
Memory-Enhanced Univariate Marginal Distribution Algorithms for Dynamic
Optimization Problems

Shengxiang Yang
Department of Computer Science, University of Leicester

University Road, Leicester LE1 7RH, United Kingdom
s.yang@mcs.le.ac.uk

Abstract- Several approaches have been developed into
evolutionary algorithms to deal with dynamic optimiza-
tion problems, of which memory and random immi-
grants are two major schemes. This paper investigates
the application of a direct memory scheme for univari-
ate marginal distribution algorithms (UMDAs), a class
of evolutionary algorithms, for dynamic optimization
problems. The interaction between memory and ran-
dom immigrants for UMDAs in dynamic environments
is also investigated. Experimental study shows that the
memory scheme is efficient for UMDAs in dynamic envi-
ronments and that the interactive effect between mem-
ory and random immigrants for UMDAs in dynamic en-
vironments depends on the dynamic environments.

1 Introduction

Evolutionary algorithms (EAs) have been widely applied
to solve stationary optimization problems. In recent years,
there has been a growing interest in investigating EAs for
dynamic optimization problems. This trend reflects the fact
that many real world optimization problems are actually dy-
namic [1]. For dynamic optimization problems (DOPs),
the fitness function, design variables, and/or environmen-
tal conditions may change over time due to many reasons,
e.g., machine breakdown and financial factors. For dynamic
problems, the aim of an algorithm is no longer to locate an
optimal solution but to track the moving optima with time.
This challenges traditional EAs seriously since they cannot
adapt well to the changing environment once converged.

In recent years, several approaches have been developed
into EAs to address dynamic problems [5], of which mem-
ory and random immigrants are two major approaches. The
random immigrants approach [7] aims to maintain the popu-
lation diversity by immigrating random individuals into the
population to adapt EAs to dynamic environments.

The basic principle of memory schemes is to store useful
information from the current environment and reuse it later
in new environments. As reviewed in [4], the information
may be stored in two mechanisms: by implicit memory or
by explicit memory. For implicit memory schemes, EAs use
genotype representations that contain redundant informa-
tion to store good (partial) solutions to be reused later. Typ-
ical examples of implicit memory schemes are genetic algo-
rithms (GAs) based on multiploidy representations [6, 9, 15]
or dualism mechanisms [18, 19]. Explicit memory schemes
use precise representations but split an extra memory space
to explicitly store useful information, e.g., good solutions,
from current generation for reuse in later generations or en-
vironments [3, 10, 12, 17].

In this paper, the memory scheme is investigated for
the Univariate Marginal Distribution Algorithm (UMDA),
which was first introduced by Mühlenbein [14] as a class
of EAs, for dynamic optimization problems. An explicit
memory scheme is used to improve UMDA’s adaptability
in dynamic environments. Within this memory scheme, the
best samples created by the probability vector are stored in
the memory in certain time and space pattern. When the
environmental change is detected, the memory points are
merged with the current population members in UMDA for
further iterations. This paper also investigates the relation-
ship between memory and random immigrants schemes for
UMDAs in dynamic environments.

Using the dynamic problem generator proposed in [18,
19, 20], a series of dynamic test problems are constructed
from three stationary functions and experiments are carried
out to compare the performance of investigated UMDAs and
a peer memory-enhanced GA. The experimental results val-
idates the efficiency of the memory scheme for UMDAs in
dynamic environments. The experimental results also indi-
cates that the random immigrants scheme has different in-
teractions on the memory scheme for UMDAs in different
dynamic environments.

The outline of this paper is given as follows. The next
section describes the UMDAs with and without memory
schemes and the memory-enhanced GA investigated in this
paper. Section 3 presents the dynamic test environment for
this study. The experimental results and relevant analysis
are presented in Section 4. Section 5 concludes this paper
with discussions on relevant future work.

