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Abstract Evolutionary algorithms (EAs) have received
increasing interests both in the academy and industry.
One main difficulty in applying EAs to real-world appli-
cations is that EAs usually need a large number of fitness
evaluations before a satisfying result can be obtained.
However, fitness evaluations are not always straightfor-
ward in many real-world applications. Either an explicit
fitness function does not exist, or the evaluation of the
fitness is computationally very expensive. In both cases,
it is necessary to estimate the fitness function by con-
structing an approximate model. In this paper, a com-
prehensive survey of the research on fitness approxima-
tion in evolutionary computation is presented. Main is-
sues like approximation levels, approximate model man-
agement schemes, model construction techniques are re-
viewed. To conclude, open questions and interesting is-
sues in the field are discussed.
Keywords: evolutionary computation, fitness approxi-
mation, meta-model, optimization

1 Introduction

Evolutionary computation has found a wide range of
applications in various fields of science and engineer-
ing. Among others, evolutionary algorithms have been
proved to be powerful global optimizers. Generally, evo-
lutionary algorithms outperform conventional optimiza-
tion algorithms for problems which are discontinuous,
non-differential, multi-modal, noisy and not well-defined
problems, such as art design, music composition and ex-
perimental designs [76]. Besides, evolutionary algorithms
are also well suitable for multi-criteria problems.

Despite the great successes achieved in real-world
applications, evolutionary algorithms have also encoun-
tered many challenges. For most evolutionary algorithms,
a large number of fitness evaluations (performance cal-
culations) are needed before a well acceptable solution
can be found. In many real-world applications, fitness

evaluation is not trivial. There are several situations in
which fitness evaluation becomes difficult and computa-
tionally efficient approximations of the fitness function
have to be adopted.

Several issues need to be addressed in employing fit-
ness approximations in evolutionary computation. First,
which levels of the fitness approximation should be used.
While an experimental verification can be seen as the
true fitness value of a given solution, fully computa-
tional simulations, simplified computational simulations
as well as functional approximations (meta-models) can
be used for fitness calculation. So far, several models
have been used for fitness approximation. The most pop-
ular ones are polynomials (often known as response sur-
face methodology), the kriging model, most popular in
design and analysis of computer experiments (DACE),
the feedforward neural networks, including multi-layer
perceptrons and radial-basis-function networks and the
support vector machines. Due to the lack of data and the
high dimensionality of input space, it is very difficult
to obtain a perfect global functional approximation of
the original fitness function. To tackle this problem, two
main measures can be taken. Firstly, the approximate
model should be used together with the original fitness
function. In most cases, the original fitness function is
available, although it is computationally very expensive.
Therefore, it is very important to use the original fitness
function efficiently. This is known as model management
in conventional optimization [17] or evolution control in
evolutionary computation [37]. Secondly, the quality of
the approximate model should be improved as much as
possible given a limited number of data. Several aspects
are important to improve the model quality, such as se-
lection of the model, use of active data sampling and
weighting (both on-line and off-line), selection of train-
ing method and selection of error measures.

The work on fitness approximation in evolutionary
computation has been distributed in several different ar-
eas. Therefore, this survey aims to provide readers a
comprehensive picture of fitness approximation in evo-
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lutionary computation. In Section 2, different motiva-
tions for using approximation in evolutionary computa-
tion are presented. In the following section, three ma-
jor levels of approximation, namely, problem approxi-
mation, functional approximation and evolutionary ap-
proximation are presented. Different approaches to the
incorporation of fitness approximations are described in
Section 4. The main functional approximation models
that have been used in fitness approximation are intro-
duced in Section 5. Data sampling techniques, which are
very important for the quality of models, are given in
Section 6. Finally, open questions and promising research
topics are discussed in Section 7.

2 Motivations

So far, approximation of the fitness function in evolu-
tionary computation has been applied mainly in the fol-
lowing cases.

