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Abstract- Genetic algorithms (GAS) have been widely 
used for stationary optimization problems where the fit- 
ness landscape does not change during the computation. 
However, the environments of real world problems may 
change over time, which puts forward serious challenge 
to traditional GAS. In this paper, we introduce the appli- 
cation of a new variation of GA called the Primal-Dual 
Genetic Algorithm (PDGA) for problem optimization in 
non-stationary environments. Inspired by the comple- 
mentarity and dominance mechanisms in nature, PDGA 
operates on a pair of chromosomes that are primal-dual 
to each other in the sense of maximum distance in geno- 
type in a given distance space. This paper investigates an 
important aspect of PDGA, its adaptability to dynamic 
environments. A set of dynamic problems are generated 
from a set of stationary benchmark problems using a 
dynamic problem generating technique proposed in this 
paper. Experimental study over these dynamic problems 
suggests that PDGA can solve complex dynamic prob- 
lems more efficiently than traditional GA and a peer 
GA, the Dual Genetic Algorithm. The experimental re- 
sults show that PDGA has strong viability and robust- 
ness in dynamic environments. 

1 Introduction 

As a class of evolutionary algorithms that make use of prin- 
ciples of natural selection and population genetics, genetic 
algorithms (GAS) are widely and often used for solving sfa- 
tionary optimization problems where the fitness landscape 
or objective function does not change during the course 
of computation [GoldbergR9a]. Once a satisfactory solu- 
tion is found or certain termination condition is satisfied, 
the search stops. However, the environments of real world 
optimization problems may fluctuate or change sharply. 
For these non-stationary problems the objective function 
changes over the course of optimization, which requires that 
the CA must be able to track the trajectory of the moving 
optimal point(s) in the search space. This presents serious 
challenge to traditional simple CA (SGA) since they cannot 
adapt to changing functionality once converged. 

Usually the dynamic environment requires GAS to main- 
tain sufficient diversity for a continuous adaptation to the 
changing landscape. To improve GA's performance in dy- 
namic environments, researchers have applied the diploidy 
and dominance mechanisms that broadly exist in nature 
[GS87], [NW95]. In nature, most organisms have a diploid 
genotype, i.e., a set of double-stranded chroinosomes. 
When the double-stranded chromosomes are exposed to the 

environment of the organism, dominance mechanism takes 
effect by expressing dominant genes (a gene is a segment of 
DNA) while repressing recessixae genes. Introducing diploid 
encoding into GAS has achieved some success. especially in  
non-stationary environments, since the additional informa- 
tion stored in the genotype provides a latent source ofdiiser- 
s i n  in  the population and allows the population to respond 
more quickly to the fitness changes [LHR98]. 

Inspired by the complementarity and dominance mecha- 
nisms in nature a new genetic.algorithm called primal-dual 
genetic algorithm (PDGA) has been proposed [Yang03]. 
Withh PDGA. each chromosome is definid a dual chro- 
mosome that is of maximum distance in genotype to it in 
a given distance space, e.g., the Hamming distance space. 
During the running of PDGA before iterating into next gen- 
eration a set of low fit individuals is selected to evaluate 
their duals and give those dual chromosomes that are supe- 
rior chances to be expressed into the next generation. The 
primal-dual. mapping between primal-dual chromosomes 
improves PDGA's exploration capacity in the search space 
and thus its searching efficiency. 

In this paper, we investigate the application of PDGA 
for non-stationary problem optimization. A new selection 
scheme that can adaptively adjust the number of primal 
chromosomes to he selected for dual evaluations is pro- 
posed for PDGA instead of the deterministic scheme used in 
[Yang03]. A dynamic problem generating technique is pro- 
posed that can generate a set of dynamic problems from a 
given stationary problem. Using this dynamic problem gen- 
erating technique a set of dynamic problems is generated 
from a set of stationary benchmark probl&ns and based on 
these generated dynamic problems we compare the perfor- 
mance of PDGA over SGA and a peer CA, Collard and co- 
workers' Dual Genetic Algorithm (DGA) [CA94], [CE96]. 

The rest of this paper is organized as follows. The next 
section describes the framework of PDCA, the new,adap- 
tive selecting scheme for dual evaluations, and Collard and 
co-workers' DGA i n  detail. Section 3 presents the'new 
dynamic problem generating technique that is used in this 
study to create dynamic problems from a set of stationary 
test problems. Section 4 provides the experimental results 
and analysis of investigated GAS on the test environments. 
Finally Section 5 concludes this paper. 