2 Description of Investigated Algorithms

2.1 The Standard UMDA

Mühlenbein [14] introduced the UMDA as the simplest ver-
sion of Estimation of Distribution Algorithms (EDAs) [13].
Thereafter, there have been several modifications and math-
ematical analysis of UMDAs [11, 21] and UMDAs have
been applied for many optimization problems [8]. In the
binary search space, UMDA evolves a probability vector
p(~x, t) = (p(x1, t), . . . , p(xl, t)) (~x = (x1, . . . , xl) ∈
{0, 1}l) where all the variables are assumed to be indepen-
dent of each other. The pseudo-code for the UMDA with
mutation investigated in this paper, denoted UMDAm, is
shown in Figure 1.

UMDAm starts from the central probability vector that
has a value of 0.5 for each locus and falls in the central point
of the search space. Sampling this probability vector creates
random solutions because the probability of creating a 1 or



t := 0 and p(~x, 0) := ~0.5
repeat

sample a population St of n individuals from p(~x, t)
if random immigrants used then // for UMDAi

replace ri ∗ n random immigrants into St randomly

select best µ < n individuals from St to form an
interim population Dt

build p′(~x, t) according to Dt by Eq. (1)
mutate p′(~x, t) by Eq. (2)
p(~x, t + 1) := p′(~x, t)

until terminated = true // e.g., t > tmax

Figure 1: Pseudo-code of the UMDA with mutation (UM-
DAm) and the UMDA with mutation and random immi-
grants (UMDAi).

0 on each locus is equal1. At iteration t, a population St of n
individuals are sampled from the probability vector p(~x, t).
The samples are evaluated and an interim population Dt is
formed by selecting µ (µ < n) best individuals, denoted
~x1

t , · · · , ~x
µ
t , from St. Then, the probability vector is updated

by extracting statistics information from Dt as follows:

p′(~x, t) :=
1

µ

k=µ
∑

k=1

~xk
t (1)

After the probability vector is updated according to Dt,
in order to keep the diversity of sampling in dynamic en-
vironments, a bitwise mutation is applied in this paper.
The mutation operation always changes the probability vec-
tor toward the central probability vector as follows. For
each locus i = {1, . . . , l}, if a random number r =
rand(0.0, 1.0) < pm (pm is the mutation probability), then
mutate p(xi) using the following formula:

p(xi) =







p(xi) ∗ (1.0 − δm), p(xi) > 0.5
p(xi), p(xi) = 0.5
p(xi) ∗ (1.0 − δm) + δm, p(xi) < 0.5,

(2)

where δm is the mutation shift that controls the amount a
mutation operation alters the value in each bit position. Af-
ter the mutation operation, a new set of samples is generated
by the new probability vector and this cycle is repeated.

As the search progresses, the elements in the probabil-
ity vector move away from their initial settings of 0.5 to-
wards either 0.0 or 1.0, representing high evaluation solu-
tions. The search stops when some termination condition
becomes true, e.g., the maximum allowable number of iter-
ations tmax is reached.

In this paper, we also investigate the effect of random
immigrants on the performance of UMDAs in dynamic en-
vironments. The pseudo-code for the investigated UMDA
with mutation and random immigrants, denoted UMDAi, is
also shown in Figure 1, where ri is the ratio of random im-
migrants to the total population size. Within UMDAi, for

1When sampling the probability vector for a solution, for each locus i

if a randomly created number r = rand(0.0, 1.0) < p(xi, t), it is set to
1; otherwise, it is set to 0.

each iteration after the probability vector is sampled, a set
of individuals are randomly selected and replaced with ran-
domly created individuals (immigrants).

2.2 Memory-Enhanced UMDAs

The memory scheme has proved to be able to enhance EA’s
performance in dynamic environments. As mentioned in
Section 1, the memory scheme works by storing and reusing
useful information either implicitly or explicitly. In this pa-
per we focus on explicit memory schemes.

