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Summary

Clustering can help aggregate the topology information and reduce the size of routing tables in a mobile ad hoc

network (MANET). The maintenance of the cluster structure should be as stable as possible to reduce overhead and

make the network topology less dynamic. Hence, stability measures the goodness of clustering. However, for a

complex system like MANET, one clustering metric is far from reflecting the network dynamics. Some prior works

have considered multiple metrics by combining them into one weighted sum, which suffers from intrinsic

drawbacks as a scalar objective function to provide solution for multi-objective optimization. In this paper, we

propose a stability-aware multi-metric clustering algorithm, which can (1) achieve stable cluster structure by

exploiting group mobility and (2) optimize multiple metrics with the help of a multi-objective evolutionary

algorithm (MOEA). Performance evaluation shows that our algorithm can generate a stable clustered topology and

also achieve optimal solutions in small-scale networks. For large-scale networks, it outperforms the well-known

weighted clustering algorithm (WCA) that uses a weighted sum of multiple metrics. Copyright# 2008 JohnWiley

& Sons, Ltd.
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1. Introduction

Amobile ad hoc network (MANET) is a self-organizing

wireless local area network without infrastructure and

central administration. It has the advantages of low

cost, plug-and-play convenience, and flexibility. Just

like the Internet, the flat network infrastructure of

MANETs encounters the scalability problem when

the network size increases. Scalability is more chal-

lenging in MANETs due to node mobility. Therefore,

efficient network management is extremely important.

Analogous to the IP subnet concept, a MANET can

also be organized into a hierarchical architecture by

dividing nodes into clusters. Each cluster maintains

and aggregates the information of the nodes within it.

Each cluster can thus be seen as a logical node at the

cluster level. The network layer only needs to main-

tain and manage the information of these logical

nodes. Clearly, the control overhead will be reduced

with the aid of clustering.
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A clustering algorithm [1] is to find a feasible

interconnected set of clusters covering the entire set

of nodes in MANET. At any instant, one mobile node

can only belong to one cluster. A cluster may have a

clusterhead or not. Since the recruiting of clusterheads

brings the advantage of easy management, most of the

prior research work is on clustering with clusterhead.

In this paper, our algorithm also generates the clusters

with clusterheads assigned.

Despite the fact that node mobility is an intrinsic

characteristic in MANETs, the cluster structure

should be maintained as stable as possible. Otherwise,

frequent cluster change or re-clustering adversely

affects the performance of radio resource allocation

and scheduling protocols. By stability, we mean that

the cluster structure remains unchanged for a given

reasonable time period. Clearly, stability is an impor-

tant requirement on a clustering algorithm. To main-

tain stable cluster structure, node mobility and group

mobility [2] must be investigated. Group mobility has

emerged from applications where a team of mobile

users stay closely and move together. Mobile nodes

are organized into groups to coordinate their move-

ment. Examples include military and disaster recov-

ery operations, vehicular communications, etc.

Although existing work [3,4] addressed the relative

mobility, yet the effect of group mobility on clustering

has not been studied.

Furthermore, clustering must be associated with

one or more metrics such as node ID, node degree,

and energy (battery power), which are defined based

on the application requirements. Early work in the

literature has focused on single-metric clustering. For

example, in the highest degree heuristic [5], the node

with the maximum number of neighbors (highest

degree) is chosen as the clusterhead. But for a com-

plex system like MANET, single metric is far from

reflecting the whole network dynamics. Clustering

algorithms optimizing only one metric commonly

lose generality and have low performance in terms

of other metrics.

Multi-metric clustering aims to create a cluster

structure that optimizes several metrics simulta-

neously. Some existing work [6–8] considered multi-

metric clustering, but adopted the traditional method

of linear combination (weighted sum) of multiple

metrics. It is known that a single scalar objective

function on ad hoc basis not only makes the solution

highly sensitive to the chosen weight vector but also

requires the user to have some knowledge about the

priority or influence of a particular objective para-

meter over another [9]. For multi-metric clustering,

the same problem occurs because different metrics

evaluate different capabilities of mobile nodes. More-

over, the evaluation criterion is different for different

metrics. Hence, it is difficult to determine the weigh-

ing factors for the metrics in the linear combination

formula. If an algorithm uses the weighted sum as a

single metric, in our opinion, it is a single-metric

clustering approach since it results in only one final

solution. This solution cannot always optimize all the

metrics simultaneously.