2 Primal-Dual Genetic Algorithm 

2.1 Framework of PDGA 

For the convenience of descriptions, we first introduce some 
definitions here. A chromosome explicitly recorded in the 
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population is called a primal chromosome. Given a distance 
space. the chromosome that has the maximum distance to 
a primal chromosome z is called its dual chroniosome, de- 
noted by x' = dual(z) where dual(.) is the prinral-dual 
niappirig function. 

In this paper we will deal with binary-encoded GAS and 
naturally use the Hamming distance (the number of loca- 
tions at which corresponding bits of two chromosome dif- 
fer) as the primal-dual mapping function. A pair of chro- 
mosomes is then said to be primal-dual to each other if their 
Hamming distance is the maximum in the search space. In 
other words. given' a chromosome z = ( ~ 1 ~ x 2 ,  ..., z ~ )  E 
I = {0, l}L of fixed length L, its dual is its complement, 
i.e.. z' = d u a l ( z )  = Z . = (Z1,52, ..., ZL) E I where 

For a pair of primal-dual, chromosomes, if they have dif- 
ferent fitness the chromosome with higher fitness is called 
a superior rhromosonie while the other an inferior chro- 
mosome; otherwise, if the pair have equal fitness,  they^ are 
called fie chroniosonies or said to form a fie pair. A primal- 
dual mapping operation or dual evaluation is called valid 
if the obtained dual chromosome is superior to the primal 
chromosome; otherwise, i t  is called invalid. Valid primal- 
dual mappings or dual evaluations are expected to be benefi- 
cial to CA's performance. This is the fundamental working 
principle of PDGA. 

With above definitions, the framework of PDGA is 
shown in Figure 1, where N ,  P,, P, are the population size, 
crossover probability and mutation probability respectively, 
and f (z )  denotes the fitness of an individual z. Within 
PDGA. when an intermediate population P'(t)  has just been 
created and evaluated and before the next generation starts, 
a set D ( t )  of individuals are selected from P'(t)  to eval- 
uate their duals. For an individual z E D(t ) ,  if its dual 
z' is evaluated to he fitter, x is replaced with 2'; other- 
wise. z will survive into the next generation. That is, only 
valid primal-dual mappings take effect to give superior dual 
chromosomes chances to he expressed into the next gen- 
eration. This is similar to the dominance mechanism in 
nature except that now it works at the chromosome level. 
Although inspired by the complementary mechanism in na- 
ture, physically within PDGA only the primal chromosomes 
need being recorded in the population. That is, the encod- 
ing is based on a single-stranded chromosome instead of 
double-stranded as in DNA molecule. Hence, PDGA can he 
called pseudo-diploidor called working on apseudo-pair of 
primal-dual chromosomes. 

2.2 Adaptive Selection Scheme for Dual Evaluation 

From above discussions, it is clear that the scheme of select- 
ing primal chromosomes from P'( t )  to form the set D(t)  for 
dual chromosome evaluation should try to maximize valid 
primal-dual mappings, i.e., selecting as many inferior pri- 
mal chromosomes in the population as possible. Hence, 
the selection scheme should concern which primal chromo- 
somes and how many primal chromosomes in P'(t)  should 
he selected. 

Since only valid primal-dual mappings take effect and 

Zl = 1 - x i  (i = 1, ...,L). 

Procedure PDCA: 

begin 
parameterize(N, P,, P,,,); 
t := 0; 
initializePopulation(P(0)); 
evaluatepopulation( P(0)) ;  
D(0) := selectForDualEvaluation(P(0)) ; 
for each individual 2: in D(0) do /I evaluate D(0) 

evaluateDualChromosome(z'); I/ x' = dual(x) 
if f(x ')  > f(z) then replace x in P(0) with 2'; 

endfor; 
repeat 

P'(t)  := selectForReproduction(P(t)); 
recombine(P'(t)); 
mutate(P'(t)); 
evaluatePopulation(P'(t)); 
D(t)  := selectForDualEvaluation(P'(t)); 
for each individual z in D ( t )  do // evalirnfe D(t )  

evaluateDualChromosome(x'); // z' = dual(z) 
if f(z') > f(z) then replace x in P'(t) with 2'; 

endfor; 
t : = t + l ;  . 