For explicit memory schemes, there are several techni-
cal considerations, regarding the content, management and
retrieval strategies of the memory. For the first aspect, usu-
ally good solutions are stored and reused directly when the
environment changes [10]. It is also an interesting policy
to store environmental information together with good so-
lutions. When the environment changes, the stored environ-
mental information is used, for example, as the similarity
measure [16], to associate the new environment with stored
solutions in the memory to be re-activated. For the memory
management, usually it has fixed size and when it is full,
one memory point is selected to be removed to make room
for new ones, i.e., the best individuals from the population.
As to selecting which memory point to be updated, there
are several memory replacement strategies, e.g., replacing
the most similar one if the new individual is better [4]. For
memory retrieval, a natural strategy is to use the best indi-
vidual(s) in the memory to replace the worst individual(s)
in the population. This can be done periodically (e.g., every
generation), or only when the environment changes.

In this paper we investigate an explicit memory scheme
for UMDAs in dynamic environments. The pseudo-code
for the investigated memory-enhanced UMDAs without and
with random immigrants, denoted MUMDA and MUMDAi
respectively, is shown in Figure 2. In Figure 2, n is the
number of evaluations per iteration including the memory
samples and f(~x) denotes the fitness of individual ~x.

In MUMDA and MUMDAi, a memory of size m =
0.1 ∗ n is used to store best samples from the population.
The most similar measure, as discussed in [4], is used as the
memory replacement strategy. That is, when the memory
is due to update, we first find the memory point closest to
the best population sample in terms of Hamming distance.
If the best population sample has higher fitness than this
memory sample, it is replaced by the best population sam-
ple; otherwise, the memory stays unchanged.

The memory in MUMDA and MUMDAi is updated us-
ing a dynamic time pattern as follows. After each mem-
ory updating, a random integer R ∈ [5, 10] is generated
to determine the next memory updating time tM . For ex-
ample, suppose a memory updating happens at generation
t, then the next memory updating time is tM = t + R =
t + rand(5, 10). This way, the potential effect that the en-
vironmental change period coincides with the memory up-
dating period can be smoothed away.

The memory is re-evaluated every iteration. If any mem-
ory sample has its fitness changed, the environment is de-
tected to be changed. Then the memory will be merged with



t := 0 and tM := rand(5, 10)

initialize p(~x, 0) := ~0.5 and memory M(0) randomly
repeat

sample a population St of n−m individuals by p(~x,t)
if random immigrants used then // for MUMDAi

replace ri ∗ n random samples into St randomly

evaluate the population St and memory M(t)
if environmental change detected then

S′(t) :=retrieveBestMembers(St, M(t))
else S′(t) := St

select best µ < n − m individuals from S ′

t to form an
interim population Dt

build p′(~x, t) according to Dt by Eq. (1)
mutate p′(~x, t) by Eq. (2)

if t = tM then // time to update memory
tM := t + rand(5, 10)
denote the best individual in S ′(t) by ~xP

t

if still any random points in memory then
replace a random point in memory with ~xP

t

else find the memory point ~xM
t closest to ~xP

t

if f(~xP
t ) > f(~xM

t ) then ~xM
t := ~xP

t

p(~x, t + 1) := p′(~x, t)
until terminated = true // e.g., t > tmax

Figure 2: Pseudo-code of the memory-enhanced UMDAs:
without random immigrants (MUMDA) and with random
immigrants (MUMDAi).

the current population to form an intermit population. If no
environmental change is detected, MUMDA and MUMDAi
progress just as the standard UMDA does.

2.3 Memory-Enhanced Genetic Algorithm

As for stationary problems, GAs are the most studied
EAs for dynamic environments. In this study a memory-
enhanced GA with random immigrants, denoted MEGAi, is
taken as a peer EA to compare the performance of UMDAs
for dynamic problems. Figure 3 shows the pseudo-code of
MEGAi. MEGAi has typical configuration of standard GAs
as follows: generational, uniform crossover, bit flip muta-
tion, fitness proportionate selection with the elitist scheme.

