢ along the tree path in the same way as operation
UPDATEFLOWO does, with the only difference that the remaining residual capacity ¢ of the used
path is also computed. If ¢ > 0, then A units of flow have been sent from node v to the sink ¢.
If k = |min{ey,(v), c}/A] > 1, then there is the second pass over the same path which sends kA
units of flow from node v to the sink ¢. The pseudocode of operation UPDATEFLOW] is shown in
Figure 6. One can check that there is always one or two applications of operation EDGEFLOW of the
type specified in Lemma 4 (the last application of operation EDGEFLOW in each pass), so operation
UPDATEFLOW1 decreases TOTRESEXf , A at least by 1.
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UPDATEFLOW2:
v < anode in v € V; \ {t} such that ey ,(v) > A;
T v;
repeat
EDpGEFLOW(r, next(r), 1);
if wy,, (r, next(r)) > A and ez, ,(r) > A then
EDpGEFLOW(r, next(r), |min{uy ,(r, next(r)), ez . (r)} /A]);
r < next(r);
until r =t or ey, (r) < A.

Figure 7: Operation UPDATEFLOW2 used by algorithm ExSc2.

UPDATEFLOW3:
L « list of the nodes in V; \ {t} in a tree order according to the current highest-gain tree;
while L is not empty do
v ¢ first node in L; remove v from L;
if ez, (v) > A then
EDGEFLOW (v, neat(v), min{es,u(r)/ Al [(uz u(r,w) — g u(r,w)) /AT}).

Figure 8: Operation UPDATEFLOW3 used by algorithm ExSc3.

Algorithm ExSc2

Similarly as the previous two variants of operation UPDATEFLOW, the variant UPDATEFLOW2, used
by algorithm EXSc2, selects an arbitrary node v € V¢ \ {t} which has the residual excess at least A
and sends off flow from v towards the sink ¢ along the tree path. The difference is that previously the
amount of flow sent off from each consecutive node r of the path was the same (A units in operation
UPDATEFLOWO and kA units, for some integer k& > 1, in operation UPDATEFLOW1), while operation
UPDATEFLOW2 sends from a node r into edge (r, next(r)) first A units of flow and then additional
A - |min{uy ,(r, next(r)), e, (r)}/A]) units of flow. Thus different amount of flow may be sent into
different edges of the path. The amount of flow sent into an edge (r, next(r)) is relative to the residual
excess at node r and the residual capacity of this edge. The pseudocode of operation UPDATEFLOW2
is shown in Figure 7. The one or the two applications of operation EDGEFLOW to the last edge are of
the type specified in Lemma 4, so operation UPDATEFLOW2 decreases TOTRESEX¢ , A at least by 1.

We should note that this heuristic, which sends into consecutive edges of the path (almost) as much
flow as possible, does not always lead to faster actual performance. As the results of our experiments
presented in Section 7 show, code EXSc2 performs significantly better than code EXSc1 on networks
of one of the two classes of input networks which we have experimented with, but it performs somewhat
worse on networks of the other class.

Algorithm ExSc3

Operation UPDATEFLOW3, used by algorithm EXSc3, is our final variant of operation UPDATEFLOW.
It takes the most advantage of the current highest-gain tree and has performed best of all variants in
all our experiments. Operation UPDATEFLOWS first puts the nodes of the set V; \ {¢} into a list L
in an order defined by the current highest-gain tree: for each r € V; \ {t}, r is in L before next(r).
Next the nodes are taken one by one from L, and if the residual excess at the current node v is at
least A, then flow is send into edge (v, next(v)) by applying operation EDGEFLOW (v, next(v), k) with
the largest possible k allowed by Lemma 2. The details of operation UPDATEFLOW3 are shown in
Figure 8.

Operation UPDATEFLOW3 uses all edges of the current highest-gain tree, while all three previous
variants of operation UPDATEFLOW use only the edges of one path of this tree. The last application
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{ INPUT: a generalised flow network G and a number £ >0 }
f < zero flow in G|
k « 0O;
loop
k+—k+1;
cancel all flow generating cycles in Gy and compute the canonical labeling u;
if ToTRESEX < €es(t) then terminate;
PHASE(eg); { €, is the value of the rounding parameter for the k-th phase }
end_loop
{ ouTpPUT: {-optimal flow f }.