In this paper, we propose a stability-aware multi-

metric clustering algorithm for MANETs with group

mobility. The motivation comes from the property of

group mobility: the distances between two neighbor-

ing nodes in the same group exhibit the relative

stability. To exploit this property, we define the con-

cept of relatively stable neighbors, and based on it

construct a relatively stable network topology. Then

we run the multi-metric clustering procedure on the

relatively stable topology to achieve stable clusters.

Hence, the proposed clustering algorithm considers

both stability and multi-metric optimization.

We define three clustering metrics as optimization

objectives: total node degree differences, total power

consumption, and minimum remaining battery lifetime.

They respectively represent three important require-

ments for clustering: load balance, energy efficiency,

and maximum lifetime. Our algorithm adopts a promis-

ing multi-objective evolutionary algorithm (MOEA),

called Strength Pareto Evolutionary Algorithm 2

(SPEA2), that provides Pareto-optimal solutions with

elaborate problem-specific design and modification

[10]. We conduct simulations to evaluate the perfor-

mance in terms of stability and multi-metric optimiza-

tion. The results show that our proposed algorithm can

generate stable cluster structures and high-quality clus-

terhead sets regarding all the clustering metrics.

Recently, MOEAs have been extensively used in

research on networking, for example, mobile multi-

cast [9], RSVP performance evaluation [11], and so

on. To our best knowledge, the proposed clustering

algorithm is the first to optimize multiple metrics

based on MOEA. It can produce a set of good

solutions instead of a single solution to meet the

requirements of multi-metric clustering.

The paper is organized as follows. Section 2 pro-

vides an overview of clustering in MANETs and

discusses related work. Section 3 discusses the stabi-

lity issue and defines three node metrics for clustering.

Section 4 introduces the multi-objective evolutionary

optimization technique. The design and implementa-

tion of the proposed algorithm is described in
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Section 5. Performance evaluations are conducted

in Section 6. Finally, a summary of results is made

in Section 7.

2. Related Work

A typical cluster structure in a MANET is shown in

Figure 1. Within one cluster, mobile nodes may play

different roles, such as clusterhead, clustergateway, or

clustermember. A clusterhead normally serves as a

local coordinator for its cluster, performing intra-

cluster transmission control, data forwarding, and so

on. A clustergateway is a non-clusterhead node

with inter-cluster links, so it can access neighboring

clusters and forward data between clusters.

A clustermember is an ordinary node, which is a

non-clusterhead node without any inter-cluster links.

2.1. Clusterhead Selection

The primary step in clustering is the selection of

clusterheads. The clusterhead can be the leader

node, for example, the node with the maximum power.

The selection is based on different criterion derived

from specific communication requirements. For one-

hop clustering, the cluster structure is determined

once the clusterheads are determined. In the follow-

ing, we formalize the clusterhead selection problem.

A MANET is represented as an undirected graph

G¼ (V, E), where V represents the set of mobile

nodes and E represents the set of links between nodes.

E always changes with the creation and deletion

of links. Let N(v) be the neighborhood of node v,

defined as

NðvÞ ¼
[

v02V ; v0 6¼v

fv0jdistðv; v0Þ < rg ð1Þ

where r is the transmission range of node v.

The generalized procedure for selecting the cluster-

head is as follows:

Step 1. From G, select one mobile node v as a

clusterhead according to a certain rule.

Step 2. Delete node v and all its neighbors (i.e., all

nodes in N(v)) from G.

Step 3. Repeat Steps 1–2 for the remaining nodes in

G until G is empty.

The above three steps generate a set of clusterheads.

In Step 1, the rule determines which node is selected

as the clusterhead. Different clustering algorithm

defines different rules, such as the lowest node-ID,

the highest node-degree, the least node-weight, etc.

2.2. Multi-Metric Clustering

Awell-known weighted clustering algorithm (WCA),

which optimizes a linearly combined weight consist-

ing of four metrics, was presented in Reference [6]. It

takes nodes with less mobility as a better choice for

clusterheads. But this may not always be useful.

