The Differential Ant-Stigmergy Algorithm Applied to Dynamic Optimization Problems

Peter Korošec, Member, IEEE, Jurij Šilc, Member, IEEE,

Abstract— Many real-world problems are dynamic, requiring an optimization algorithm which is able to continuously track a changing optimum over time. In this paper, we present a stigmergy-based algorithm for solving optimization problems with continuous variables, labeled Differential Ant-Stigmergy Algorithm (DASA). The DASA is applied to dynamic optimization problems without any modification to the algorithm. The performance of the DASA is evaluated on the set of benchmark problems provided for CEC'2009 Special Session on Evolutionary Computation in Dynamic and Uncertain Environments.

I. INTRODUCTION

Optimization problems whose optimal solution changes over time during the optimization are an important issue in many areas of human activities. Such dynamic optimization problems (DOPs) can be defined as follows:

$$F = f(x, \phi, t)$$

where F is the optimization problem, f is the cost function, x is a feasible solution in the solution set **X**, t is time, and ϕ is the system control parameter, which determines the solution distribution in the fitness landscape.

In recent years Ant Colony Optimization (ACO) algorithms have been applied to more challenging and complex problem domains. One such domain are DOPs. Here, the literature shows an increasing interest for applying ACO (e.g., population based ACO (P-ACO) [1], [2], ant systems for a dynamic TSP (AS-DTSP) [3], binary ant algorithm (BAA) [4], dynamic hybrid continuous interacting ant colony (DHCIAC) [5]).

The remainder of this paper is organized as follows: Section II introduces the optimization algorithm called the Differential Ant-Stigmergy Algorithm. Section III presents the experimental evaluation on the set of benchmark problems provided for CEC'2009 Special Session on Evolutionary Computation in Dynamic and Uncertain Environments. Finally, Section IV concludes the paper.

II. STIGMERGY-BASED ALGORITHM

A. Parameter Differences

Let x'_i be the current value of the *i*-th parameter. During the searching for the optimal parameter value, the new value, x_i , is assigned to the *i*-th parameter as follows:

$$x_i = x_i' + \delta_i. \tag{1}$$

Peter Korošec, peter.korosec@ijs.si (corresponding author), and Jurij Šilc, jurij.silc@ijs.si, are with the Jožef Stefan Institute, Ljubljana, Slovenia. Here, δ_i is the so-called *parameter difference* and is chosen from the set

$$\Delta_i = \Delta_i^- \cup \{0\} \cup \Delta_i^+,$$

where

$$\Delta_i^- = \{\delta_{i,k}^- | \ \delta_{i,k}^- = -b^{k+L_i-1}, k = 1, 2, \dots, d_i\}$$

and

$$\Delta_i^+ = \{\delta_{i,k}^+ | \ \delta_{i,k}^+ = b^{k+L_i-1}, k = 1, 2, \dots, d_i \}$$

Here, $d_i = U_i - L_i + 1$. Therefore, for each parameter x_i , the parameter difference, δ_i , has a range from b^{L_i} to b^{U_i} , where b is the so-called *discrete base*, $L_i = \lfloor \lg_b(\epsilon_i) \rfloor$, and $U_i = \lfloor \lg_b(\max(x_i) - \min(x_i)) \rfloor$. With the parameter ϵ_i , the maximum precision of the parameter x_i is set. The precision is limited by the computer's floating-point arithmetics. To enable a more flexible movement over the search space, the weight ω is added to Eq. 1:

$$x_i = x_i' + \omega \delta_i \tag{2}$$

where $\omega = \text{RandomInteger}(1, b - 1)$.

B. Graph Representation

From all the sets Δ_i , $1 \leq i \leq D$, where *D* represents the number of parameters, the so-called *differential graph* $\mathcal{G} = (V, E)$ with a set of vertices, *V*, and a set of edges, *E*, between the vertices is constructed. Each set Δ_i is represented by the set of vertices, $V_i = \{v_{i,1}, v_{i,2}, \ldots, v_{i,2d_i+1}\}$, and $V = \bigcup_{i=1}^{D} V_i$. Then we have that

$$\Delta_{i} = \{\delta_{i,d_{i}}^{-}, \dots, \delta_{i,d_{i}-j+1}^{-}, \dots, \delta_{i,1}^{-}, 0, \delta_{i,1}^{+}, \dots, \delta_{i,j}^{+}, \dots, \delta_{i,d_{i}}^{+}\}$$