PHASE(e):
{ G does not have flow generating cycles, y is the canonical labeling in Gy }
b (1+¢€'/m;
let 4, (v, w) be v, (v,w) rounded down to integer power of b, for each residual edge (v,w) in Gy
while exists v € Gy with positive excess do
if exists an admissible edge (v,w) { a residual edge in Gy with 4, (v,w) >1} then
PUSH(v,w);  { update f by sending min{es(v),us(v, w)} units of flow along (v,w) }
else
RELABEL(0);  { p(v) ¢ pu(v)/0"/™ }
end_while
[ Teopt(t) = epr (] < [e/(1+ )] - [eapt(t) — e (8]
where f' and f" are the flows at the beginning and at the end of the computation }

Figure 9: Tardos and Wayne’s algorithm PUSHRELABEL.

of operation EDGEFLOW is of the type specified in Lemma 4, so operation UPDATEFLOW3 decreases
ToTRESEXf 4, A at least by 1. However, unlike the previous variants, one operation UPDATEFLOW3
may perform many operations EDGEFLOW of the type specified in Lemma 4, so may substantially
decrease TOTRESEX¢ , A. This seems to be the reason why algorithm ExSc3 outperforms the other
variants in our experiments.

5 Push-relabel algorithm

Tardos and Wayne [17] (see also [20]) proposed an algorithm for the maximum generalised flow problem
based on Goldberg and Tarjan’s push-relabel method for the minimum-cost (non-generalised) flow
problem [6]. The pseudocode of Tardos and Wayne’s algorithm, which we call in this paper algorithm
PuUsHRELABEL, is shown in Figure 9. The computation of this algorithm is a sequence of applications
of procedure PHASE(€), where € is a parameter used in the calculations of rounding gain factors of
edges.

At the beginning of the computation of procedure PHASE(e), the current flow in network G is
such that the residual network Gy is a non-gain network and the canonical labeling p of network G ¢
has been computed. The computation starts with rounding down the relabeled gain factors v, of the
residual edges to integer powers of b = (1 + €)'/, Let Au denote the rounded gain factors. A node
v € V¢ \ {t} is an active node, if it has positive residual excess. An edge (v,w) is an admissible edge,
if it is a residual edge and 7, (v, w) > 1. The way the flow and the labeling is updated is analogous to
Goldberg and Tarjan’s push-relabel method for non-generalised flows: keep sending flow from active
nodes along admissible edges, and if there is no admissible edge outgoing from an active node v,
decrease its label p(v) to increase the gain factors of the outgoing edges. More specifically, procedure
PHASE(e) uses two operations, PUSH(v,w) and RELABEL(v). Operation PUSH(v,w) applies if a node
v is active and an edge (v, w) is admissible, and it sends min{es(v), us(v,w)} units of flow along this
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edge. Operation RELABEL(v) applies if a node v is active and there are no admissible edges outgoing
from v, and it decreases the label pu(v) by factor b'/” (so the gain factors of the edges outgoing from
node v increase by factor b'/™). Procedure PHASE(e) repeatedly selects an active node and applies
either operation PUSH(v,w), if there is an admissible edge (v, w), or operation RELABEL(v) otherwise.
The computation terminates when no active node is left in the residual network G.

Tardos and Wayne [17, 20] show that the running time of procedure PHASE(¢) is O(mn3e~" log B)!,
and if f' and f” denote the flows at the beginning and at the end of the computation, then

Copt(£) — 71 (t) < o (Cop(t) — e (1). (13)

Since the rounded gain factors are used, the flow is not necessary sent along the highest-gain paths, so
flow-generating cycles may be created. Therefore, before the computation proceeds to the next phase,
we have to cancel all flow-generating cycles. Goldberg, Plotkin and Tardos [4] show that this can be
done in é(mn2 log B) time by an adaptation of Goldberg and Tarjan’s algorithm for the minimum-cost
(non-generalised) flow problem which repeatedly cancels minimum mean-cost cycles [5].