Consider the case that all the nodes are moving

rapidly except one slow-speed node, which lags be-

hind. How can it play the role of the clusterhead? So

instead of absolute mobility, relative mobility is a

more reasonable metric. In addition, WCA specifies

the values of weighing factors rather arbitrarily since

it is hard to determine them precisely.

In References [7,8], two intelligent optimization

techniques, genetic algorithm (GA) and simulated

annealing (SA), are used to optimize WCA such that

the number of clusterheads is minimized while load in

the network is as evenly balanced as possible among

all the clusters. Both of these approaches optimize the

WCA further, but they still use a weighted linear

combination of the associated metrics. In other

words, they still address the multi-metric clustering

by single-objective optimization.

3. Preliminaries

3.1. Stability-Aware Clustering

AMANET can be dynamically organized into clusters

to maintain a relatively stable and effective topology.

If clusters exist, the distances between the clusterhead

Fig. 1. Example of clustering in MANET.
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and cluster members should stabilize over a certain

period of time. As shown in Reference [2], two

neighboring mobile nodes in the same mobility

group show relative stability of distances. Assume

that all nodes have identical and fixed transmission

range r. If the distance between two mobile nodes is

within r, they can communicate with each other

directly. However, this does not necessarily mean

that they belong to the same group. Imagine that

two mobile nodes briefly fall in the transmission range

geographically and separate again, due to different

moving directions. Based on these observations, the

term adjacently grouped pair (AGP) of nodes is

defined as follows.

Definition 1 ([2]). Nodes A and B form an AGP,

denoted by A�0 B, if their distance kABk obeys normal
distribution with a mean � < r, and a standard

deviation � < �max.

The definition shows that if two adjacent nodes are

in the same group over a period of time, the distance

between them stabilizes around a mean value � with

small variations, where � < r. Based on the AGP

definition, we propose the concept of relatively stable

neighbors.

Definition 2. Node A and B are relatively stable

neighbors if they form an AGP.

The relatively stable neighbors of a node can be

determined by measuring the distances between it and

its neighbors for a fixed number of rounds l, where l is

a pre-determined size of the sampling buffer. The

relatively stable topology is constructed for clustering

over relatively stable neighbors. The construction

method is described in Subsection 5.3.

3.2. Node Metrics

In the proposed clustering algorithm, we only con-

sider relatively stable neighbors. If one node is se-

lected as the clusterhead, only its relatively stable

neighbors can join this cluster. If node i is node j’s

relatively stable neighbor but has already joined an-

other cluster, node i cannot join the cluster served by

node j again. Hence, when calculating the clustering

metrics for node j, node i should be excluded from

node j’s available relatively stable neighbors. Each

node can decide how well suited it is for being a

clusterhead by the following three metrics.

3.2.1. Degree difference

In our algorithm, the degree of a node is only the

number of its relatively stable neighbors. Suppose Dv

is the number of relatively stable neighbors of node v,

and � is the number of neighbors that a clusterhead

can ideally handle. Then the degree-difference �v is

used as one metric to evaluate the load of node v.

�v ¼ jDv � �j ð2Þ

The less �v, the more suitable for node v to be a

clusterhead.

3.2.2. Power consumption

It is known that the power required for supporting a

link is inversely proportional to some exponent power

of the distance in wireless communications. But

because the distance between two neighboring nodes

in a MANET is usually rather small (approximately

hundreds of meters) as compared to the distance

between mobile devices and base stations (the order

of 2–3miles), the power for supporting a wireless link

can be regarded as being proportional to the distance

in MANET [6]. So we use Distv, the sum of

the distances between node v and its each available

relatively stable neighbor, to evaluate the power con-

sumed for communication between cluster members

and node v. Thus,

Distv ¼
X

v02NðvÞ
fdistðv; v0Þg ð3Þ

where N(v) is the set of available relatively stable

neighbors of node v, and distðv; v0Þ is the measured

average distance between node v and v0.

