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Abstract

Particle swarm optimization (PSO) is an
efficient tool for optimization and search
problems. However, it is easy to be
trapped into local optima due to its in-
formation sharing mechanism. Many re-
search works have shown that mutation
operators can help PSO prevent prema-
ture convergence. In this paper, several
mutation operators that are based on the
global best particle are investigated and
compared for PSO. An adaptive muta-
tion operator is designed. Experimental
results show that these mutation opera-
tors can greatly enhance the performance
of PSO. The adaptive mutation operator
shows great advantages over non-adaptive
mutation operators on a set of benchmark
test problems.

1 Introduction

Particle swarm optimization (PSO) was first
introduced by Kennedy and Eberhart in 1995
[2, 5]. There are two main models of the PSO
algorithm, called gbest (global best) and lbest
(local best), which are different in the way of
defining particle neighborhood. Kennedy and
Poli [6, 10] pointed out that the gbest model has
a fast convergence speed with a higher chance
of getting stuck in local optima. On the con-
trary, the lbest model is less vulnerable to the
attraction of local optima but has a slower con-
vergence speed than gbest. In this paper, all
the PSO algorithms studied are based on the
gbest model, aiming to reduce the probability of
being trapped into local optima by introducing
mutation opertor and keep the advantage of fast
convergence of the gbest model.

There are several major versions of the PSO
algorithms. The following version modified by
Shi and Eberhart [12] is used in this paper. Each
particle is represented by a position and a veloc-

ity, which are updated as follows:

~V ′i = ω~Vi + η1r1(~Pi − ~Xi) + η2r2(~Pg − ~Xi) (1)

~X ′i = ~Xi + ~V ′i (2)

where ~X ′i and ~X represent the current and pre-
vious positions of particle i, ~Vi and ~V ′i are the
previous and current velocity of particle i, ~Pi
and ~Pg are the best-so-far position of particle i
and the best position found in the whole swarm
so far respectively. ω ∈ (0, 1] is an inertia weight
which determines how much the previous veloc-
ity is preserved, η1 and η2 are acceleration con-
stants, and r1 and r2 are random numbers gen-
erated from the interval [0.0, 1.0].

Ratnaweera et al. [11] stated that the lack of
population diversity in PSO algorithms is un-
derstood to be a factor in their convergence
on local optima. Therefore, the addition of a
mutation operator to PSO should enhance its
global search capacity and thus improve its per-
formance. There are mainly two types of mu-
tation operators: one type is based on particle
position [7, 8, 4, 13, 3] and the other type is
based on particle velocity [11, 9, 14, 15]. The
former method is by far the most common tech-
nique found in the literature. However, the work
of the latter one is very less. There has been
so far no comparison of effectiveness of different
mutation operators on particle velocity.

In this paper, several mutation operators
that are based on the global best particle are
investigated for PSO. An adaptive mutation op-
erator is also designed for PSO. An experimental
study is carried out to compare the performance
of the investigated mutation operators for PSO
on a set of benchmark test problems.

2 An Adaptive Mutation
Operator for PSO

Different mutation operators can be used to help
PSO jump out of local optima. However, a mu-
tation operator may be more effective than other



ones on a certain type of problems and may be
worse on another type of problems. In fact, it
is the same even for a specific problem at differ-
ent stage of the optimization process. That is,
the best mutation results can not be achieved by
a single mutation operator, instead several mu-
tation operators may have to be applied at dif-
ferent stages for the best performance. This pa-
per presents a mutation operator that can adap-
tively select the most suitable mutation opera-
tor for different problems. Before presenting the
adaptive mutation operator, three mutation op-
erators designed for the global best particles are
described as follows.

2.1 Three Mutation Operators

A. Cauchy mutation operator

~V ′g = ~Vgexp(δ) (3)

~X ′g = ~Xg + ~V ′gδg (4)

where ~Xg and ~Vg represent the position and ve-
locity of the global best particle. δ and δg denote
Cauchy random numbers with the scale param-
eter of 1.