corresponds to

$$V_i = \{v_{i,1}, \dots, v_{i,j}, \dots, v_{i,d_i+1}, \dots, v_{i,d_i+1+j}, \dots, v_{i,2d_i+1}\},\$$

where

$$\begin{array}{ccc} v_{i,j} & \xrightarrow{\delta} \delta_{i,d_i-j+1}^-, \\ v_{i,d_i+1} & \xrightarrow{\delta} 0, \\ v_{i,d_i+1+j} & \xrightarrow{\delta} \delta_{i,j}^+ \end{array}$$

and $j = 1, 2, ..., d_i$. Each vertex of the set V_i is connected to all the vertices that belong to the set V_{i+1} . Therefore, this is a directed graph, where each path \vec{p} from the starting vertex, $v_1 \in V_1$, to any of the ending vertices, $v_D \in V_D$, is of equal length and can be defined with v_i as $\nu = (v_1v_2 \dots v_i \dots v_D)$, where $v_i \in V_i$, $1 \le i \le D$.

C. Algorithm Implementation

The optimization consists of an iterative improvement of the temporary best solution, \vec{x}^{tb} , by constructing an appropriate path \vec{p} . New solutions are produced by applying \vec{p} to \vec{x}^{tb} (Eq. 2).

First a solution \vec{x}^{tb} is randomly chosen by uniform sampling and evaluated. Then a search graph is created and an initial amount of pheromone is deposited on search graph according to the Cauchy probability density function

$$C(z) = \frac{1}{s\pi(1 + (\frac{z - l_i}{s})^2)},$$

where l_i is the location offset for the *i*-th parameter and

$$s = s_{\text{global}} - s_{\text{local}}$$

is the scale factor. For an initial pheromone distribution the Cauchy distribution with $s_{\text{global}} = 10$, $s_{\text{local}} = 0$, and $l_i = 0, i = 1, 2, ..., D$ is used and each parameter vertices are equidistantly arranged between z = [-4, 4].

There are m ants in a colony, all of which begin simultaneously from the starting vertex. Ants use a probability rule to determine which vertex will be chosen next. The rule is based on a simple ACO. More specifically, ant a in step i moves from a vertex in set V_{i-1} to vertex $v_{i,j} \in V_i$ with a probability given by:

$$\operatorname{prob}(a, v_{i,j}) = \frac{\tau(v_{i,j})}{\sum_{1 \le k \le 2d_i+1} \tau(v_{i,k})}$$

where $\tau(v_{i,k})$ is the amount of pheromone in vertex $v_{i,k}$.

The ants repeat this action until they reach the ending vertex. For each ant *i*, path $\vec{p_i}$ is constructed. If for some predetermined number of tries (in our case m^2 for all ants) we get $\vec{p_i} = \mathbf{0}$ the search process is reset by randomly choosing new \vec{x} ^{tb} and pheromone re-initialization. Otherwise, a new solution $\vec{x_i}$ is constructed.

After all ants have created solutions, they are being evaluated with a calculation of $y_i = f(\vec{x_i})$. The information about the best among them is stored as currently best information $(\vec{x}^{cb}, \vec{p}^{cb}, \text{ and } y_i^{cb})$.

The current best solution, \vec{x}^{cb} is compared to the temporary best solution \vec{x}^{tb} . If y^{cb} is better than y^{tb} , then temporally best information is replaced with currently best information. In this case s_{global} is increased according to the global scale increase factor, s_+ :

$$s_{\text{global}} \leftarrow (1 + s_+) s_{\text{global}}$$

 s_{local} is set to

$$s_{\text{local}} = \frac{1}{2} s_{\text{global}}$$

and pheromone amount is redistributed according to the associated path \vec{p}^{cb} , where $l_i = z(p_i^{cb})$, so that the peak of Cauchy distribution is over with path selected vertex. Furthermore, if new y^{tb} is better then global best $y^{b} = f(x^{b})$, then globally best information is replaced with temporally best information. So, global best solution is stored. If no

better solution is found s_{global} is decreased according to the global scale decrease factor, s_{-} :

$$s_{\text{global}} \leftarrow (1 - s_{-}) s_{\text{global}}$$

Pheromone evaporation is defined by some predetermined percentage ρ . The probability density function C(z) is changed in the following way:

$$l_i \leftarrow (1-\rho)l_i$$

and

$$s_{\text{local}} \leftarrow (1 - \rho) s_{\text{local}}.$$

Here we must emphasize that $\rho > s_{-}$, because otherwise we might get negative scale factor.