3.2.3. Remaining battery lifetime

Each mobile node v can easily estimate its remaining

battery energy Ev. Since the power consumed by node

v to communicate with its relatively stable neighbors

is Distv, its remaining battery lifetime, Rblv, can be

represented as

Rblv ¼ Ev

Distv
ð4Þ

It is expected that the nodes with longer remaining

battery lifetime are selected as clusterheads.
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4. Multi-Objective Evolutionary
Optimization

Conventional search techniques, such as hill climbing

[12], are often incapable of optimizing non-linear

multimodal functions. In such cases, a random search

method might be required. Evolutionary algorithm

(EA, also called GA) is a well-known guided random

search and optimization technique. It is based on the

basic principles of evolution: survival of the fittest and

inheritance. Generally, EA is applied to find an

approximate optimal solution with respect to a fitness

function for NP-hard problems.

Many real-life optimization problems have multiple

objectives. In such optimization problems, the objec-

tives often conflict across a high-dimensional problem

space. Solving these problems is generally very diffi-

cult and may require extensive computational re-

sources. The presence of multiple objectives in a

problem, in principle, gives rise to a set of compro-

mised solutions (largely known as Pareto-optimal

solutions), instead of a single optimal solution. The

definition of Pareto-optimal is as follows [13].

Definition 3. A point x� is Pareto-optimal if for every x
either \iðfiðxÞ ¼ fiðx�ÞÞ or there is at least one i such
that fiðxÞ > fiðx�Þ 8i 2 I (set of integers), where fiðxÞ
is the fitness function. In other words, x� is Pareto-

optimal if there exists no feasible vector x which

would decrease some criterion without causing a

simultaneous increase in at least one other criterion.

Solution A is said to dominate solution B if A is

better than B in at least one objective value and is no

worse in all other objective values. A Pareto-optimal

solution is called a non-dominated solution. Table I

gives a simple example to explain it. There are three

solutions A, B, C. Each solution has three objective

values. Suppose that the less the objective value,

the better it is. In our example, A dominates B. For

both A and C, since no other solutions dominate them,

they are non-dominated solutions, that is, Pareto-

optimal solutions. The goal of multi-objective optimi-

zation is to find as many Pareto-optimal solutions as

possible.

The particular MOEA used in this work is SPEA2.

As shown in Reference [10], SPEA2 provides good

performance in terms of convergence and diversity,

and compares well to other representative MOEAs on

various well-known test problems.

5. Algorithm Details

5.1. Problem Encoding

Chromosome is the basic element in an EA. A certain

number of chromosomes form a population. The

encoding of a chromosome is important. First, each

chromosome should represent a feasible solution,

which is randomly distributed in the solution space.

Second, a good encoding method benefits the realiza-

tion of genetic operations.

Each solution produced by our algorithm stands for

a set of clusterheads, which are selected from all the

nodes in the network. Hence, a random permutation of

node IDs will result in a random set of clusterheads. In

this algorithm, we use random permutation of node

IDs to represent a chromosome. It is important to

guarantee that there is no duplicate node ID in each

chromosome. Each node ID in the chromosome is

called a gene. For example, in a MANET consisting of

eight nodes with IDs ranging from 1 to 8, a random

permutation (4 3 8 7 1 6 2 5) represents a chromo-

some.

We need to derive a set of clusterheads from each

chromosome. Let us explain this method with an

example. Assume the chromosome is (4 3 8 7 1 6 2

5). Figure 2 shows the relatively stable topology

Table I. A simple example for Pareto-optimal solution.

Solution Object Object Object
value 1 value 2 value 3

A 1.5 3 2
B 1.6 4 3
C 0.5 4 4

Fig. 2. A relatively stable topology.
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constructed from the network. First, we add the first

gene 4 into the clusterhead set. Then all the relatively

stable neighbors of node 4 are no longer allowed to be

clusterheads. From Figure 2, we know the relatively

stable neighbors of node 4 are nodes 5 and 6. We

continue to check the next gene and add node 3 into

the clusterhead set. The relatively stable neighbors of

node 3 are nodes 1 and 2. So nodes 1, 2, 5, and 6

are not considered as clusterheads any more. Then we

add node 8 into the clusterhead set. The available

relatively stable neighbors of node 8 are node 7.

Hence, node 7 is also forbidden to be the clusterhead.

Until now, all the nodes have been checked and a

clusterhead set {4, 3, 8} is generated. Table II illus-

trates the procedure of clusterhead selection and

Figure 2 illustrates the clustering results.