B. Gaussian mutation operator

~V ′g = ~Vgexp(N) (5)

~X ′g = ~Xg + ~V ′gNg (6)

where ~Xg and ~Vg represent the position and ve-
locity of global best particle. N and Ng are
Gaussian distribution numbers with the mean
0 and the variance 1.

C. Levy mutation operator

~V ′g = ~Vgexp(L(α)) (7)

~X ′g = ~Xg + ~V ′gLg(α), (8)

where L(α) and Lg(α) are random numbers gen-
erated from the Levy distribution with a param-
eter α. In this paper, α is set to 1.3.

2.2 The Adaptive Mutation Operator

The proposed adaptive mutation operator uses
the three mutation operators described above.
All mutation operators have an equal initial se-
lection ratio with 1/3. Each mutation operator
is applied according to its selection ratio and
its offspring fitness is evaluated. The mutation
operators that result in higher fitness values of
offspring have their selection ratios increased.
The mutation operators that result in lower fit-
ness values of offspring have their selection ratios

decreased. Gradually, the most suitable muta-
tion operator will be chosen automatically and it
controls all the mutation behavior in the whole
swarm. Without lose of generality, we discuss
the minimization optimization problems in this
paper.

First, some definitions are given below: The
progress value progi(t) of operator i at genera-
tion t is defined as follows:

progi(t) =
Mi∑

j=1

f(pij(t))−min (f(pij(t)), f(cij(t))),

(9)
where pij(t) and cij(t) denote a parent and its
child produced by mutation operator i at gener-
ation t and Mi is the number of particles that
select mutation operator i to mutate.

The reward value rewardi(t) of operator i at
generation t is defined as follows:

rewardi(t) = exp( progi(t)∑N

j=1
progj(t)

α+ si
Mi

(1− α))

+ cipi(t)− 1
(10)

where si is the number of particles whose chil-
dren have a better fitness than themselves after
being mutated by mutation operator i, pi(t) is
the selection ratio of mutation operator i at gen-
eration t, α is a random weight between (0, 1),
N is the number of mutation operators, and ci is
a penalty factor for mutation operator i, which
is defined as follows:

ci =
{

0.9, if si = 0 and pi(t) = maxNj=1 (pj(t))
1, otherwise

(11)
if the previous best operator has no contribution
at current generation, then the selection ratio of
the current best operator will decrease.

With the above definitions, the selection ra-
tio of mutation operator i is updated according
to the following equation:

pi(t+1) =
rewardi(t)∑N
j=1 rewardj(t)

(1−N∗γ)+γ, (12)

where γ is the minimum selection ratio for each
mutation operator, which is set 0.01 for all the
experiments in this paper. This selection ra-
tio update equation considers four factors: the
progress value, the ratio of successful mutations,
previous selection ratio, and the minimum selec-
tion ratio. Another important parameter for the
adaptive mutation operator is the frequency of
updating the selection ratios of mutation oper-
ators. That is, the selection ratio of each mu-
tation operator can be updated at a fixed fre-



quency, e.g., every Uf generations, instead of
every generation.

The framework of the PSO algorithm with
one of the three mutation operators described
above is given as follows:

Step 1: Generate the initial particles by ran-
domly generating the position and velocity
for each particle.

Step 2: Evaluate the fitness of each particle.

Step 3: For each particle i, if its fitness is
smaller than the fitness of its previous best
position (~Pi), update ~Pi.

Step 4: For each particle, if its fitness is smaller
than the fitness of the best position (~pg) of
all particles, update ~Pg.

Step 5: Update each particle according to
Eqs. (1) and (2).

Step 6: Mutate ~Pg according to one of the three
mutation operators for T times (T is the
local search size for the global best particle).