– The computation of the fitness is extremely time-
consuming. One good example is structural design
optimization [30, 44, 45, 52, 78, 60, 38, 56]. In aero-
dynamic design optimization, it is often necessary to
carry out computational fluid dynamics (CFD) simu-
lations to evaluate the performance of a given struc-
ture. A CFD simulation is usually computationally
expensive, especially if the simulation is 3-dimensional,
which takes over ten hours on a high-performance
computer for one calculation. Therefore, approximate
models have widely been used in structure optimiza-
tion [4].
Fitness approximation has also been reported in pro-
tein structure prediction using evolutionary algorithms
[53, 59]. A neural network has been used for feature
extraction from amino acid sequence in evolutionary
protein design and drug design [74, 73, 72].

– There is no explicit model for fitness computation.
In many situations, such as in art design and mu-
sic composition as well as in some areas of industrial
design, the evaluation of the fitness depends on the
human user. Generally, these problems can be ad-
dressed using interactive evolutionary computation
[81]. However, a human user can easily get tired and
an approximate model that embodies the opinions of
the human evaluator is also very helpful [5, 41].

– The environment of the evolutionary algorithm is
noisy. Usually, there are two methods to deal with
noisy fitness functions. The first one is to sample the
fitness several times and to average [25]. However,
this method requires a large number of additional fit-
ness evaluations. The second method is to calculate
the fitness of an individual by averaging the value of
this individual as well as that of other individuals in
its neighborhood. To avoid additional computational
cost, the individuals that participate in the averaging

can be chosen from the current and previous gener-
ations [7]. A more flexible alternative is to estimate
the fitness of the individuals in the neighborhood us-
ing a statistical model constructed with history data
[70, 8].

– The fitness landscape is multi-modal. The basic as-
sumption is that a global model can be constructed
to approximate and smoothen out the local optima
of the original multi-modal fitness function without
changing the global optimum and its location. A Gaus-
sian kernel has been used to realize coarse-to-fine
smoothing of the original multi-modal function [85].
Approximation for smoothing multi-modal functions
has also been reported in [46, 47], where global poly-
nomial models are used instead of Gaussian kernel
functions. Note that it is generally difficult to build
an approximate model that has the same global opti-
mum on the same location. Therefore, the coarse-to-
fine modeling approach seems to be more realistic.

3 Levels of Approximation

The concept of approximation in optimization is not new
[4]. Traditionally, there are two basic approaches, i.e.,
functional approximation and problem approximation.
Additionally, special approximation techniques for evo-
lutionary fitness evaluation have also been suggested.

– Problem approximation. Problem approximation tries
to replace the original statement of the problem by
one which is approximately the same to the original
problem but which is easier to solve. For example,
to evaluate the performance of a turbine blade, wind
tunnel experiments need to be carried out. However,
computational fluid dynamics (CFD) simulations in-
stead of wind tunnel experiments are often used to
evaluate the performance of a blade during design.
In CFD simulations, the fluid dynamics are described
with three-dimensional (3D) Navier-Stokes equations
with a turbulence model [2]. If the viscosity, mass dif-
fusion and thermal conductivity of the flow are ne-
glected, then flow dynamics can be described with
three-dimensional Euler equations. The Euler equa-
tions are computationally more efficient to solve than
the Navier-Stokes equations. Under certain condi-
tions, the 3D flow field can be solved by 2D com-
putations, which is known as quasi-3D solvers and
computationally more efficient [6].
Of course, many ad hoc methods can also be devel-
oped. For example, in [29], random sampling instead
of complete sampling is used for solving image regis-
tration problems using genetic algorithms. Another
example is the work reported in [1], where fitness ap-
proximation is studied in terms of discretization.

– Functional approximation. In functional approxima-
tion, an alternate and explicit expression is constructed
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for the objective function (in evolutionary computa-
tion, it is usually called fitness function). Take the
blade design again as an example, instead of evalu-
ating its performance using CFD simulations, an ex-
plicit mathematical model can be constructed whose
inputs and outs are the blade geometry and the blade
performance, respectively.