until teTminated = true; /I e.g., t > t,,,,,= 
I end; 

Figure 1: Pseudocode for PDGA. In Hamming distance 
space, z' = dua l ( z )  = 2. 

performingprimal-dual mapping on chromosomes with low 
fitness is more likely to be valid, we can select primal chro- 
mosomes with low fitness from P'(t)  to form the set D(t).  
Let n d ( t )  denote the actual number of primal chromosomes 
selected from P'(t) into D ( t )  for dual evaluation at gen- 
eration t ,  i.e., n d ( t )  = \D(t)l .  For each generation t ,  we 
can select nd(t)  least fit primal chromosomes from P'(t)  
for dual evaluations. Now what is left is how to decide the 
value ofnd(t). 

Both Holland's [Holland751 and Stephens and Wael- 
hroeck's [SW99] schema theorems indicate that schemas or 
strings with less than average fitness or average effective 
fitness receive an exponentially decreasing number of trials 
over time. Let ninf ( t )  denote the actual number of inferior 
primal chromosomes in the population P ' ( t ) .  The schema 
theorems indicate that n;,f ( t)  will decrease at an exponen- 
tial rate since they usually have less than average fitness or 
average effective fitness. This is verified by our experiments 
in  [Yan@3], which shows that n;,t(t) decreases approxi- 
mately exponentially over time t to 0 or an approximately 
stable value. Ideally, the value of nd(t) should be equal to 
n;,j(t). However, it is difficult to achieve this since n q ( t )  
is unknown in advance. 

In [YangOf we have used a simple deterministic scheme 
to decrease n d ( t )  exponentially as follows: 

I re*Nl.  if t = o  
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where a, 0 E ( 0 , l )  control the initial value and the de- 
creasing speed of nd(t) respectively. n, € (0,N) is the 
minimal number of primal chromosomes to he selected for 
dual evaluation, and ryl is the ceiling function returning the 
minimum integer that is not less than y. With this primal 
chromosome selection scheme after several generations the 
value of nd(t) will stay constant at n,. 

In this paper we propose an adaptive scheme to decide 
the value of nd(t). Let n,(t - 1 )  denote the actual number 
of valid dual evaluations carried out during generation t - 1 
then nd(t) is calculated as follows: 

1 ,  if n,(t - l) /nd(t  - 1 )  < 6 

{ -1, if n,(t - l)/n,j(t - 1) > 6 

sign(t) = 0, if n,(t - l ) /nd(t  - 1 )  = 6 ( 2 )  

D ( t ) ,  i t  will get the chance to jump to its dual. However, 
PDGA and DGA do have different properties. The main 
difference lies in that in  DGA the jumping between com- 
plementary chromosomes is driven by mutation and hence 
by chance. It uses no dominance mechanism and is blind in 
the sense of applying complen~entary mechanism. PDGA is 
dominance-based using fitness as its dominance mechanism 
that works at the chromosome level. This is reflected in se- 
lecting low fit chromosomes for dual evaluation and only 
replacing inferior primal ones with their superior duals. 

3 The Test Suite 

A set of well studied stationary problems, forming a range 
of difficulty levels for GAS. is selected as the test set to com- 
pare the performance between PDGA, SGA and DGA. Dy- 
namic test problems are constructed from these stationary 
problems by a dynamic problem generating technique in- 
troduced in this paper. 

3.1 Stationary Test Problems 

1, One-Max Problem: 
This problem was studied by Ackley [Ackley871 and simply 
aims to maximize ones in a binary string. The fitness of a 