Step 7: Compare the best one ~P ∗g of the mu-
tants with ~Pg and select the better one as
the new global best particle.

Step 8: Stop if the stop criterion is satisfied;
otherwise, go to Step 3.

The PSO with the adaptive mutation oper-
ator differs from the above PSO algorithms in
Step 6. At Step 6, we select one of the three
mutation operators according to their selection
ratios to mutate ~Pg for T times and then update
the selection ratio for each mutation operator
according to Eq. (18)at a fixed frequency, e.g.,
every Uf generations.

3 Experimental Study

Seven benchmark functions (f1−f7) are used in
this paper. Functions f1 is unimodal function
while f2 − f7 have many local optima. Table
1 gives the details of these functions. The pro-
posed algorithm are compared with another al-
gorithm called FEP[16, 17] on all test problems.

Algorithm parameters are set as follows: the
acceleration constants η1 = η2 = 1.496180 and
the inertia weight ω = 0.729844 as suggested by
den Bergh [1]. In order to have the same num-
ber of function evaluations, the population size
is 50 and T = 10 for PSO for mutation opera-
tors. In PSO and FEP, the population size is 60,

the tournament size is 6 for selection and initial
standard deviation is 3.0 in FEP algorithm [16].
For the adaptive mutation operator, the initial
selection ratio is 1/3 and the minimum selection
ratio γ is 0.01 for each mutation operator, and
the update frequency Uf is set to 5. All algo-
rithms are run 50 times independently till gen-
eration 2000 for each test problem is achieved.

3.1 Performance Comparison

The average results of six algorithms for the
test problems are summarized in Table 2. Ta-
ble 3 also shows the statistical comparison of
the adaptive mutation operator over other five
algorithms, using the two-tailed T-test with 98
degrees of freedom at a 0.05 level of significance.
In Table 3, the performance difference is signifi-
cant if the absolute value of the T-test result is
greater than 1.984.

From Table 2 and Table 3, it can be seen that
the algorithms with mutation operator perform
better than PSO for most problems. All the
four algorithms with mutation operators present
much better results than PSO on f1, f2, f6 and
f7. Especially for multimodal functions, algo-
rithms with mutation perform obviously better
than PSO. FEP performs better than PSO on f6

and f7, but worse than PSO on the other prob-
lems. The mean values obtained by Levy and
Adaptive are much better than FEP on all test
problems.

As expected, adaption mutation shows its ad-
vantages and presents at least the second best
result among all the mutation algorithms on all
test problems. To our surprise, the adaptive mu-
tation achieves the best results among all the
algorithms on function f2 and f4. In this point
of view, adaptive mutation can probably be re-
garded as the one with the average best per-
formance for PSO on all test problems. Fig. 1
shows the evolutionary process of the average
global best particle of PSO, Adaptive, and FEP.
Due to page limitation, the results of function
f3, f5 and f6 are not presented. Adaptive mu-
tation gives the fastest convergence rate on all
test functions.

Fig. 2 presents the results of selection ratio of
Cauchy, Gaussian, and Levy at generation 2000
for 50 runs in the adaptive mutation.Due to page
limitation, the results of function f3, f5 and f6

are not presented. We can see that the frequen-
cies of three mutation operators being selected
are quite different for each test problem. The
selection ratio of Levy for function f1, f2 and f4

keeps at high level before population converges,
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Figure 1: Evolution process of the average best particle of PSO, Adaptive mutation and FEP.

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

se
le

cti
on

 ra
tio

Generation(f1)

 Cauchy
 Normal
 Levy

0 500 1000 1500 2000

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

se
le

ct
io

n 
ra

tio

Generation(f2)

 Cauchy
 Normal
 Levy

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

se
le

cti
on

 ra
tio

Generation(f4)

 Cauchy
 Normal
 Levy

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

se
le

cti
on

 ra
tio

Generation(f7)

 Cauchy
 Normal
 Levy

Figure 2: The average selection ratio of Cauchy,Gaussian and Levy in the adaptive mutation.