The whole procedure is then repeated until some ending condition is met.

Figure 1 summarizes the DASA.

Fig. 1. The Differential Ant-Stigmergy Algorithm.

III. PERFORMANCE EVALUATION

A. The Experimental Environment

The computer platform used to perform the experiments was based on AMD Opteron[™] 2.6-GHz processor, 2 GB of RAM, and the Microsoft[®] Windows[®] operating system. The DASA was implemented in Borland[®] DelphiTM.

Dimension(n)	Peaks(m)	Errors	T_1	T_2	T_3	T_4	T_5	T_6
10	10	Avg_best	$4.17 \mathrm{E}\!-\!13$	$3.80 \mathrm{E}\!-\!13$	$3.80 \mathrm{E} - 13$	$6.57\mathrm{E}\!-\!13$	$5.56 \mathrm{E}\!-\!13$	$7.90 \mathrm{E} - 13$
		Avg_worst	$5.51\mathrm{E}{+00}$	$3.85\mathrm{E}{+}01$	$3.97\mathrm{E}{+}01$	$9.17\mathrm{E}{+00}$	$2.09\mathrm{E}{+}01$	$4.71\mathrm{E}{+}01$
		Avg_mean	$1.80 \mathrm{E}{-01}$	$4.18\mathrm{E}{+00}$	$6.37\mathrm{E}{+}00$	$4.82 \mathrm{E}{-01}$	$2.54\mathrm{E}{+00}$	$2.34\mathrm{E}{+00}$
		STD	$1.25\mathrm{E}\!+\!00$	$9.07\mathrm{E}{+}00$	$1.07\mathrm{E}\!+\!01$	$1.95\mathrm{E}\!+\!00$	$4.80\mathrm{E}{+00}$	$8.66\mathrm{E}{+00}$
	50	Avg_best	$5.97 \mathrm{E}\!-\!13$	$5.03 \mathrm{E}\!-\!13$	$3.57\mathrm{E}\!-\!13$	$7.73 \mathrm{E}{-13}$	$8.02\mathrm{E}\!-\!13$	$6.73 \mathrm{E}{-13}$
		Avg_worst	$7.67\mathrm{E}{+}00$	$2.91\mathrm{E}{+}01$	$3.10\mathrm{E}{+}01$	$5.58\mathrm{E}\!+\!00$	$1.16\mathrm{E}{+}01$	$3.51\mathrm{E}{+}01$
		Avg_mean	$4.42\mathrm{E}\!-\!01$	$4.86\mathrm{E}{+00}$	$8.42\mathrm{E}{+00}$	$5.09 \mathrm{E} - 01$	$1.18\mathrm{E}{+00}$	$2.07\mathrm{E}{+}00$
		STD	$1.39\mathrm{E}{+}00$	$7.00\mathrm{E}{+}00$	$9.56\mathrm{E}\!+\!00$	$1.09\mathrm{E}{+}00$	$2.18\mathrm{E}{+00}$	$5.97\mathrm{E}{+00}$
$T_7(5-15)$	10	Avg_best	—	—	$3.55\mathrm{E}\!-\!14$	—	—	—
		Avg_worst	—	—	$2.91\mathrm{E}{+}01$	—	—	—
		Avg_mean	—	—	$4.84\mathrm{E}\!+\!00$	—	_	—
		STD	—	—	$8.96\mathrm{E}{+}00$	—	_	—
	50	Avg_best	—	—	$7.39\mathrm{E}\!-\!14$	_	_	—
		Avg_worst	—		$3.22\mathrm{E}{+}01$	—		
		Avg_mean	—		$7.84\mathrm{E}{+00}$	—		
		STD	_	_	$9.05 \mathrm{E} \pm 00$			_

TABLE I Error Values Achieved for Problem F_1

Fig. 2. Convergence graph for F_1 (m = 10).

Fig. 3. Convergence graph for F_1 (m = 50).