where in Equation (2), 6 E ( 0 , l )  is a preset constant (e.g., 
0.9) that acts as the threshold of nd(t)’s changingmode: de- 

~~~~~i~~ (3), a E (0 ,1)  increasing, or 
has thesame mea& as in ~ ~ ~ ~ ~ i ~ i  ( I ) ,  p E (0, l)’con- 
trols the decreasing or increasing speed of nd( t ) ,  and n M ,  
n, E (0, N )  are preset maximal and minimal number of 

string is the number of ones it contains. A string length of 
100 bits will be used for this study. And the unique optimum 
solution has a fitness of 100. 

\ 

primal chromosomes to he selected from P’(t) for dual 
evaluations respectively. With this adaptive primal chromo- 
some selection scheme, now nd(t) can decrease, keep un- 
changed, or increase adaptively depending on whether the 
measured ratio of valid dual evaluations to total dual evalu- 
ations during generation t - 1,  i.e., n,(t - l ) /nd( t  - 1). is 
less than, equal to, or greater than the preset threshold 6 re- 
spectively. This selection scheme aims to give PDGA even 
stronger adaptability, especially in dynamic environments 
where the value of ni( t )  may vary with time. 

2.3 PDGA vs. Dual Genetic Algorithm 

Collard and his co-workers proposed a genetic algorithm, 
called Dual Genetic Algorithm (DGA) [CA94], [CE961. 
The initial aim of DGA is 10 improve the performance of 
a GA by adding one single meta-bit in  front of the regu- 
lar hits. This meta-hit alters the phenotype of the overall 
chromosome. If the meta-hit is activated (“1”) all regular 
bits are translated to their complement for fitness evalua- 
tion; otherwise, they keep their original alleles for fitness 
evaluation. Consequently, there may exist complementary 
individuals in the population that represent the same phe- 
notype though they have fundamentally different genotype. 
The added meta-hit undergoes the same genetic operations 
within DGA as other regular hits do. 

Both PDGA and DGA are inspired by the complemen- 
tary mechanism in nature, such as DNA’s duplex structure. 
In DGA mutating the, meta-bit enables an individual to make 
a long jump to its complement in the search space while in  
PDGA when a primal chromosome is selected into the set 

’ 2. Royal Road Function: 
This function is the same as Mitchell, Forrest and Holland’s 
Royal Road function R1 [MFH92]. It is defined on a sixty- 
four bit string consisting of eight contiguous building blocks 
(BBs) of eight hits, each of which contributes ti = 8 (i = 
1, ..., 8) to the total fitness if all of the eight hits are set to 
one. The fitness of a bit string x is computed hy summing 
the coefficients c; corresponding to each of the given BBs 
si, of which z is an instance (denoted hy x E si). That is, 
the royal road function is defined as follows: 

where &(z) = { 1, if x E si; 0, otherwise}. This function 
has an optimum fitness of 64. 

3. Deceptive Function: 
Deceptive functions are a family of functions where there 
exist low-order BBs that do not combine to form higher- 
order BBs: instead they form BBs resulting in a deceptive 
solution that is sub-optimal itself or near a sub-optimal so- 
lution [Whitley91]. Deceptive functions are devised as dif- 
ficult test functions for,GAs. ’ 

Goldberg [Goldberg89h] devised an order-3 minimum 
fully deceptive problem as follows: 

f ( 0 0 0 )  = 2 8  f(001) = 2 6  
f(010) = 22 f(011) = 0 
f ( 1 0 0 )  = 14 f(101) = 0 
f ( 1 1 0 )  = 0 f(l.11) = 3 0  

2248 

Authorized licensed use limited to: University of Leicester. Downloaded on February 9, 2010 at 04:31 from IEEE Xplore.  Restrictions apply. 



where all the order-1 and order-2 BBs are deceptive. In this 
study, we constructed a deceptive function consisting of 10 
copies of the above deceptive subproblem. This function 
has an optimum fitness of 300. 

3.2 Generating Dynamic Test Problems 

In this paper, we introduce a new technique that gener- 
ates a dynamic test problem from a given stationary prob- 
lem. Given a binary-encoded stationary optimization prob- 
lem f (x), we can construct its dynamic version as follows. 
First. create a binary template T of the chromosome length, 
randomly or in a controlled way, periodically or not. Sec- 
ond, for each chromosome x in the population perform the 
operation x @ T where @ is the bitwise exclusive-or oper- 
ator (i.e., 1 c9 1 = 0, 1 @ 0 = 1, 0 @ 0 = 0). Suppose 
that the environment changes at generation t ,  then at gen- 
eration t + 1 we have f(x, t + 1) = f(z e T ,  t ) .  In this 
way, we can change the fitness landscape but still keep cer- 
tain properties of the original fitness landscape, e.g., the to- 
tal number of optima and fitness values of optima though 
their locations shifted. For example, if we apply a template 
T = 11111 to a 5-bit One-Max function, the original op- 
timal point z* = 11111 becomes the least fit point while 
original least fit point 2: = 00000 becomes the new optimal 