Since we consider a MANET with group mobility,

without loss of generality, we assume all the nodes

form groups and the average group size is �g. Hence,
the number of groups is n=�g. Due to the fact that a

clusterhead and all its relatively stable neighbors

belong to the same group, there are no inter-group

clusters. Within a group, each group member needs to

send the message about its relatively stable neighbors

information to the group leader. Normally, the group

leader stays at the group center. We assume the group

diameter is d. Thus, the average number of hops that a

message travels is ð1þ d=2Þ=2. Then the total number

of clustering messages in a group is given by

ð�g� 1Þ � ½ð1þ d=2Þ=2�. Since there is no need to

send inter-group clustering messages, the total num-

ber of clustering messages in the network is

ðn=�gÞ � ð�g� 1Þ � ½ð1þ d=2Þ=2�. As a result, the

time complexity of the technique used to derive a

clusterhead set is Oðn� dÞ.

5.2. Optimization Objectives

In Subsection 3.2, we define three metrics to evaluate

the suitability of a node as the clusterhead. Since each

node can calculate these metrics based on its local

information, we assume that every node is aware of

the current values of its metrics. In our problem, we

should evaluate each clusterhead set instead of each

single clusterhead. Hence, we need to give an overall

evaluation on the clusterhead set in terms of each

metric. Since both degree difference and power con-

sumption are additive metrics, it is natural to use the

sum of the metric value of each clusterhead as the

overall optimization objective (i.e., clustering metric).

The sum of degree difference of each clusterhead

reflects the overall deviation of the node degrees

from the ideal case. The sum of power consumed by

each clusterhead reflects the total power consumed by

all the clusterheads. However, the metric for the

remaining battery lifetime is a concave function.

Hence, the reasonable evaluation object is the mini-

mum remaining battery lifetime among all the cluster-

heads because it determines the maximum lifetime of

the whole clusterhead set.

Assume s CH ¼ fc1; c2; . . . ; cmg is a set of cluster-
heads. We define the following three optimization

objectives for s_CH:

(1) The total degree differences of all the clusterheads

is given as:

�s CH ¼
X

ci2s CH

�ci ð5Þ

(2) The power that all the clusterheads consume is

given as

Ds CH ¼
X

ci2s CH

Dci ð6Þ

(3) The minimum remaining battery lifetime is given by

Rbls CH ¼ MinfRblci jci 2 s CHg ð7Þ

For both �s CH and Ds CH , the less the value, the

better the clusterhead set. This is due to the fact that

we expect each clusterhead to serve just � cluster

members and consume as little power as possible for

intra-cluster communication. However, for Rbls CH,

we expect its value as large as possible. So our

objective is to minimize both �s CH and Ds CH , and

maximize Rbls CH .

5.3. Stability-Aware Multi-Objective Clustering
Algorithm

We first construct a relatively stable network topology

for a MANET by the following method:

Table II. Procedure for deriving a set of clusterheads from a
chromosome.

Step Candidate genes for clusterheads Set of clusterheads

1 (4 3 8 7 1 6 2 5) { }
2 (- 3 8 7 1 - 2 -) {4}
3 (- - 8 7 - - - -) {4,3}
4 (- - - - - - - -) {4,3,8}
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Step 1. For each node v, find out all its relatively

stable neighbors N(v).

Step 2. For each node w 2 NðvÞ, if there is no link

between v and w, add a bidirectional link to connect

them.

Step 3. Repeat Steps 1–2 until all the mobile nodes

have been processed.

The relatively stable topology can be regarded as a

‘quasi-static’ network topology over a certain period

of time. The following multi-metric clustering proce-

dure just runs on this relatively stable topology. Just

like the distributed clustering algorithm [14], we

assume that the network topology does not change

during the execution of the clustering algorithm.

In the following, we present the formal description

of the proposed clustering algorithm as shown in

Figure 3. In the beginning, the algorithm constructs

the relatively stable topology, which is used to dis-

cover the relatively stable neighbors by each node.

Line 3 creates the initial population P0 and the empty

Pareto set Q0. Thus, P0 consists of a certain number of

chromosomes, which are represented by random per-

mutation of node IDs, whereasQ0 is the final output of

this algorithm and initialized to be empty. Both P and

Q have constant size in the algorithm. In Line 4, T

denotes the maximum number of evolutionary gen-

erations and t denotes the current generation number

that the population has evolved to. The algorithm

stops when T is reached.