– Evolutionary approximation. This type of approxi-
mation is specific for evolutionary algorithms. A pop-
ular class of the evolutionary approximation methods
is known as fitness inheritance [80, 86, 71, 15]. In
these methods, fitness evaluations can be spared by
estimating the fitness value of the offspring individ-
uals from the fitness value of their parents.
In the second class of fitness approximation, the indi-
viduals are clustered into several groups [43]. Then,
only the individual that represents its cluster will
be evaluated using the fitness function. The fitness
value of other individuals in the same cluster will be
estimated from the representative individual based
a distance measure. We term it fitness imitation in
contrast to fitness inheritance.

4 Incorporation of Approximate Fitness Models

4.1 Incorporation Mechanisms

The incorporation of approximate models constructed
using history data in evolutionary computation can be
seen one of the methods for incorporating knowledge into
evolutionary systems [36]. Very interestingly, approxi-
mate models have been embedded in almost every el-
ement of evolutionary algorithms, including migration,
initialization, recombination, mutation, fitness evalua-
tions.

– Use of approximate fitness evaluations through mi-
gration [83, 18, 77]. The island model based archi-
tecture has been proposed to incorporate informa-
tion from approximate models to speed up the evo-
lutionary algorithm [18], as illustrated in Fig. 1. It
can be seen that one sub-population has been intro-
duced for each level of approximation. Usually, each
population evolves separately using its own level of
approximation. At a certain frequency, the individu-
als in the sub-populations that uses higher accuracy
approximations will be migrated into those using ap-
proximations of lower accuracy. An extension of this
architecture has been suggested in [77], where indi-
viduals can migrate from sub-populations using ap-
proximations of higher accuracy to sub-populations
using approximate models of lower accuracy and vise
versa Fig. 2.

– Use of approximate fitness models for initializing the
population and for guiding crossover and mutation
[3, 63, 64, 75]. Using approximate models in popula-
tion initialization and guidance of genetic operators

Migration direction

Medium accuracy 

Lowerest accuracy

Highest accuracy  

Fig. 1 Island model of parallel GA for incorporating ap-
proximate fitness models. In the figure, a large circle means
a sub-population, small circles denote individuals using the
fitness function with the highest accuracy, rectangles denote
the individuals using models with the medium accuracy and
the triangles are the individuals using models with the lowest
accuracy.

Migration direction

Medium accuracy 

Lowerest accuracy

Highest accuracy  

Fig. 2 Hierarchical GA for incorporating approximate fit-
ness models.

rather than directly in fitness evaluations is believed
to reduce the risk of misleading the search direction
by the approximate models [63]. The reason for is
that initialization, crossover and mutation are usu-
ally carried out randomly. Thus, initializations and
genetic operations guided by an approximate model
even with lower accuracy should usually better than
do them randomly. However, the reduction of fitness
evaluations may not be significant.

– Use of approximate fitness models through fitness
evaluations. In most research, the approximate model
has been directly used in fitness evaluations in order
to reduce the number of fitness calculation [45, 57, 58,
49, 65, 66, 20, 21, 52, 12, 60, 23, 37, 38, 39, 27, 22, 32].
Different approximate models, including polynomi-
als, kriging models and neural networks have been
applied. An interesting idea in [22] is that a confi-
dence interval for the fitness estimation is calculated
to modify the model prediction so that the search in
unexplored regions is encouraged. It has been found
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that strategy leads to better performance, especially
when the original fitness function is multimodal.
Most recently, approximate fitness evaluations have
also been employed in evolutionary multiobjective
optimization [23, 24, 51, 54].

4.2 Model Management or Evolution Control

Among the three approaches to incorporating approxi-
mate models, the use of approximate models for fitness
evaluations may reduce the number of fitness evaluations
most significantly. However, the application of approx-
imation models to evolutionary computation is not as
straightforward as one may expect. There are two ma-
jor concerns in using approximate models for the fitness
evaluation. First, it should be ensured that the evolu-
tionary algorithm converges to the global optimum or
a near-optimum of the original fitness function. Second,
the computational cost should be reduced as much as
possible. One essential point is that it is very difficult
to construct an approximate model that is globally cor-
rect due to the high dimensionality, ill distribution and
limited number of training samples. It is found that if
an approximate model is used for fitness evaluation, it is
very likely that the evolutionary algorithm will converge
to a false optimum. A false optimum is an optimum of
the approximate model, which is not one of the original
fitness function, refer to Fig.3 for an example.