point in the changed landscape, but the optimal fitness value 
(i.e., 5 )  and the uniqueness of optimum keep invariant. 

In this paper, we construct dynamic versions of above 
stationary problems in two ways. First, in the periodically 
randomly shifting version, every 200 generations the fitness 
landscape is randomly shifted with a randomly created tem- 
plate T that contains half ones and half zeros (assuming L is 
even). This case results in a moderate change in the environ- 
ment in the sense of Hamming distance. An optimal point 
in the search space is shifted to some position, located half 
way between the original optimum and its dual. Second, in 
the periodically reversing version every 200 generations the 

Figure 2: Experimental results with respect to best-so-far fitness against evaluations of GAS on stationary test problems: 
(a) Onc-Max, (b) Royal Road, and (c) Deceptive Function. 
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fitness landscape is reversed with the template T containing 
all ls , i .e. ,f(z, t+200)=f(zc9T,t)=f(5,t) .Thiscase 
brings in the extreme or maximum landscape change in the 
sense of Hamming distance, analogous to  natural environ- 
ment change between sunny daytime and dark night. 

4 Experimental Study 

Experiments were carried out to compare PDGA with tra- 
ditional SGA and Collard and his co-workers' DGA. All 
the GAS were generational and used typical genetic opera- 
tor and parameter settings: I-point crossover with a fixed 
crossover probability p, = 0.6, bit mutation with mutation 
probability p ,  = 0.001, and fitness proportionate selection 
with the Stochastic Universal Sampling (SUS) (Baker871 
and elitist model [DeJong75]. The population size N was 
set to 128 for all the GAS. PDGA-specific parameters 
were set as follows: for the deterministic selection scheme 
a = p = 0.5 and n, = 1; for the adaptive selection 
scheme a = B = 0.5, b = 0.9, n~ = N / 2  and n, = 1. 
For each experiment of combining different GA and test 
problem, IO0 independent runs were executed with the same 
100 random seeds to generate initial populations. Each ex- 
perimental result was averaged over the 100 runs. 

4.1 Experimental Results on Stationary Problems 

Preliminary experiments were carried out on the stationary 
version of the three test problems. For each run of different 
GAS on each problem, the best-so-far fitness was recorded 
every IO0 evaluations. Here, only those primal chromo- 
somes changed by crossover and mutation operations were 
evaluated and counted into the number of evaluations. With 
PDGA all dual evaluations, valid or not, were also counted 
into the number of evaluations. For each run the maximum 
allowable evaluations was set to 20000. The exper,imental 
results are shown in Figure 2. 
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Figure 3: Experimental results with respect to best-of-generation fitness (Top) and average-of-generation fitness (Bottom) 
against generations of GAS on periodically randomly shifting dynamic test problems: One-Max (a & b) ,  Royal Road (c & 
d), and Deceptive Function (e &A. 

From Figure 2, i t  can he seen that in general PDGA 
performs better than SGA and DGA' and within PDGA 
the adaptive selection scheme marked by PDGAA is bet- 
ter than the deterministic selection scheme marked by 
PDGAD.  For the following experiments on dynamic prob- 
lems, only the adaptive selection scheme will he used within 
PDGA and the results are marked by PDGA instead of 
PDGAA.  

4.2 Experimental Results and  Analysis on Periodically 
Randomly Shifting Dynamic Problems 

For each run of different GAS on the periodically randomly 
shifting problems, the fitness function was randomly shifted 
every 200 generations2 and the maximum allowable gener- 

'See IYang031 for the experimental result analysis relevani to lhis pan. 
'In the computer implementation of eliiism for dynamic problems every 

time the fitness landscape changes the recorded elitist of previous penad is 
discarded and reset to be the best individual of the changed generation. 

ations was set to 2000, which equals I O  periods of envi- 
ronment changes3. For each run the best-of-generation fit- 
ness and average-of-generation fitness were recorded every 
5 generations. The experimental results are shown in Figure 
3. From Figure 3 it can he seen that PDGA performs bet- 
ter than both SGA and DGA on the periodically randomly 
shifting dynamic problems. 

On the One-Max problem (see Figure 3(a) and 3(b)), for 
the stationary period PDGA.performs as well as SGA and 
both perform better than DGA (the same as the stationary 
situation in Figure 2(a)). However, for the dynamic periods 
PDGA outperforms both SGA and DGA. The valid primal-. 
dual mappings within PDGA contribute to the faster growth 
speed of best-of-generation fitness as well as the average-of- 

'For the convenience of analyzing the experimental results. below in 