MEGAi uses a memory of size m = 0.1 ∗ n, where n is
the total number of individuals evaluated in each generation.
The memory is randomly initialized and, as in MUMDA
and MUMDAi, is updated in a dynamic time pattern with
the most similar memory updating strategy [4]. When the
memory is due to update, if any randomly initialized points
still exists in the memory, the best individual of the popula-
tion will replace one of them randomly; otherwise, it will re-
place the closest memory point if it is better. The memory is
re-evaluated every generation. If an environmental change
is detected, the memory is merged with the old population
and the best n − m individuals are selected as an interim
population to undergo normal genetic operations for a new
population while the memory remains unchanged.

t := 0 and tM := rand(5, 10)
initialize population P (0) and memory M(0) randomly
repeat

evaluate population P (t) and memory M(t)
if environmental change detected then

P ′(t) :=retrieveBestMembers(P (t), M(t))
else P ′(t) := P (t)

if t = tM then // time to update memory
tM := t + rand(5, 10)
denote the best individual in P ′(t) by ~xP

t

if still any random points in memory then
replace a random point in memory with ~xP

t

else find the memory point ~xM
t closest to ~xP

t

if f(~xP
t ) > f(~xM

t ) then ~xM
t := ~xP

t

// normal genetic operation
P ′(t) := selectForReproduction(P ′(t))
crossover(P ′(t), pc) // pc is the crossover probability
mutate(P ′(t), pm) // pm is the mutation probability
replace ri ∗ n random immigrants into P ′(t) randomly
replace elite from P (t − 1) into P ′(t) randomly
P (t + 1) := P ′(t)

until terminated = true // e.g., t > tmax

Figure 3: Pseudo-code for the memory-enhanced GA with
random immigrants (MEGAi).

3 Dynamic Test Environments

The DOP generator proposed in [18, 19] can construct ran-
dom dynamic environments from any binary-encoded sta-
tionary function f(~x) (~x ∈ {0, 1}l) by a bitwise exclusive-
or (XOR) operator. Suppose the environment changes every
τ generations. For each environmental period k, an XORing
mask ~M(k) is incrementally generated as follows:

~M(k) = ~M(k − 1) ⊕ ~T (k), (3)

where “⊕” is the XOR operator (i.e., 1⊕ 1 = 0, 1⊕ 0 = 1,
0 ⊕ 0 = 0) and ~T (k) is an intermediate binary template
randomly created with ρ × l ones for environmental period
k. For the first period k = 1, ~M(1) is set to a zero vector.
Then, the population at generation t is evaluated as below:

f(~x, t) = f(~x ⊕ ~M(k)), (4)

where k = dt/τe is the environmental period index. With
this generator, the parameter τ controls the change speed
while ρ ∈ (0.0, 1.0) controls the severity of environmental
changes. Bigger ρ means severer environmental change.

The above generator can be extended to construct cycli-
cal dynamic environments as follows (see [20] for a for-
mal description). First, we can generate 2K XORing masks
~M(0), ~M(1), · · · , ~M(2K − 1) as the base states in the

search space randomly. Then, the environment can cycle
among these base states in a fixed logical ring. Suppose the
environment changes every τ generations, then the individ-
uals at generation t is evaluated as follows:

f(~x, t) = f(~x ⊕ ~M(It)) = f(~x ⊕ ~M(k%(2K))), (5)
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where k = bt/τc is the index of current environmental pe-
riod and It = k%(2K) is the index of the base state the
environment is in at generation t.