Table 1: Details of test functions, where n is the dimension of the function, fminis the minimum
value of the function, and S ∈ Rn

Test function n S fmin
f1(x) =

∑n
i=1 x

2
i 30 (−5.12, 5.12) 0

f2(x) = (sin2
√
x2

1+x2
2)−0.5

(1.0+0.001(x2
1+x2

2))2 + 0.5 30 (-100,100) 0
f3(x) = 1

4000

∑n
i=1(xi − 100)2 −∏n

i=1cos(xi−100√
i

) + 1 30 (-300,300) 0

f4(x) = −20 exp(−0.2
√

1
n

∑n
i=1 x

2
i )− 30 (-30,30) 0

exp( 1
n

∑n
i=1 cos(2πxi)) + 20 + e

f5(x) =
∑n
i=1 (x2

i − 10 cos(2πxi) + 10) 30 (-5.12,5.12) 0
f6(x) =

∑n
i=1−xi sin (

√
|xi|) 30 (-500,500) -12569.5

f7(x) = 418.9829 · n+
∑n
i=1−xi sin (

√
|xi|) 30 (-500, 500) 0

Table 2: Comparison of PSO, Cauchy, Gaussian, Levy, Adaptive and FEP. The results are mean
best function values found at generation 2000 over 50 runs

Test function PSO Cauchy Gaussian Levy Adaptive FEP
f1 1.24e-40 1.17e-41 2.45e-43 1.40e-53 6.51e-53 1.424
f2 0.00252 0.001748 0.00136 0.00116 0.00097 0.00968
f3 0.01865 0.01062 0.01877 0.01454 0.01298 1.2003
f4 1.28691 1.586e-14 1.19315 1.486e-14 1.45e-014 6.84345
f5 42.0469 33.1918 46.564 27.1624 28.0578 69.283
f6 -7804.39 -12523.7 -8249.72 -12569.5 -12533.9 -10522.4
f7 4700.71 101.543 4239.15 2.36915 65.9316 2099.74

Table 3: The T-test results between adaptive mutation and the other five algorithms
Test function PSO Cauchy Gaussian Levy FEP

f1 -1.75169 -2.73526 -1.84775 2.33678 -5.44373
f2 -2.10759 -1.14885 -0.61043 -0.31655 -8.68015
f3 -1.68669 0.862596 -1.65334 -0.526 -8.06837
f4 -10.4887 -1.28531 -10.6313 -0.29368 -16.0647
f5 -7.65198 -2.62769 -8.36267 0.49368 -14.1893
f6 -74.0754 -0.70909 -55.7929 4.20043 -28.7369
f7 -62.7898 -1.42823 -52.0554 4.09011 -28.9074

it dominates the mutation behaviour during this
period. However, the selection ratio of Gaussian
surpasses Levy after 500 generation for function
f7. The selection ratio of Cauchy almost keeps
at a very low level during the optimization run
for all test problems.

The experimental results validate our expec-
tation that one mutation operator may perform
better than other ones on a certain type of prob-
lems but worse on another type of problems.
Even for a particular problem, different muta-
tion operators are needed at different evolving
stage to achieve a good result.

4 Conclusions

This paper investigates three mutation opera-
tors that are based on the particle velocity for
PSO. A technique of how to design an adaptive
mutation operator is presented in this paper and
an adaptive mutation operator is proposed for
PSO. By introducing mutation, PSO greatly im-
proves its global search capability without losing
its fast convergence property. Though different
mutation operators give a different performance
on different test problems, the adaptive muta-
tion operator shows a balanced performance on
all test problems and it gives the best perfor-
mance on some problems. That is, the adaptive
mutation is more robust than any other muta-
tion operators investigated in this paper. Hence,



the integration of adaptive mutation operators is
a promising work for improving the performance
of PSO.
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