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Dimension(n)	Errors	T_1	T_2	T_3	T_4	T_5	T_6
10	Avg_best	$1.97 \mathrm{E}\!-\!11$	$2.34\mathrm{E}\!-\!11$	$2.72\mathrm{E}\!-\!11$	$1.41 \mathrm{E}{-11}$	$3.59\mathrm{E}\!-\!11$	$1.65 \mathrm{E} - 11$
	Avg_worst	$3.39\mathrm{E}{+}01$	$4.03\mathrm{E}\!+\!02$	$3.56\mathrm{E}\!+\!02$	$1.65\mathrm{E}{+}01$	$4.33\mathrm{E}{+}02$	$2.49\mathrm{E}{+01}$
	Avg_mean	$3.30\mathrm{E}{+}00$	$2.56\mathrm{E}\!+\!01$	$1.89\mathrm{E}\!+\!01$	$1.45\mathrm{E}{+00}$	$4.96\mathrm{E}\!+\!01$	$2.11\mathrm{E}{+00}$
	STD	$8.78\mathrm{E}{+}00$	$8.32\mathrm{E}\!+\!01$	$6.78\mathrm{E}{+}01$	$3.83\mathrm{E}{+00}$	$1.12\mathrm{E}{+}02$	$5.29\mathrm{E}\!+\!00$
$T_7(5-15)$	Avg_best	—	—	$1.30 \mathrm{E} - 12$	—	_	
	Avg_worst	—	—	$3.67\mathrm{E}{+}01$	—	—	—
	Avg_mean	—	—	$3.87\mathrm{E}\!+\!00$	—	_	
	STD	_	_	$8.12\mathrm{E}{+}00$	_		

TABLE II Error Values Achieved for Problem F_2

Fig. 4. Convergence graph for F_2 .

TABLE III Error Values Achieved for Problem F_3

Dimension(n)	Errors	T_1	T_2	T_3	T_4	T_5	T_6
10	Avg_best	$3.39\mathrm{E}\!-\!11$	$4.34\mathrm{E}\!+\!01$	$1.38\mathrm{E}\!+\!00$	$4.51\mathrm{E}{-11}$	$3.08\mathrm{E}{+00}$	$4.21\mathrm{E}\!-\!11$
	Avg_worst	$4.35\mathrm{E}{+}02$	$9.88\mathrm{E}\!+\!02$	$9.37\mathrm{E}{+}02$	$1.17\mathrm{E}{+}03$	$9.23\mathrm{E}{+}02$	$1.47\mathrm{E}{+}03$
	Avg_mean	$1.57\mathrm{E}{+}01$	$8.24\mathrm{E}{+}02$	$6.88\mathrm{E}\!+\!02$	$4.35\mathrm{E}{+}02$	$6.97\mathrm{E}{+}02$	$6.26\mathrm{E}\!+\!02$
	STD	$6.71\mathrm{E}{+}01$	$2.04\mathrm{E}\!+\!02$	$2.98\mathrm{E}\!+\!02$	$4.41\mathrm{E}{+}02$	$3.15\mathrm{E}{+}02$	$4.60\mathrm{E}\!+\!02$
$T_7(5-15)$	Avg_best	—	—	$1.06 \mathrm{E} - 01$	—	—	—
	Avg_worst	—	—	$9.09\mathrm{E}\!+\!02$	—	_	—
	Avg_mean	—	—	$4.33\mathrm{E}\!+\!02$	—	_	—
	STD	—	—	$3.80\mathrm{E}\!+\!02$	—	_	—

Fig. 5. Convergence graph for F_3 .

Dimension(n)	Errors	T_1	T_2	T_3	T_4	T_5	T_6
10	Avg_best	$2.01\mathrm{E}{-11}$	$2.95\mathrm{E}\!-\!11$	$2.87 \mathrm{E}\!-\!11$	$1.85 \mathrm{E}{-11}$	$5.89 \mathrm{E}{-11}$	$2.09\mathrm{E}\!-\!11$
	Avg_worst	$5.76\mathrm{E}{+}01$	$5.05\mathrm{E}{+}02$	$5.40\mathrm{E}{+}02$	$1.88\mathrm{E}{+}01$	$5.28\mathrm{E}{+}02$	$3.97\mathrm{E}{+}01$
	Avg_mean	$5.60\mathrm{E}{+}00$	$6.56\mathrm{E}{+}01$	$5.36\mathrm{E}\!+\!01$	$1.85\mathrm{E}{+}00$	$1.08\mathrm{E}{+}02$	$2.98\mathrm{E}{+}00$
	STD	$2.65\mathrm{E}{+}01$	$1.60\mathrm{E}\!+\!02$	$1.40\mathrm{E}{+}02$	$4.22\mathrm{E}{+}00$	$1.78\mathrm{E}{+}02$	$7.59\mathrm{E}{+}00$
$T_7(5-15)$	Avg_best	—	_	$7.10 \mathrm{E}{-12}$	—	_	—
	Avg_worst	—	_	$4.51\mathrm{E}{+}02$	—	—	—
	Avg_mean	—	—	$2.74\mathrm{E}{+}01$	—	_	—
	STD	_	—	$9.00\mathrm{E}{+}01$	_	_	_

Fig. 6. Convergence graph for F_4 .