The property (13) implies that the flow f at the end of the ¢-th iteration of algorithm PUSHRE-

LABEL is such that
€1€2 - eq

+e)(l+e) - (1+e

where ¢; is the actual parameter of the i-th application of procedure PHASE. Hence this flow is
&-optimal for

eopt(t) —ef(t) < a ) €opt (1),

‘- 162 €
(It ea)l+e)--(1+e) —€e---€

Tardos and Wayne [17, 20] repeatedly apply procedure PHASE with the same € = 1/2 to obtain the
best asymptotic worst-case time bound for computing &-optimal flows. In this case, (14) implies that
O(log £~ 1) phases suffice, so the total running time is O(mn?log Blog&~1). Our experiments showed
that the computation of PHASE(1/2) is too slow to give good performance of algorithm PUSHRELA-
BEL. When we used instead ¢ = ©(n), then the performance considerably improved. Such values of
parameter € increase the worst-case asymptotic bound on the number of applications of procedure
PHASE needed to obtain a ¢-optimal flow by an O(n) factor to O(nlog&~1), but they decrease the
worst-case asymptotic bound on the running time of procedure PHASE only by an O(logn) factor. In
our experiments, however, the trade-off goes the other way: the running time of one phase consid-
erably decreased, while usually only two or three calls to procedure PHASE were sufficient to obtain
10~5-optimal flows.

Our implementation and algorithm PUSHRELABEL differs from the algorithm presented by Tardos
and Wayne [17, 20] also in the following way. We use the rounded gain factors only to identify
admissible edges, but we always keep updating the current flow in the original network G, that is,
using the original exact gain factors. Tardos and Wayne update the flow in the rounded network, and
at the end of phase interpret the updates in the original network. When all updates are made in the
original network, then more flow is sent to the sink in each phase, resulting in a better convergence of
the computation. One can check that the analysis of the PUSHRELABEL algorithm presented by Tardos
and Wayne in [17] and [20] remains valid for this modification. Since we have not developed yet a fast
code for canceling all flow generating cycles, this computation is perform in our code PUSHRELABEL
by a CPLEX optimiser.

(14)

6 Generators of generalised flow networks

We developed, and used in our tests and experiments, two simple generators of generalised flow
networks, which are loosely based on possible applications of the maximum generalised flow problem
in the quantitative financial analysis. To simplify our initial experiments, the generated networks
do not have flow generating cycles. In our experiments we used uniform and various non-uniform
distributions.

INotation O() hides a factor polynomial in logn.
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Figure 10: The structure of networks generated by the input generator LAYERSX.

Layered network: a multiperiod portfolio management model

Generator LAYERS and its variant LAYERSX have parameters K, T, D, Ymin, Ymax, %min and Umax,
and create a network with the set of nodes

V={b7]:b=1,2,...,K;7=0,1,..., T}U{t}.

A node [b, 7] represents an asset b at time 7. An edge e = ([b/, 7],[b"”,7 + 1]) with gain v(e) and
capacity u(e) represents possibility of exchanging = < u(e) units of asset b’ available at time 7 into
v(e) - z units of asset b"', which will be available at the next time 7 + 1. Each node [b, T is connected
by an edge to the sink ¢. Generator LAYERS connects each node [b, 7], 7 < T, to D randomly chosen
nodes at the next time point 7 + 1. Generator LAYERSX connects each node [b,7], 7 < T, to D
randomly chosen nodes other than the nodes at the same time point 7. A forward edge from a time
point T to a time point 7' > 7 represents exchanging assets, with delayed availability of the purchased
asset if 7' > 74+ 1. A back edge e = ([, 7'],[b",7"]) to a time point 7" < 7' represents borrowing.
The flow value z on such an edge means that we get « - y(e) units of asset b’ at the time point 7" but
we have to return x units of asset b’ at the later time 7'. Figure 10 shows the structure of networks
generated by generator LAYERSX.

The gains and the capacities of the edges are randomly selected from the intervals [Ymin, Ymax]
and [Umin, Umax], respectively. Only nodes [b,0] have positive initial excesses, which are randomly
selected from the interval [Dumin, Dumax]- The maximisation of the flow into the sink ¢ models the
maximisation of the total value of the assets held at the final time point 7. One should expect that
in the multiperiod portfolio model the gain factors of edges should be close to 1, assuming that the
input data comes in a normalised form (that is, an initial labeling of nodes is given which normalises
the units of the assests), so in our experiments we usually set parameters ymin and Ymax close to 1;
say 0.9 and 1.1 in generator LAYERS and 0.9 and 1.0 in generator LAYERSX (to avoid flow generating
cycles).

Grid of cliques: exchanging and transferring currencies

The generator GRIDOFCLIQUES has parameters K, (), Ymin, Ymax; Ymins Ymax, €min, aNd €max, and
creates a network with the set of nodes

V=A{leqd:c=12,....,K;¢=1,2,...,Q}.