this paper we call the fin1 period rr~riorwn. period since the behavior of 
GAS on a dynamic problem during this period is the same as that on the 
relevant stationary problem. And ihe other 9 periods are called dyuzmic 
neriods. 

2250 

Authorized licensed use limited to: University of Leicester. Downloaded on February 9, 2010 at 04:31 from IEEE Xplore.  Restrictions apply. 



generation fitness of the population. On the contrast, with 
DGA due to the blindness in mutating the meta-bit it per- 
forms just the same as SGA and its performance curves al- 
most overlap with SGA’s. During dynamic periods the high- 
est best-of-generation fitness and average-of-generation fit- 
ness reached by all the GAS are lower than those reached 
during the stationary period. This is because, due to the rel- 
ative convergence of the last generation of previous period, 
the first generation of each dynamic period has a lower di- 
versity than that of the stationary period. 

On the Royal Road function (see Figure 3(c) and 3(d)), 
PDGA outperforms both SGA and DGA for all periods 
while SGA outperforms DGA for the stationary period (see 
Figure 2(b) for reference) and is beaten by DGA for dy- 
namic periods. Now for the dynamic periods all the GAS 
perform much worse than they did for the stationary period. 
None of the GAS ever achieves three BBs (i.e., fitness value 
of 24) for the dynamic periods. And for the dynamic pe- 
riods all the GAS perform worse on the Royal Road func- 
tion than they did on the One-Max problem. The reason 
to these two observations lies in that the basic BBs in the 
Royal Road function are now of order-8 instead of order- 
I as in the One-Max problem. The increased size of basic 
BBs makes it much harder for the GAS to search them and 
also enhances the “hi1chhiking”effect [FM93]. Hitchhiking 
seriously decreases the diversity of those loci correspond- 
ing to BBs not found at the last generation of the stationary 
period. And the fitness landscape changing mode destroys 
almost all BBs found so far. Both’ sides together leave the 
GAS a very harsh situation to start from for all of the dy- 
namic periods. 

On the Deceptive Function (see Figure 3(e) and 3(f)), the 
situation seems a little different. With respect to the best-of- 
generation fitness PDGA outperforms both SGA and DGA 
while DGA outperforms SGA. On the contrast, the average- 
of-generation fitness with PDGA i s  less than that with SGA 
and DGA, especially at the late stage of each period. The 
reason lies in that after certain generations of each period 
the competition on each 3-bit subproblem is mainly be- 
tween BBs “000 and “ I  l l ” .  With PDGA valid primal-dual 
mappings, which convert strings with more “000” BBs to 
strings with more “ I  I I ”  BBs, work quite efficiently, push- 
ing the best individual towards optimum faster than SGA 
and DGA. Meanwhile, these valid mappings give crossover 
more chances tocreate non-“OOO’or non-“I I I”BBs on cer- 
tain loci and hence lower the average fitness of the popula- 
tion a little. With DGA for dynamic periods it seems now 
mutating the meia-bit helps pushing best-of-generation fit- 
ness toward optimum faster than SGA. 

4.3 Experimental Results and Analysis on Periodically 
Reversing Dynamic Problems 

The experimental setting for the periodically reversing ver- 
sion ofproblems was the same as that for above periodically 
randomly shifting version except that now for each run the 
fitness landscape was reversed every 200 generations with 
maximum Hamming distance instead of half Hamming dis- 
tance. The experimental results are shown in Figure4. From 

Figure 4 it can be seen that now GAS behave quite differ- 
ently from what they did on the periodically randomly shift- 
ing problems and that PDGA now outperforms SGA and 
DGA with a much higher degree than it did on the periodi- 
cally randomly shifting problems. 

On the One-Max problem (see Figure 4(a) and 4(b)), 
after the stationary period PDGA keeps performing per- 
fectly well with the best-of-generation fitness staying in the 
optimum over all dynamic periods while the average-of- 
generation fitness first drops a little when changes occur, 
then rises up quickly to near optimum value. This is because 
the complementary and dominance mechanisms embedded 
in PDGA work perfectly under the condition of extreme en- 
vironment change. Whenever change occurs they together 
immediately replace the worst individuals in  the changed 
landscape that are reversed from optimal individuals of pre- 
vious period with their superior duals, resulting in new opti- 
mal individuals. With DGA the mechanism of mutating the 
meta-bit by probability now also works but with a slower 
speed than that of PDGA. As to SGA, without extra surviv- 
ing mechanisms to deal with extreme environment change it  
now performs even worse than it did on the randomly shift- 