False minimum

Fig. 3 An example of a false minimum in the approximate
model. Solid line denotes the original fitness function, dashes
line the approximate model and the dots the available sam-
ples.

Therefore, it is very essential in most cases that the
approximate model should be used together with the
original fitness function. This can be regarded as the is-
sue of model management or evolution control. By evo-
lution control, it is meant that in evolutionary computa-
tion using approximate models, the original fitness func-
tion is used to evaluate some of the individuals or all
individuals in some generations [37]. An individual that
is evaluated using the original fitness function is called
a controlled individual. Similarly, a generation in which
all its individual are evaluated using the original fitness
function is called a controlled generation.

Generally, model management in evolutionary com-
putation can be divided into three main approaches from
the viewpoint of evolution control.

– No Evolution Control. Very often, the approximate
model is assumed to be of high-fidelity and there-
fore, the original fitness function is not at all used in
evolutionary computation, such as in [5, 67, 41].

– Fixed Evolution Control. The importance to use both
the approximate model and the original function for
fitness evaluation has been recognized [65]. There
are generally two approaches to evolution control,
one is individual-based [30, 12, 37], and the other
is generation-based [65, 66, 37]. By individual-based
control, it is meant that in each generation, some of
the individuals use the approximate model for fitness
evaluation and others the original function for fitness
evaluation. In individual-based evolution control, ei-
ther a random strategy or a best strategy can be used
to select the individuals to be controlled [37]. In the
best strategy, the best individual (based on the rank-
ing evaluated by the approximate model) in the cur-
rent generation is reevaluated using the original func-
tion [30], see Fig.4, while in the random strategy, the
individuals to be controlled are selected randomly.
It has been shown that the best strategy shows To
reduce the computational cost further, individual-
based evolution control can be carried out only in
a selected number of generations [12]. In contrast,
the random strategy selects certain number of indi-
viduals randomly for reevaluation using the original
fitness function [37]. An alternative to the best strat-
egy and the random strategy is to evaluate the mean
of the individuals in the current population [52].
Generation-based evolution control can also be im-
plemented [65, 66]. In [65], generation-based evolu-
tion control is carried out when the evolutionary al-
gorithm converges on the approximate model. More
heuristically, evolution control is carried out once in
a fixed number of generations, see Fig. 5.

Ind.  

Ind.

Ind.

 AM

 AM

 AM

Ind.

Ind.

 AM

 AM

Ind.

Ind.

Ind.

 AM

: :

Ind.

Ind.

Ind.

Ind.

Evolution Process

:

 OF  OF

 AM

 AM

 AM

 OF

Generation 1

(model update) (model update)(model update)

Generation 2 Generation i

Fig. 4 The best individual is controlled in each generation.
AM: approximate model; OF: original function.

One drawback in the aforementioned methods is that
the frequency of evolution control is fixed. This is not
very practical because the fidelity of the approximate
model may vary significantly during optimization. In
fact, a predefined evolution control frequency may
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Fig. 5 Generation-based evolution control. AM: approxi-
mate model; OF: original function.

cause strong oscillation during optimization due to
large model errors, as observed in [65].

– Adaptive Evolution Control. It is straightforward to
imagine that the frequency of evolution control should
depend on the fidelity of the approximate model. A
method to adjust the frequency of evolution control
based on the trust region framework [17] has been
suggested in [52], in which the generation-based ap-
proach is used. A framework for approximate model
management has also been suggested in [38], which
has successfully been applied to 2-dimensional aero-
dynamic design optimization, see Fig. 6.

Model quality
estimation

new data
Weight ofModel

update

η
An evolution control cycle

iG Gi+1 Gi+2 Gi+3 Gi+λ

ΑΜ ΑΜΑΜ OFOF

Adaptation

Fig. 6 Adaptive generation-based evolution control. In the
evolution control cycle, there are λ generations, η (η ≤ λ)
generations will be controlled. AM: approximate model; OF:
original function.