TABLE V
Error Values Achieved for Problem F_5

Dimension(n)	Errors	T_1	T_2	T_3	T_4	T_5	T_6
10	Avg_best	$3.22\mathrm{E}{-11}$	$3.74\mathrm{E}{-11}$	$3.86 \mathrm{E}\!-\!11$	$2.69\mathrm{E}\!-\!11$	$5.99\mathrm{E}{-11}$	$2.85\mathrm{E}\!-\!11$
	Avg_worst	$1.71\mathrm{E}{+}01$	$2.22\mathrm{E}{+01}$	$1.60\mathrm{E}{+}01$	$8.10\mathrm{E}{+}00$	$2.90\mathrm{E}{+}01$	$8.75\mathrm{E}{+}00$
	Avg_mean	$9.55 \mathrm{E}{-01}$	$9.90 \mathrm{E}{-01}$	$9.49\mathrm{E}{-01}$	$3.92 \mathrm{E}{-01}$	$2.30\mathrm{E}{+}00$	$4.67 \mathrm{E}{-01}$
	STD	$3.43\mathrm{E}{+00}$	$4.05\mathrm{E}\!+\!00$	$3.31\mathrm{E}{+00}$	$1.61\mathrm{E}{+}00$	$6.36\mathrm{E}{+}00$	$1.73\mathrm{E}{+}00$
$T_7(5-15)$	Avg_best	—	—	$1.93\mathrm{E}\!-\!12$	—	-	—
	Avg_worst	—	—	$1.87\mathrm{E}{+}01$	—	_	—
	Avg_mean	—	—	$1.11\mathrm{E}{+00}$	—	_	—
	STD	_	_	$3.76\mathrm{E}\!+\!00$	_		

Fig. 7. Convergence graph for F_5 .

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Dimension(n)	Errors	T_1	T_2	T_3	T_4	T_5	T_6
10	Avg_best	$2.36\mathrm{E}\!-\!11$	$3.58\mathrm{E}\!-\!11$	$3.69\mathrm{E}\!-\!11$	$2.55\mathrm{E}\!-\!11$	$6.37\mathrm{E}{-11}$	$2.56\mathrm{E}\!-\!11$
	Avg_worst	$4.83\mathrm{E}{+01}$	$5.54\mathrm{E}\!+\!02$	$5.29\mathrm{E}\!+\!02$	$8.16\mathrm{E}{+}01$	$4.99\mathrm{E}{+}02$	$2.49\mathrm{E}\!+\!02$
	Avg_mean	$8.87\mathrm{E}{+00}$	$3.70\mathrm{E}{+}01$	$2.67\mathrm{E}\!+\!01$	$9.74\mathrm{E}{+00}$	$3.79\mathrm{E}{+}01$	$1.33\mathrm{E}\!+\!01$
	STD	$1.33\mathrm{E}{+}01$	$1.22\mathrm{E}\!+\!02$	$9.84\mathrm{E}\!+\!01$	$2.20\mathrm{E}{+}01$	$1.18\mathrm{E}{+}02$	$5.74\mathrm{E}\!+\!01$
$T_7(5-15)$	Avg_best	—		$6.48\mathrm{E}\!-\!12$	_	_	
	Avg_worst	—	—	$1.37\mathrm{E}\!+\!02$	_	_	—
	Avg_mean	—	—	$1.17\mathrm{E}\!+\!01$	_	_	—
	STD	_		$3.67\mathrm{E}\!+\!01$			_

TABLE VI Error Values Achieved for Problem F_6

Fig. 8. Convergence graph for F_6 .