ing version of the One-Max problem. Comparing Figure 4(a 
& h) with Figure 3(a & b) makes this point clear. 

On the Royal Road Function (see Figure 4(c) and 4(d)), 
PDGA outperforms both SGA and DGA while SGA and 
DGA heat each other interleavingly over the 10 periods. 
For PDGA whenever the fitness function changes the com- 
plementarity and dominance mechanisms in PDGA rapidly 
draw back the best individuals in the last generation of pre- 
vious period (since the dual of a BB’s dual is the BB itself). 
And then PDGA continues to evolve during the dynamic 
period. This results in both fitness measures getting better 
and better across dynamic periods with only slight dips for 
a short time just after each change happens. The scheme of 
mutating meta-bit in DGA has similar effect as the comple- 
mentarity and dominance mechanisms in PDGA but with a 
slower speed. It is interesting to see that SGA behaves os- 
cillatingly over different periods around two fitness levels: 
at a normal fitness level during odd periods (including the 
stationary period) and at a lower fitness level during even 
periods. The reason to this oscillating phenomenon is given 
as follows. When the first change occurs, SGA is left in a 
harsh environment as explained in Section 4.2 and from here 
it perfoms poorly during the whole period. When the sec- 
ond change happens, the fitness of the population is brought 
back to its normal level quite quickly due to the poor perfor- 
mance of SGA during previous period, which protects the 
BBs found in the stationary period quite well. This process 
continues for the following periods. 

On the Deceptive Function, with respect to the best-of- 
generation fitness PDGA outperforms both SGA and DGA 
while DGA outperforms SGA (see Figure 4(e)). And for 
dynamic periods PDGA reaches a higher near-optimal best- 
of-generation fitness than it does for the stationary period 
while DGA reaches the same level as i t  does for the station- 
ary period and SGA performs worse. With respect to the 
average-of-generation fitness (see Figure 4(f)), with PDGA 
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Figure 4: Experimental results with respect to hest-of-generation fitness (Top) and average-of-generation fitness (Botrom) 
against generations of GAS on periodically reversing dynamic test problems: One-Max (a & b), Royal Road (c & d) ,  and 
Deceptive Function ( e  &j). 

i t  is less than that with SGA and DGA. The reason is sim- 
ilarly explained on the randomly shifting Deceptive Func- 
tion. With SGA the phenomenon of performanceoscillating 
happens again for the similar reason as explained above on 
the Royal Road function. 

Both Figure 3 and Figure 4 show that PDGA has strong 
robustness and adaptability under dynamic environments, 
especially when the environment change is significant. This 
is due to the complementarity and dominance mechanisms 
devised in PDGA. The meta-bit scheme used in DGA 
also improves its adaptability under dynamic environments. 
However, the effect is limited due to the lacking of domi- 
nance mechanism or the blindness in applying the mecha- 
nism of complementarity. 

5 Conclusions 

Inspired by the complementarity and dominance mecha- 
nisms in nature, our proposed Primal-Dual Genetic Algo- 

rithm (PDGA) operates on a pair of chromosomes that are 
primal-dual to each other in the sense of maximum distance 
in a given distance space in genotype. During the running 
of PDGA before next generation starts, a set of low fit pri- 
mal chromosomes are selected to evaluate their duals forex- 
pressing potential superior duals into next generation., This 
paper presents a new adaptive scheme of selecting' primal 
chromosomes for evaluating their duals, which further im- 
proves PDGA's performace. 

In this paper, we investigate an jmportant aspect of 
PDGA, which lies in that it can adapt to dynamic environ- 
ments efficiently. Using the dynamic problem generating 
technique proposed in this paper a set of dynamic problems 
is generated from a typical set of stationary problems as the 
algorithm test environments. Experimental study over.these 
dynamic problems suggests that PDGA can solve complex 
dynamic problems more efficiently than traditional GA and 
Collard and his co-workers' Dual CA. The experimental re- 
sults show that PDGA has strong viability and robustness 
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in dynamic environments, especially when the environment 
change is significant. We conclude that PDGA is a novel 
idea that can act.as a dynamic problem optimizer. 

The mechanism of prima-dual chromosomes in PDGA 
is quite general and hence can be generalized to other 
optimization methods, such as hill-climbing methods, to 
improve their capability in non-stationary environments, 
which is an interesting future work. 
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