5 Approximation Models

5.1 Polynomial Models

The most widely used polynomial approximation model
is the second-order model which has the following form:

ŷ = β0 +
∑

1≤i≤n

βixi +
∑

1≤i≤j≤n

βn−1+i+jxixj , (1)

where β0 and βi are the coefficients to be estimated,
and the number of terms in the quadratic model is nt =
(n+1)(n+2)/2 in total, where n is the number of input
variables.

To estimate the unknown coefficients of the polyno-
mial model, both least square method (LSM) and gradi-
ent method can be used:

– Least Square Method To get a unique estimation
of the coefficients using LSM, it is required that the
number of samples (N) drawn from the original func-
tion should be equal to or larger than the number of
coefficients nt. Let

y = [y(1), y(2), · · · , y(N)]T , (2)

and

X =

⎡
⎢⎢⎢⎢⎣

1 x
(1)
1 x

(1)
2 · · · (x(1)

n )2

1 x
(2)
1 x

(2)
2 · · · (x(2)

n )2
...

...
...

. . .
...

1 x
(N)
1 x

(N)
2 · · · (x(N)

n )2

⎤
⎥⎥⎥⎥⎦

, (3)

then the following equation holds:

y = XΘ, (4)

The LSM algorithm works as follows,

Θ̂ = (XT X)−1XT y, (5)

where Θ̂ denotes the estimate of Θ. One assumption
here is that the rows of X are linearly independent.

– Gradient Method The main drawback of the least
square method is that the computational expense be-
comes unacceptable as the dimensionality increases.
To address this problem, the gradient method can be
used. Define the following square error function for
the k-th sample:

E(k) =
1
2
(y − y(k))2, (6)

where y is defined in equation (1), it is then straight-
forward to get the update rule for the unknown co-
efficients:

∆β0 = −ξ · (y − y(k)) (7)

∆βi = −ξ · (y − y(k))x(k)
i (8)

∆βn−1+i+j = −ξ · (y − y(k))x(k)
i x

(k)
j , (9)

1 ≤ i ≤ j ≤ n.

5.2 Kriging Models

The kriging model can be seen as a combination of a
global model plus a localized “deviation”:

y(x) = g(x) + Z(x), (10)

where g(x) is a known function of x as a global model
of the original function, and Z(x) is a Gaussian random
function with zero mean and non-zero covariance that
represents a localized deviation from the global model.
Usually, g(x) is a polynomial and in many cases, it is
reduced to a constant β.

The covariance of Z(x) is expressed as

Cov[Z(x(j)), Z(x(k))] = σ2R[R(x(j),x(k))], (11)
j, k = 1, · · · , N,
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where R is the correlation function between any two of
the N samples, and R is the symmetric correlation ma-
trix of dimension N × N with values of unity along the
diagonal. The form of the correlation matrix can be se-
lected by the user, and the following form has often been
used [11, 28, 79]:

R(x(j),x(k)) = exp[−
n∑

i=1

θi|x(j)
i − x

(k)
i |2], (12)

where θi are the unknown correlation parameters, x
(j)
i

and x
(k)
i are the i-th component of sample points x(j)

and x(k). Thus, the prediction of y(x) is a function of
unknown parameters β and θi, i = 1, 2, · · · , n:

ŷ = β̂ + rT (x)R−1(y − βI), (13)

where, ŷ is the estimated value of y given the N samples
and the current input x, β̂ is the estimated value of β,
y is a vector of length N as defined in Eqn. (2), I is a
unit vector of length N , and r is the correlation vector
of length N between the given input x and the samples
{x(1), · · · ,x(N)}:
rT (x) = [R(x,x(1)), R(x,x(2)), · · · , R(x,x(N))]T . (14)

The estimation of the parameters can be carried out us-
ing the maximum likelihood method.

One advantage of using kriging models is that a con-
fidence interval of the estimation can be obtained with-
out much additional computational cost. Note, however,
that it is necessary to perform matrix inversions for esti-
mating the output in the kriging model, which increases
the computational expense significantly when the dimen-
sionality becomes high.