B. The Benchmark Suite

The DASA algorithm was tested on six benchmark problems provided for the CEC'2009 Special Session on Evolutionary Computation in Dynamic and Uncertain Environments [7]:

- F₁: Rotation peak function (multi-modal, scalable, rotated, the number of local optima are artificially controlled),
- F₂: Composition of Sphere's function (multi-modal, scalable, rotated, 10 local optima),
- F₃: Composition of Rastrigin's function (multi-modal, scalable, rotated, a huge number of local optima),
- F₄: Composition of Griewank's function (multi-modal, scalable, rotated, a huge number of local optima),
- F₅: Composition of Ackley's function (multi-modal, scalable, rotated, a huge number of local optima),
- *F*₆: Hybrid composition function (multi-modal, scalable, rotated, a huge number of local optima, different functions properties are mixed together, sphere functions give two flat areas for the function).

Framework of dynamic changes:

- T₁: small step change,
- T₂: large step change,
- T₃: random change,
- T₄: chaotic change,

- T₅: recurrent change,
- T₆: recurrent change with noise,
- T₇: random change with changed dimension.

C. Parameter Settings

The DASA has six parameters: the number of ants, m, the pheromone evaporation factor, ρ , the maximum parameter precision, ϵ , the discrete base, b, the global scale increase factor, s_+ , and the global scale decrease factor, s_- . With respect to usual setting [6], we have made some adjustments according to problems' demands. We have decreased the number of ants to m = 3 for better algorithms responsiveness and with it decreased the $\rho = 0.1$ to reduce the convergence speed which was increased with smaller number of ants. The rest of the algorithm parameters are set as usual, the algorithms accuracy $\epsilon = 10^{-15}$, discrete base b = 10, global scale increase factor $s_+ = 0.01$, and global scale decrease factor, $s_{-} = 0.02$. We must note that during the experimentation we did not fine-tune the algorithms parameters, but only make a limited number of experiments to find satisfying settings.

D. Testing procedure

For all test problems we used the following testing procedure. From the DASA's point of view, the algorithm was run for required number of evaluations and no information, other than problem evaluation value, $y = f(\vec{x})$, was given to the algorithm. So no information regarding any changes in the problem (dynamic or dimension changes) were transferred during the algorithm run. From implementation perspective, an interface (DOP manager) was created which performed all the required changes, dynamic or dimensional. For example, for change type T_7 , we set algorithm's number of evaluations to $6 \cdot 10^6$ and dimension to 15 (which was maximal dimension). Therefore, the DASA treated the problem as "static" 15-dimensional problem, while the DOP manager took care of all the dimensional changes.

E. Results

In Tables I–VI we present the error values achieved by the DASA algorithm on all test problems.

For each change type of each function, we present average best (Avg_best), average mean (Avg_mean), average worst (Avg_worst) values and standard deviation (STD) for $x^{b}(t)$ over 20 runs:

$$\begin{aligned} \text{Avg_best} &= \sum_{i=1}^{\text{runs}} \sum_{j=1}^{\text{num_change}} \frac{E_{i,j}^{\text{last}}(t)}{\text{runs}}, \\ \text{Avg_mean} &= \sum_{i=1}^{\text{runs}} \sum_{j=1}^{\text{num_change}} \frac{E_{i,j}^{\text{last}}(t)}{\text{runs} * \text{num_change}}, \\ \text{Avg_worst} &= \sum_{i=1}^{\text{runs}} \max_{j=1}^{\text{num_change}} \frac{E_{i,j}^{\text{last}}(t)}{\text{runs}}. \end{aligned}$$

Here, $E^{\text{last}}(t) = |f(x^{\text{b}}(t)) - f(x^{*}(t))|$ after reaching Max_FES/change for each change.

Figures 2–8 present the convergence graphs for each problem for dimension n = 10. Each graph shows the median performance of the relative value r(t) of $f(x^{b}(t))$ and $f(x^{*}(t))$ for total runs with termination by the Total_FES. For maximization function F_1 ,

$$r(t) = \frac{f(x^{\mathsf{b}}(t))}{f(x^*(t))},$$

for minimization functions $F_2 - F_6$,

$$r(t) = \frac{f(x^*(t))}{f(x^{\mathsf{b}}(t))}$$

Note that relative values depicted in the figures are presented for each T_i as r(t) + i - 1, where $0 \le r(t) \le 1$, i = 1, 2, ..., 7.