From each chromosome i 2 Pt [ Qt, we first derive

the corresponding clusterhead set, s_CH. Then each

clusterhead in this set calculates its three node metrics

�v, Distv, and Rblv according to Equations (2)–(4),

respectively. After all these values are obtained, the

algorithm calculates the three optimization objectives

(i.e., clustering metrics) �s CH , Ds CH , and Rbls CH

following Equations (5)–(7). Thus, for each chromo-

some i 2 Pt [ Qt, the values of its three optimization

objectives are determined. Based on these values, all

the non-dominated (i.e., Pareto-optimal) chromo-

somes in Pt [ Qt are determined.

In Line 12, all the non-dominated chromosomes in

Pt [ Qt are copied to Qtþ 1, the Pareto set at the

(tþ 1)th evolutionary generation. It is possible that

the number of non-dominated chromosomes in

Pt [ Qt is not equal to the specified size of Qtþ 1. To

solve this problem, the SPEA2 algorithm adopts the

so-called environmental selection method. If the num-

ber of non-dominated chromosomes exceeds the size

of the Pareto set, an archive truncation procedure is

invoked, which iteratively removes chromosomes

from Qtþ 1 until its size satisfies the requirement.

The chromosome, which has the minimum distance

to another chromosome, is removed at each iteration.

If the non-dominated chromosomes cannot fulfil

Qtþ 1, the best dominated individuals in Pt [ Qt will

be added into Qtþ 1. The algorithm then checks if the

maximum generation number is reached. If so, it

stops. Otherwise, the algorithm enters the SPEA2

mating selection phase, where chromosomes from

Qtþ 1 are selected by means of binary tournaments

to generate the mating pool.

Once the mating pool is formed, the algorithm

applies crossover and mutation operators to the

chromosomes in it. Crossover and mutation are two

important genetic operators. Crossover helps generate

two offspring chromosomes from two parent chromo-

somes. All the genes in each offspring chromosome

are inherited from different parts of the two parent

chromosomes. In this algorithm, we employ the

well-known X-Order1 method. Mutation generates

an offspring chromosome from only one parent chro-

mosome by changing some genes’ values. We employ

the simple and effective gene swapping method for
Fig. 3. Formal description of the stability-aware multi-

metric clustering algorithm.
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mutation. Finally, the Pareto set Qt is output as the set

of solutions, each of which corresponds to a cluster-

head set.

Since the initial population consists of chromo-

somes, which are randomly generated, there may be

some duplicate chromosomes in it. In addition,

the crossover and mutation operators applied to the

mating pool may also produce some duplicate

chromosomes in the resulting population. Therefore,

there may have some duplicate chromosomes in the

final Pareto set.

5.4. Cluster Reconfiguration

In this paper, we consider a MANET with group

mobility, in which most of the nodes form groups.

The relatively stable topology is discovered based on

the property that we exploit from group mobility, that

is, the relative stability of distances between two

neighboring nodes belonging to the same group. Since

a MANET is a dynamic system, we assume dynamic

group membership. Hence, it is allowed that a new

node joins a group or a group node leaves its group.

The dynamic group membership leads to the cluster

reorganization. When a new node v joins a group, it

first finds out all its relatively stable neighbors, N(v), by

the method mentioned in Subsection 3.1. A clusterhead

periodically broadcasts a HELLO packet indicating its

role and its cluster size. If there is no existing cluster-

head in N(v), node v claims itself as a clusterhead.

Otherwise, among all the clusterheads in N(v), node v

joins the one with the smallest cluster size.

A group node intending to leave its group may be

an ordinary group member or a clusterhead. When an

ordinary group member leaves, its clusterhead detects

its departure and deletes it from the list of relatively

stable neighbors. The clusterhead then reduces its

cluster size by one. When a group leader leaves,

each of its clustermembers searches its own list of

relatively stable neighbors. Similar to a new node,

each node v claims itself to be a clusterhead or joins

the clusterhead with the smallest cluster size in N(v).

However, since mobile nodes form groups purpo-

sely, the group membership change rarely occurs.