5.3 Neural Networks

Neural networks have shown to be effective tools for
function approximation. Both feedforward multilayer per-
ceptrons and radial-basis-function networks have widely
been used.

– Multilayer perceptrons An MLP with one input
layer, two hidden layers and one output neuron can
be described by the following equation:

y =
L∑

l=1

vlf(
K∑

k=1

w
(2)
kl f(

n∑
i=1

w
(1)
ik xi)), (15)

where, n is the input number, K and L are the num-
ber of hidden nodes, and f(·) is called activation
function, which usually is the logistic function

f(z) =
1

1 + e−az
, (16)

where a is a constant.

– Radial-Basis-Function Networks The theory of
radial-basis-function (RBF) networks can also be tracked
back to interpolation problems [62]. An RBF network
with one single output can be expressed as follows:

y(x) =
N∑

j=1

wjφ(‖ x − x(j) ‖), (17)

where φ(·) is a set of radial-basis functions, ‖ · ‖ is
usually a Euclidean norm, the given samples x(j), j =
1, · · · , N are the centers of the radial-basis function,
and wj are unknown coefficients. However, this model
is expensive to implement if the number of samples is
large. Therefore, a generalized RBF network is more
practical

y(x) =
L∑

j=1

wjφ(‖ x − µ(j) ‖). (18)

The main difference is that the number of hidden
nodes (L) is ordinarily smaller than the number of
samples (N), and the centers of the basis functions
(µ(j)) are also unknown parameters that have to be
learned. Usually, the output of a generalized RBF
network can also be normalized:

y(x) =

∑L
j=1 wjφ(‖ x − µ(j) ‖)

∑L
j=1 φ(‖ x − µ(j) ‖)

. (19)

5.4 Support Vector Machines

The theory of support vector machines is mainly inspired
from statistical learning theory [82]. Major advantages of
the support vector machines over other machine learn-
ing models such as neural networks, are that there is
no local minima during learning and the generalization
error does not depend on the dimension of the space.
Given l samples (xi, yi), i = 1, ..., l, the construction of
a model is reduced to the minimization of the following
regularized ε−insensitive loss function:

L = ||w||2 + C · 1
l

l∑
i=1

max {|yi − f(xi)| − ε}, (20)

where ε is the tolerable error, C is a regularization con-
stant and f is the function to be estimated:

f(x) = w · x + b, w,x ∈ Rn, b ∈ R. (21)

The minimization of (20) is equivalent to the following
constrained optimization problem:

minimize
1
2
||w||2 + C · 1

l

l∑
i=1

(ξi + ξ∗i ), (22)

subject to ((w · xi) + b) − yi ≤ ε + ξi (23)
yi − ((w · xi) + b) ≤ ε + ξ∗i (24)
ξi, ξ

∗
i ≥ 0, i = 1, ..., l. (25)

Thus, quadratic programming techniques can be applied
to solve the minimization problem.
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5.5 Comparative Remarks

There are several papers that compare the performance
of different approximation models [13, 14, 28, 79, 78, 35].
However, no clear conclusions on the advantages and dis-
advantages of the different approximation models have
been drawn. This is reasonable not only because the per-
formance may depend on the problem to be addressed,
but also because more than one criterion needs to be
considered. The most important factors are accuracy,
both on training data and test data, computational com-
plexity and transparency. It has been found in [37] that
an approximate model may introduce false optima, al-
though it has very good performance on the training
data, refer to Fig. 3. This is more harmful than a lower
approximation accuracy if the model is used in global
optimization such as evolutionary optimization. Meth-
ods to prevent a neural network model from generating
false minima have been suggested in [37], which are very
effective for lower dimensional problems.

Some general remarks can still be made on different
approximation models, although it is difficult to provide
explicit rules on model selection. Firstly, it is recom-
mended to implement first a simple approximate model
for a given problem, for example, a lower order polyno-
mial model to see if the given samples can be fit rea-
sonably. If a simple model is found to underfit the sam-
ples, a model with higher complexity should be consid-
ered, such as higher order polynomials or neural net-
work models. However, if the input space (design space)
is high-dimensional and the number of samples is lim-
ited, a neural network model is preferred. It is recalled
that to estimate the unknown parameters of a second-
order polynomial model, at least (n + 1) × (n + 2)/2
data samples are required. Otherwise, the model will be
undetermined.