The sink ¢ is an arbitrarily chosen node in V. A node [e,q] represents a currency ¢ at a market
g. For each ¢ = 1,2,...,0Q), the nodes {[c,q] : ¢ = 1,2,...,K} form a (directed) clique; and for
each ¢ = 1,2,..., K, the nodes {[¢,q] : ¢ = 1,2,...,Q} form a clique. An edge ([¢,q],[¢",q])
represents possibility of exchanging currency ¢’ for other currency ¢” within the same market q. An
edge e = ([¢,q'],[c,q"]) represents possibility of transferring the same currency ¢ from market ¢' to
other market ¢”, and 1 —~y(e) is the cost of such transfer per unit of the currency. The capacities and
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Figure 11: The structure of networks generated by the input generator GRIDOFCLIQUES.

gain factors are randomly selected as in generator LAYERSX. The initial node excesses are randomly
chosen from the interval [emin, €max]- The maximisation of the flow into the sink ¢ = [¢;, g is meant
to model the computation of an optimal way of transferring and exchanging various currencies held
at various markets into the currency c¢; at the market g;. Figure 11 shows the structure of networks
generated by generator GRIDOFCLIQUES.

7 Experiments

We present in this section results of some initial experiments with our implementations. All imple-
mentations were developed in C++ (gnu g++ version 2.8) using LEDA, version 4.0, a C++ library of
data types and algorithms [11]. We conducted all experiments on Sun UltraSPARC II (2 x 300 MHz,
512 MB, Unix SunOS 5.5.1). Each running time shown in the tables is the average time in seconds of
5 runs on networks of the same type and size, that is, networks generated by the same input generator,
with the same parameters, but with different random seeds.

Figures 12, 13 and 14 compare the implementations of different versions of Goldfarb, Jin and Orlin’s
algorithm described in Section 4 and implementations of Onaga’s and Truemper’s algorithms (codes
HIGHESTPATH and MAXFLOW, respectively) on networks generated by input generators LAYERS,
LAYERSX and GRIDOFCLIQUES. All codes were run until 10~%-optimal solutions were computed.
Figures 12 and 13 show that our successive variants of Goldfarb, Jin and Orlin’s algorithm lead to
progressively better performance on the LAYERS and LAYERSX networks, and the final variant EXSc3
is considerably faster than code HIGHESTPATH, the implementation of Onaga’s algorithm. Figure 14
shows that codes ExSc3 and HIGHESTPATH are the fastest on networks GRIDOFCLIQUES, but the
differences in performance of all codes are less dramatic and, contrary to our expectations, heuristic
ExSc2 does not improve on heuristic EXSc1.

Figure 15 compares the performance of code EXSc3, our fastest variant of Goldfarb, Jin and Orlin’s
algorithm, and code PUSHRELABEL against the performance of the commercial linear-programming
package CPLEX [10]. CPLEX has three basic optimisers: primal simplex, dual simplex and barrier.
The barrier optimiser is based on the interior-point method. We include in the tables only the
average running times of the primal and the dual simplex optimisers because the barrier optimiser
was always the slowest. The running times of codes EXSc3 and PUSHRELABEL shown in the tables
are for computing 10~5-optimal solution, while the running times of the CPLEX optimisers are for
computing exact solutions. We monitored the computation of the primal simplex optimiser, which
generates a sequence of progressively improved primal feasible solutions, and observed that the time
needed to obtain a 10~2-optimal solution was usually equal to 80%-90% of the time needed to reach the
final optimal solution. The tables in Figure 15 show that codes ExSc3 and PUSHRELABEL perform
worse than CPLEX, but the dominance of CPLEX should not be considered overwhelming, especially
if we take into account possibilities for further improvements of our implementations (see Section 8).
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| nodes/edges || HIGHESTPATH | MAXFLow | ExSc0 | ExScl | ExSc2 | ExSc3

100/400 0.11 0.34 7.69 0.48 0.33 0.07
200/800 0.54 1.73 49.22 2.70 1.61 0.27
400/1600 2.17 8.52 | 195.10 10.54 7.80 0.88
800/3200 11.16 34.42 | 815.46 46.68 34.23 3.34
1600/6400 49.32 176.24 - | 195.66 | 135.76 9.67
3200/12800 221.86 - - | 862.73 | 437.79 33.94

Figure 12: Running times on inputs created by the generator LAYERS.