The 2K XORing masks can be generated in the fol-
lowing way. First, we construct K binary templates
~T (0), · · · , ~T (K − 1) that form a random partition of the
search space with each template containing ρ×l = l/K bits
of ones2. Let ~M(0) = ~0 denote the initial state. Then, the
other XORing masks are generated iteratively as follows:

~M(i + 1) = ~M(i) ⊕ ~T (i%K), i = 0, · · · , 2K − 1 (6)

The templates ~T (0), · · · , ~T (K − 1) are first used to cre-
ate K masks till ~M(K) = ~1 and then orderly reused to con-
struct another K XORing masks till ~M(2K) = ~M(0) = ~0.
The Hamming distance between two neighbour XORing
masks is the same and equals ρ × l. Here, ρ ∈ [1/l, 1.0] is
the distance factor, determining the number of base states.

In this paper, three 100-bit binary functions, denoted
OneMax, NK(25, 4) and Deceptive respectively, are se-
lected as base stationary functions to construct dynamic test
environments. They all consist of 25 contiguous 4-bit build-
ing blocks (BBs) and have an optimum fitness of 100. As
shown in Figure 4, the BB for each function is defined based
on the unitation function, i.e., the number of ones inside the
BB. The BB for OneMax is just a OneMax sub-function,
which aims to maximize the number of ones in a chromo-
some. The BB for NK(25, 4) contributes 4 (or 2) to the
total fitness if its unitation is 4 (or 3), otherwise, it con-
tributes 0. The BB for Deceptive is fully deceptive. These
three stationary functions have increasing difficulty for EAs
in the order from OneMax to NK(25, 4) to Deceptive.

Two kinds of dynamic environments, random and cycli-
cal, are constructed from each of the three base functions
using the aforementioned dynamic problem generator. For
kind of dynamic environments, the landscape is periodically
changed every τ generations during the run of an algorithm.
In order to compare the performance of algorithms in dif-
ferent dynamic environments, the parameters τ is set to 10,
25 and 50 and ρ is set to 0.1, 0.2, 0.5, and 1.0 respectively.

Totally, a series of 24 DOPs, 3 values of τ combined with

2In the partition each template ~T (i) (i = 0, · · · ,K − 1) has randomly
but exclusively selected ρ×l bits set to 1 while other bits to 0. For example,
~T (0) = 0101 and ~T (1) = 1010 form a partition of the 4-bit search space.

4 values of ρ under two kinds of dynamic environments, are
constructed from each stationary function.

4 Experimental Study

4.1 Experimental Design

Experiments were carried out to compare the performance
of algorithms on the dynamic test environments. For all
UMDAs, the parameters are set as follows: total sample size
n = 100 (including memory samples m = 10 if used), µ =
0.5∗n or 0.5∗(n−m) (if memory is used), and the mutation
probability pm = 0.02 with the mutation shift δm = 0.05.
For MEGAi, parameters are set as: crossover probability
pc = 0.6, mutation probability pm = 0.01, elitist size 1,
and population size n = 100 including the memory size
m = 10. If random immigrants are used, ri is set to 0.2.

For each experiment of an algorithm on a dynamic prob-
lem, 20 independent runs were executed with the same set
of random seeds. For each run 5000 generations were al-
lowed, which are equivalent to 500, 200 and 100 environ-
mental changes for τ = 10, 25 and 50 respectively. For
each run the best-of-generation fitness was recorded every
generation. The overall performance of an algorithm on a
problem is defined as:

F BOG =
1

G

G
∑

i=1

(
1

N

N
∑

j=1

FBOGij
), (7)

where G = 5000 is the total number of generations for a
run, N = 20 is the total number of runs, and FBOGij

is
the best-of-generation fitness of generation i of run j. The
off-line performance F BOG is the best-of-generation fitness
averaged over 20 runs and then averaged over the data gath-
ering period.