Secondly, if a neural network model, in particular a
multilayer perceptrons network is used, it is necessary to
consider regulating the model complexity to avoid over-
fitting. It may also be necessary to try other more effi-
cient training methods [68] if the gradient descent based
method is found to be of slow convergence. Besides, RBF
networks have found to be of good accuracy as well as
of fast training in some studies [78, 35].

6 Data Sampling Techniques

If an approximate model is used for evolutionary com-
putation, both off-line and on-line training will be in-
volved if the evolution is controlled. Off-line learning de-
notes the training process before the model is used in
evolutionary computation. In contract, on-line learning
denotes the update of the model during optimization.
Usually, the samples for off-line learning can be gener-
ated using Monte-Carlo method, however, it has been
shown in different research areas that active selection of

the samples will improve the model quality significantly.
During on-line learning, data selection is strongly related
to the search process.

6.1 Off-line Data Sampling

Several data sampling methods have been suggested in
the fields of design of experiments [50, 31], statistics and
machine learning. Some popular methods are:

– Design of experiments (DOE) Orthogonal ar-
rays (OA), central composite designs (CCD), and
D-optimality are most widely used in design of ex-
periments. A first-order orthogonal design is one for
which XT X is a diagonal matrix, where X is the ex-
tended sample array as defined in Eqn. (3). In other
words, the columns of X are mutually orthogonal.
Central composite design enables the efficient con-
struction of second-order polynomial models. CCDs
are basically first-order (2n) designs augmented by
2n “star” points obtained by perturbing each vari-
able in both positive and negative directions from
the central point and the central point to allow es-
timation of the coefficients of a second-order model.
An example of CCD designs is given in Fig. 7 for a
two-dimensional problem.
D-optimality takes advantage of the properties of
polynomial models in data sampling. The accuracy
of the least square estimate in Eqn. (5) is defined as:

Var(Θ̂) = (XT X)−1σ2, (26)

where σ2 is the variance of the estimate error. From
Eqn. (26), it can be seen that to improve the qual-
ity of fit, one should maximize the determinant of
XT X. Therefore, the D-optimality is to select the
samples in such a way that the determinant of XT X
is maximized. Although developed from the polyno-
mial models, the D-optimality has also shown to be
beneficial in data selection for constructing neural
networks [16].

– Active Learning Active learning has widely been
studied in the field of neural network learning [48,
84, 42]. The basic idea is to select the location of the
next sampling data in such a way that an objective
function is optimized. The objective function can be
information gain, entropy reduction, or generaliza-
tion error. It has been shown that active data selec-
tion can improve the generalization ability of neural
networks without increasing the number of training
samples.

6.2 On-line Data Sampling

Active data selection is also important in the case that
the training data has been collected and therefore, the
target is how to select a subset of the data for efficient
training.
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Fig. 7 Central composite designs for n = 2. The dots repre-
sent the sample points. The samples on the solid lines are the
first-order design and those on the dashed lines are central
and star points (

√
n).

– Bagging and boosting Bagging [9] and boosting
[26] are two statistical learning methods that have
been developed to improve the quality of approxi-
mate model using bootstrap techniques [19]. In bag-
ging (bootstrap aggregating), a number of bootstrap
models are constructed using different bootstrap sam-
ples and the final output is the average of the models.
It is shown that bagging is able to reduce the vari-
ance of estimate error efficiently. An adaptive bag-
ging technique can reduce both variance and bias
[10].
Boosting algorithms are able to boost a weak learn-
ing algorithm into a strong one. A weak algorithm
can be inaccurate rules of thumb that are slightly
better than a random guess. The main difference be-
tween boosting and bagging is that in boosting, the
bootstrap samples are affected by the performance of
the current model. In addition, the final output is a
weighted average of the different models.

– Active data selection Some of the statistical active
learning methods can also be applied to this type
of data selection [61]. A special case of integrated
mean square error, called integrated squared bias is
used as the criterion to select a subset from available
data to improve learning performance. However, it is
assumed that the data is noiseless.