Table (c) shows that on the LAYERSX networks the running time of our code ExSc3 grows, with the
growth of the size of networks, somewhat slower than the running times of the CPLEX optimisers.
Thus, even without any further improvements, code EXSc3 may be faster than the CPLEX optimisers
on networks a few hundred times larger than the largest networks included in Table (c). (The limits
of our current system platform makes it difficult to extend experiments to such large networks.)

8 Conclusion

We have developed implementations for the maximum generalised network flow problem based on re-
cently proposed polynomial-time combinatorial algorithms: Goldfarb, Jin and Orlin’s [8] excess scaling
algorithm (codes ExSc) and Tardos and Wayne’s [17] push-relabel algorithm (code PUSHRELABEL).
Since our initial implementations which closely followed the original descriptions of these algorithms
turned out to be very slow, it was necessary to investigate the details of design and analysis of the
algorithms to come up with promising modifications. The performance of our final codes EXSc3 and
PUSHRELABEL comes close enough to the performance of CPLEX to postulate that combinatorial
generalised network flow algorithms, in combination with the ideas underlying general-purpose lin-
ear programming methods, will soon lead to practically fast optimisers for the maximum generalised
network flow problem.

The running time of codes EXScC is overwhelmingly dominated by the running time of the com-
putations of the highest-gain trees (Dijkstra’s single-source shortest-path computations). Thus an
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200/1000 0.78 61.03 3.80 2.52 0.34
400,/2000 4.56 249.86 16.72 10.36 1.38
800/4000 22.95 | 1061.11 71.29 41.02 7.08
1600/8000 185.50 - 339.45 181.22 28.46
3200/16000 1659.97 - | 2169.16 | 1009.39 98.24

Figure 13: Running times on inputs created by the generator LAYERSX. (MAXFLOW code
gives very high running times even for small networks generated by LAYERSX.)

obvious direction in speeding-up these codes is to replace the computation of the new highest-gain
tree from scratch with a suitable practically fast update of the previous tree. Another direction is to
come up with some mechanism of identifying “inactive” edges during the computation, that is, the
edges which will never again, or at least not for a long time, have their flow values updated. In our
experiments most of the edges quickly become inactive, so removing such edges from the network may
considerably speed-up the computation.

The push-relabel method seems to offer more room for improvement. Our code PUSHRELABEL
implements only the basic push-relabel strategy which maintains the active nodes in a FIFO queue,
while there exist a number of different variants and heuristics for the push-relabel method developed
for non-generalised network flows. For example, it has been demonstrated that in the context of
non-generalised flows, periodical global re-calculation of the node labels may considerably improve
the actual running times. One should expect similar improvements from an analogous heuristic in the
context of maximum generalised flows.

The cumbersome part of the push-relabel method for the maximum generalised flow problem is
the canceling of all flow generating cycles, which is required before each phase. This computation
does not have an analogue in the push-relabel method for the minimum-cost non-generalised flow
problem. We use a CPLEX optimiser for this computation in our code PUSHRELABEL. One could
contemplate using only approximate canceling of flow generating cycles, following the way Radzik [16]
and Tardos and Wayne [17] used such computation in their variants of Goldberg, Plotkin and Tardos’
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200/3000 0.36 0.84 | 341.18 1.93 1.92 0.36
400,/8000 1.34 3.33 - 6.91 8.44 1.64
800/23000 7.24 17.47 - 32.00 40.93 7.98

Figure 14: Running times on inputs created by the generator GRIDOFCLIQUES.

fat-path algorithm [4]. However, details and a theoretical analysis of a possible push-relabel maximum
generalised flow algorithm which uses only approximate canceling of flow generating cycles are yet to
be worked out.

The push-relabel method for the minimum-cost non-generalised flow problem removes the negative
cycles (the “flow generating” cycles in that context) by simply saturating all edges which have negative
reduced costs. Analogously, we could get rid of all flow generating cycles by saturating all edges which
have relabeled gains greater than 1. This method creates negative node excesses and therefore does
not fit into Tardos and Wayne’s push-relabel framework for the maximum generalised flow problem
presented in [17]. We believe, however, that the push-relabel framework can be extended to handle
negative node excesses, and such an extension should lead to improved practical performance.
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