Hence, the effect of dynamic group membership to

cluster stability is trivial.

6. Performance Evaluation

We conduct simulation study to demonstrate the

effectiveness of the proposed stability-aware multi-

metric clustering algorithm. The standard SPEA2

source codes [15] are adopted for function modules

of environmental selection and mating selection; thus

the correctness of multi-objective evolutionary pro-

cess is guaranteed.

The main parameters used in the algorithm are

population size, Pareto set size, crossover rate, muta-

tion rate, and maximum evolutionary generation num-

ber. In our simulation experiments, the parameters are

set as shown in Table III. Both the initial population

size and the Pareto set size are set to be two times the

normal population size. We run extensive simulations

by adjusting different combinations of parameter

values to achieve the best one. The simulation area

is a square of 1� 1 km2. The network size varies from

20 to 200 in different simulation scenarios. Each

mobile node has the same radio transmission range

of radius r ¼ 100m.

6.1. Stability Evaluation

Cluster stability is an important performance metric in

our algorithm. We evaluate it in a MANET of

200 nodes. Most of the mobile nodes form groups

with various sizes. We allow 1 per cent of the nodes to

be single nodes and move freely. The group nodes

follow the Reference Velocity Group Mobility Model

[16], in which the nodes in the same group share the

common group velocity. We assume that the group

velocity conforms to the random waypoint model [17]

and the maximum speed varies from 5 to 25m/s in

different simulation scenarios. The single nodes also

move with a random speed, which is less than the

maximum speed in each simulation.

To evaluate the stability performance of the cluster-

ing algorithm, we define a new metric—the number

of remaining stable clusters. It counts the number of

clusters whose structures have not been changed after

a time period T since the clustered topology is created.

T is determined as follows:

T ¼ k � r

0:5�MaxSpeed
ð8Þ

Table III. The parameter values.

Population size 10
Pareto set size 20
Crossover rate 0.8
Mutation rate 0.1
Maximum evolutionary generation number 50
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where r is the radio transmission range, MaxSpeed is

the specified maximum node speed during each simu-

lation, and k is a constant.

In each simulation scenario with different Max-

Speed, the network is clustered using the proposed

algorithm with and without considering relatively

stable topology. After time T, we count the number

of remaining stable clusters in these two cases. Each

simulation is run three times with the averages re-

corded.

The comparison results are shown in Figure 4.

When the network is a static ad hoc network, that is,

the MaxSpeed is 0, the stability performance is the

same for both cases due to no mobility. However,

when the nodes move, with the relatively stable

topology constructed, the stability performance

achieved by the clustering algorithm is better than

the case without the construction of relatively stable

topology. When the network becomes more and more

dynamic, that is, the node speed increases, the advan-

tage of exploiting group mobility is more distin-

guished.

6.2. Multi-Metric Optimization Evaluation

It has been proved that finding an optimal set of

clusterheads with one or more clustering metrics

is NP-hard [6]. For small-scale network topology,

since the optimal solution can be found by exhaustive

search, the solutions achieved by our algorithm are

compared with the optimal solutions. However, for

large-scale network topology, the exhaustive search

for the optimal solution becomes infeasible due to

exponential time complexity. Hence, we compare the

proposed algorithm with WCA [6] and its two im-

provements by GA [7] and SA [8].

6.2.1. Evaluation on small-scale network topology

A MANET consisting of 20 nodes is used as the

small-scale network in our experimental study. We

run the proposed multi-metric clustering algorithm on

its relatively stable topology. Then count the number

of Pareto-optimal solutions regarding each clustering

metric obtained at various evolutionary generation

numbers. Figure 5 shows the results.

Since the Pareto set size, that is, the number of

solutions, is 20, we finally get 20 clusterhead sets,

some of which may be duplicate. Figure 5 shows that

after only two generations of evolution, the algorithm

can achieve the optimal clusterhead sets regarding

each clustering metric on the small-scale network. For

the total degree differences, the ratio of the number of

optimal solutions to the Pareto set size is above

50 per cent when the number of evolutionary genera-

tions exceeds 5. For power consumption, the number

of optimal solutions fluctuates when the generation

number is less than 8. But when it exceeds 8, the ratio

of the number of optimal solutions to the Pareto set

size stabilizes around 35 per cent. For the remaining

battery lifetime, the ratio also stabilizes around

35 per cent when the number of generations exceeds 4.