Table VII presents the performance of the DASA algorithm. The Mark_{max} presents the maximal mark that can be obtained by the algorithm. The sum of all Mark_{max} values is 100. The mark of each problem/change_type (pct) combination is calculated by:

mark_{pct} =

$$\text{percentage}_{\text{pct}} * \sum_{i=1}^{\text{runs num_change}} \sum_{j=1}^{r_{ij}} \frac{r_{ij}}{\text{num_change} * \text{runs}}$$

TABLE VII Performance Measurement

Function	Dimension	Peaks	Change type	Mark _{max}	markpct
F_1	10	10	T_1	1.5	1.471
F_1	10	50	T_1	1.5	1.455
F_1	10	10	T_2	1.5	1.357
F_1	10	50	$\overline{T_2}$	1.5	1.339
F_1	10	10	T ₃	1.5	1.280
F_1	10	50	T ₂	1.5	1.241
F_1	10	10	T ₄	1.5	1 4 1 6
F_1	10	50		1.5	1.410
F_1	10	10	14 T-	1.5	1.425
	10	50	15 T	1.5	1.390
Γ_1	10	10	15 T	1.5	1.436
F_1	10	10	1 ₆	1.5	1.555
F_1	10	50	1 ₆	1.5	1.346
F_1	5-15	10	17	1.0	0.885
F_1	5-15	50	T_7	1.0	0.832
Sum for <i>F</i>	'i		1	20.0	18.24
F_2	10	—	T_1	2.4	1.865
F_2	10	—	T_2	2.4	1.446
F_2	10	—	T_3	2.4	1.583
F_2	10	—	T_4	2.4	1.890
F_2	10	—	T_5	2.4	1.420
F_2	10	_	T_6	2.4	1.826
F_2	5-15	_	T_7	1.6	1.215
Sum for <i>I</i>	72			16.0	11.24
F_{2}	10	I —	T_1	2.4	1.413
F_2	10	_	T ₂	2.4	0.072
F_2	10	_	T_2	2.4	0.174
	10	_	T4	2.4	0.742
	10	_	14 Tr	2.4	0.223
	10		Т ₅	2.4	0.225
	5 15		Т ₆ Т-	1.6	0.755
Fig.	J-13	_	17	1.0	2.26
	'3 10	r	т	10.0	5.50
F_4	10	_		2.4	1.759
F_4	10	_	1 ₂	2.4	1.233
F_4	10	—	T_3	2.4	1.327
F_4	10	—	T_4	2.4	1.788
F_4	10	—	T_5	2.4	1.091
F_4	10	-	T_6	2.4	1.699
F_4	5-15	—	T_7	1.6	1.005
Sum for <i>I</i>	4			16.0	9.90
F_5	10	—	T_1	2.4	2.021
F_5	10	—	T_2	2.4	2.012
F_5	10	—	T_3	2.4	2.030
F_5	10	—	T_4	2.4	2.049
F_5	10	—	T_5	2.4	2.019
F_5	10	_	T_6	2.4	2.024
$\tilde{F_5}$	5-15	_	T ₇	1.6	1.346
Sum for F	75			16.0	13.50
Fe	10	I —	T ₁	2.4	1.478
Fe	10	_	To	2.4	1 154
	10		12 To	2.4	1 225
F ₀	10		13 T.	2.4	1.335
1'6 E-	10	-	14 T	2.4	1.337
Г6 Г	10	-	15 T	2.4	1.30/
F6	10	—	1 ₆	2.4	1.318
<i>F</i> ₆	5-15		17	1.0	0.970
Sum for <i>I</i>	¹ 6			16.0	8.96
Overall p	erformance			100	65.21

and

$$r_{ij} = \frac{r_{ij}^{\text{last}}}{1 + \sum_{s=1}^{S} \frac{1 - r_{ij}^s}{S}}$$

 r_{ij}^{last} is the relative value of the best one to the global optimum after reaching Max_FES/change for each change. r_{ij}^{s} is the relative value of the best one to the global optimum at the *s*-th sampling during one change and

$$S = \frac{\text{Max_FES/change}}{s_f}$$

where s_f is sampling frequency. In our case we have: $s_f = 100$, Max_FES/change = 10,000 * n, and n = 10. The percentage_{pct} is defined in [7].

The overall algorithm performance is evaluated by:

$$performance = \sum_{pct=1}^{Num_test_cases} mark_{pct}.$$

There are totally Num_test_cases = 49 specific test cases.

IV. CONCLUSION

This paper presented a stigmergy-based algorithm developed for numerical optimization problems. The algorithm was applied to dynamic optimization problems with continuous variables proposed for CEC'2009 Special Session on Evolutionary Computation in Dynamic and Uncertain Environments. The results showed that the proposed algorithm can find reasonable solutions for all of the problems. Only the F_3 problem was the one, that the DASA could not find the optimum quick enough during dynamic changes.