– Data weighting guided by evolution In [38], a
method to weight the available data using the in-
formation from the evolutionary algorithm has been
suggested. The basic idea is that if information on
search direction of the evolutionary algorithm is avail-
able, then a larger weight should be given to the data
samples located in the region where the evolutionary
algorithm will most probably visit in the next gener-
ation.
In [66], several strategies for data sampling have been
studied. For example, some strategies use the best
individuals to replace the worse ones in the train-

ing samples, or the ones that are randomly selected.
Some strategies create new points randomly and re-
place the worst ones in the training samples. It has
been found that the strategy that simply re-evaluates
the best individuals (best in the sense of the approx-
imate model) with the original fitness function ex-
hibits the best performance. This is actually the best
strategy in individual-based evolution control.

7 Discussions

Fitness approximation in evolutionary computation is a
research area that has not yet attracted sufficient atten-
tion in the evolutionary computation community. Among
others, the following points still need to be clarified:

– It is theoretically still unclear in which way the evolu-
tionary algorithm can benefit from the approximate
model, although several studies have shown very promis-
ing results using approximate models in evolution-
ary computation. In the least sense, as pointed out
in [66], the approximate model can prevent the in-
formation in the history of optimization from being
lost, although approximate models themselves do not
create new information.

– Which type of models helps most, a local one or a
global one? It is straightforward to imagine that a
global model is able to simplify the search process if
the approximate model does not change the proper-
ties of the original fitness function. However, from the
viewpoint of modeling, to build a local model is much
more feasible than to build a global model. In [56], lo-
cal approximate models are constructed only for local
search within a Lamarkian framework of evolution.

– Which is the most effective way of using the approxi-
mate models? Generally speaking, the incorporation
of approximate models by migrations is not efficient
mainly due to the fact that if the models of lower
complexity have false optima whose fitness values are
higher than those in the correct but computationally
complex models, then the migrations between differ-
ent subpopulations will not help much in any sense.
In contrast, the use of approximate models for ge-
netic operations has lower requirement on the model
quality because theoretically, the approximate mod-
els can help so long as the prediction of the model is
better than random guess. However, it is unclear how
many evaluations can be spared. The use of the ap-
proximate models in fitness evaluation can reduce the
number of fitness calculation most effectively. Never-
theless, a poor model quality can degrade the effi-
ciency and even lead to false optima.

In addition, there are also several topics that deserve
further research. Some of them are:

– Development of learning algorithms that are efficient
and less sensitive to the number of training data.
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Learning of problem class [34] and incorporation of
a priori knowledge [40] are two possible approaches.
A preliminary study has shown that the structurally
optimized neural networks exhibit much better per-
formance than fully connected neural networks for
fitness approximation in aerodynamic design opti-
mization [33].

– Approximate model with a variable input dimension.
During optimization, the input dimension may change
in many cases. For example, if an adaptive represen-
tation is used in design optimization, the number of
parameters increases or decreases during optimiza-
tion [55].

– How to handle problems with general nonlinear con-
straints. In optimization, a penalty term is usually
added to the object function if the constraints are
voilated. Unfortunately, samples containing a large
penalty value cause big difficulties for the model train-
ing. Thus, knowledge about the constraints should be
extracted and reused in a proper way rather than di-
rectly be incorporated in the approximate model.

– Management of different levels of approximation. So
far, only functional approximation has been discussed.
However, there are different levels of problem ap-
proximation in many applications. For example, in
computational fluid dynamics simulation, 2D Euler-
Lagrange equations, Navier-Stokes equations, quasi
3D simulations and 3D simulations are different ap-
proximations of the original problem. Thus, combin-
ing different levels of approximation with the approx-
imate model is very interesting [18, 69].
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33. M. Hüsken, Y. Jin, and B. Sendhoff. Structure opti-
mization of neural networks for evolutionary design
optimization. In 2002 GECCO Workshop on Ap-
proximation and Learning in Evolutionary Compu-
tation, pages 13–16, 2002.
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