Fig. 4. Comparison of the number of remaining stable
clusters for clustering with and without considering the

relatively stable topology (RST).

Fig. 5. The number of Pareto-optimal clusterhead sets
regarding different clustering metrics.
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6.2.2 Comparison with WCA and its two
improvements

WCA uses the combined weight of four clustering

metrics as the single optimization objective. The

WCA algorithm has been further optimized by

GA [7] and SA [8]. Here, these two improvement

algorithms are named as WCA_GA and WCA_SA,

respectively. We implement WCA, WCA_GA, and

WCA_SA, and compare our algorithm with them to

evaluate its performance in terms of the solution

quality in a MANET of 200 nodes.

In the following, we simply describe the basic ideas

of WCA, WCA_GA, and WCA_SA. First, WCA

marks the node with the best weight as a clusterhead

and all its neighbors as the cluster members. Then

WCA deletes both the clusterhead and all its neigh-

bors from the network topology. The weights of the

remaining nodes are recalculated based on the remain-

ing network topology. The above process is repeated

until no node is left in the network topology.

In WCA_GA, there are also a population of chro-

mosomes, each one of which represents a random

clusterhead set. After evolving a certain number of

generations, the algorithm stops since it meets one of

the following termination requirements: the maxi-

mum generation number is reached or the population

converges. The Elitist model is employed in

WCA_GA to record the current best solution among

the population. In WCA_SA, there is only one initial

solution instead of a population. At each iteration, the

algorithm randomly searches a solution neighboring

to the present one in the solution space. If the neighbor

solution is better than the current one, WCA_SAwill

replace the present solution by the neighbor solution.

Otherwise, the algorithm will accept the neighbor

solution with a probability.

Since WCA,WCA_GA, andWCA_SA are actually

heuristic clustering algorithms considering single

metric, we use them to find a clusterhead set for

each optimization objective. Then regarding the

same clustering metric, the best solution in the final

Pareto set of our algorithm is compared with the

clusterhead sets obtained by WCA, WCA_GA, and

WCA_SA, respectively. Figures 6–8 shows the com-

parison results for various evolutionary generation

numbers. In both WCA and WCA_SA, there is no

concept of evolution. Hence, the performance of these

two algorithms is not related to the number of evolu-

tionary generations. For comparison purpose, we still

show the same value of one metric with respect to

different generation number.

Fig. 6. Comparison of the total degree differences.

Fig. 7. Comparison of the total power consumption.

Fig. 8. Comparison of the cluster lifetime.
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From Figures 6–8, we observe that the proposed

clustering algorithm outperforms WCA, WCA_GA,

and WCA_SA in terms of all the clustering metrics.

When the evolutionary generation number exceeds

50, our algorithm stabilizes around some Pareto-

optimal solutions. More importantly, our algorithm

finds these good solutions in one Pareto set. However,

WCA, WCA_GA, and WCA_SA cannot.

7. Conclusions

The selection of the optimal clusterhead set is proved

to be a NP-hard problem. Hence, even for single

clustering metric, we cannot find the best solution

using an algorithm with polynomial time complexity.

For multi-metric clustering, the problem becomes

more difficult to solve. Only heuristics can be devel-

oped for multi-metric clustering in MANETs.

In this paper, we first exploit the relatively

stable topology resulted by group mobility to improve

the stability of the cluster structure. We then define

three clustering metrics. Based on the relatively

stable topology and the three clustering metrics, a

stability-aware multi-metric clustering algorithm for

MANETs is proposed. The algorithm can achieve a

population of solutions, which are the Pareto-optimal

clusterhead sets with respect to the three clustering

metrics. Moreover, it can generate the Pareto-optimal

solution that does not provide best possible value for

any individual metric, yet it offers Pareto-optimal

solution when considering all three metrics together.

Such a solution is often useful for applications with a

fair compromise between multiple optimization ob-

jectives.

Performance evaluations are conducted on both

stability and multi-metric optimization. Simulation

results show that our algorithm has good stability

performance and achieves better clusterhead sets

than a well-known clustering algorithm WCA and

its two improvements WCA_GA and WCA_SA.
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