One obvious advantage is that was no need any changes to the original algorithm. So, it can be used as such for both cases of numerical optimization, static and dynamic. Furthermore, the algorithm is unsusceptible to different types of changes and can be used with very limited knowledge about problem, only maximal dimension and input problem parameters.

REFERENCES

- [1] M. Guntsch and M. Middendorf, "A population based approach for ACO," *Lecture Notes in Coputer Science*, vol. 2279, pp. 72–81, 2002.
- [2] M. Guntsch and M. Middendorf, "Applying population based ACO to dynamic optimization problems," *Lecture Notes in Coputer Science*, vol. 2463, pp. 111–122, 2002.
- [3] C. J. Eyckelhof and M. Snoek, "Ant systems for a dynamic TSP," *Lecture Notes in Coputer Science*, vol. 2463, pp. 88–99, 2002.
 [4] C. Fernandes, V. Ramos, and A. C. Rosa, "Stigmergic optimization in
- [4] C. Fernandes, V. Ramos, and A. C. Rosa, "Stigmergic optimization in dynamic binary landscapes," *Proc. 22nd Annual ACM Symposium on Applied Computing*, Seoul, Korea, March 2007, pp. 747–748.
- [5] W. Tfaili, J. Dréo, and P. Siarry, "Fitting of an ant colony approach to dynamic optimization through a new set of test functions," *International Journal of Computational Intelligence Research*, vol. 3, pp. 203– 216, 2007.
- [6] P. Korošec, J. Šilc, K. Oblak, and F. Kosel, "The differential antstigmergy algorithm: An experimental evaluation and a real-world application," *Proc. IEEE Congress on Evolutionary Computation*, Singapore, September 2007, pp. 157–164.

[7] C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-C. Beyer, and P. N. Suganthan, *Benchmark Generator for CEC'2009 Competition on Dynamic Optimization*, September 15, 2008. http://www.cs.le.ac.uk/people/syang/ECiDUE/

APPENDIX PSEUDOCODE OF THE DASA

1: $\vec{x}^{\text{tb}} = \text{Rnd}_\text{Solution}()$ 2: $y^{\mathbf{b}} = f(\vec{x}^{\mathbf{t}\overline{\mathbf{b}}})$ 3: $y^{\text{tb}} = \inf$ 4: $\mathcal{G} = \text{Graph}_{\text{Initialization}}(\vec{x}^{\text{tb}}, \vec{\epsilon})$ 5: Pheromone Initialization(\mathcal{G}) 6: while not ending condition met do k = 07: 8: for all m ants do 9: repeat $\vec{p_i} = \text{Find}_{\text{Path}}(\mathcal{G})$ 10: k = k + 111: ${\rm if} \; k > m^2 \; {\rm then} \;$ 12: $\vec{x}^{\text{tb}} = \text{Rnd}_\text{Solution}()$ 13: Pheromone Initialization(\mathcal{G}) 14: goto line 7 15: 16: end if until $(\vec{p_i} = \mathbf{0})$ 17: $\omega = \text{Random_Integer}(1, b - 1)$ 18: $\vec{x_i} = \vec{x}^{\text{tb}} + \omega \delta(\vec{p})$ 19: end for 20: $y^{\rm cb} = \inf$ 21: for all m ants do 22: 23: $y = f(\vec{x_i})$ if $y < y^{cb}$ then 24: $y^{cb} = y$ $\vec{p}^{cb} = \vec{p_i}$ $\vec{x}^{cb} = \vec{x_i}$ 25: 26: 27: 28: end if end for 29: if $y^{cb} < y^{tb}$ then 30: $y^{\text{tb}} = y^{\text{cb}}$ 31: $\vec{x}^{\text{tb}} = \vec{x}^{\text{cb}}$ 32: $s = Update_Scales(s_{global}, s_{local})$ 33: Pheromone_Redistribution(\vec{p}^{cb}, s) 34: if $y^{\text{tb}} < y^{\text{b}}$ then $y^{\text{b}} = y^{\text{tb}}$ $\vec{x}^{\text{b}} = \vec{x}^{\text{tb}}$ 35: 36: 37: end if 38: 39: else Update_Scale(s_{global}) 40: end if 41:

- 42: Pheromone_Evaporation(\mathcal{G}, ρ)
- 43: end while