4.2 Experimental Results and Analysis

The experimental results of algorithms on the test problems
under cyclical and random dynamic environments are plot-
ted in Figure 5 and Figure 6 respectively. The correspond-
ing statistical results of comparing algorithms by one-tailed
t-test with 38 degrees of freedom at a 0.05 level of signifi-
cance are given in Table 1 and Table 2 respectively. In Table
1 and 2, the t-test result regarding Alg. 1−Alg. 2 is shown
as “+”, “−”, “s+” and “s−” when Alg. 1 is insignificantly
better than, insignificantly worse than, significantly better
than, and significantly worse than Alg. 2 respectively.

In order to better understand the performance of investi-
gated algorithms in dynamic environments, the dynamic be-
haviour of algorithms with respect to best-of-generation fit-
ness against generations on the dynamic test problems with
τ = 25 and ρ = 0.2 is plotted in Figure 7. In Figure 7,
the last 10 environmental changes (i.e., 250 generations) are
shown and the data were averaged over 20 runs. From the
tables and figures several results can be observed.

First, both the memory-enhanced UMDAs, MUMDA
and MUMDAi, perform significantly better than UMDAm
on most dynamic test problems. This result validates the



OneMax, τ = 10 OneMax, τ = 25 OneMax, τ = 50

 50

 60

 70

 80

 90

 100

1.00.50.20.1

Fi
tn

es
s

UMDAm
UMDAi

MUMDA
MUMDAi

MEGAi

 50

 60

 70

 80

 90

 100

1.00.50.20.1

Fi
tn

es
s

UMDAm
UMDAi

MUMDA
MUMDAi

MEGAi

 50

 60

 70

 80

 90

 100

1.00.50.20.1

Fi
tn

es
s

UMDAm
UMDAi

MUMDA
MUMDAi

MEGAi

ρ ρ ρ

NK(25,4), τ = 10 NK(25,4), τ = 25 NK(25,4), τ = 50

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

Fi
tn

es
s

UMDAm
UMDAi

MUMDA
MUMDAi

MEGAi

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

Fi
tn

es
s

UMDAm
UMDAi

MUMDA
MUMDAi

MEGAi

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

Fi
tn

es
s

UMDAm
UMDAi

MUMDA
MUMDAi

MEGAi

ρ ρ ρ

Deceptive, τ = 10 Deceptive, τ = 25 Deceptive, τ = 50

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

Fi
tn

es
s

UMDAm
UMDAi

MUMDA
MUMDAi

MEGAi

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

Fi
tn

es
s

UMDAm
UMDAi

MUMDA
MUMDAi

MEGAi

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

Fi
tn

es
s

UMDAm
UMDAi

MUMDA
MUMDAi

MEGAi

ρ ρ ρ

Figure 5: Experimental results of UMDAm, UMDAi, MUMDA, MUMDAi, and MEGAi on cyclical dynamic problems.

Table 1: The t-test results of comparing investigated algorithms on cyclical dynamic environments.
t-test Result OneMax NK(25, 4) Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
UMDAi − UMDA s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s− s−

MUMDA − UMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s−

MUMDA − UMDAi s+ s− s+ s+ s− s− s+ s+ s+ s+ s+ s+
MUMDAi − MUMDA s− s+ s− s+ s+ s+ + s+ s− s− s− s−

UMDA − MEGAi s− s− s− s− s− s− s− s− s− s− s+ s+
MUMDAi − MEGAi s+ s+ s+ s+ s− s+ s+ s− s+ s+ s+ s+

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
UMDAi − UMDA s− s+ s+ s+ + s+ s+ s+ s+ s+ s+ s−

MUMDA − UMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s−

MUMDA − UMDAi s+ s+ s− s+ s+ s− s− s+ s+ s+ s+ s+
MUMDAi − MUMDA s− s− s+ s+ s− s+ s+ s+ s− s− s− s−

UMDA − MEGAi s+ s− s− s− s− s− s− s− s+ s− − s+
MUMDAi − MEGAi s+ s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+

τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
UMDAi − UMDA s− − s+ s+ s− s+ s+ s+ s− s+ s+ s−

MUMDA − UMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +
MUMDA − UMDAi s+ s+ s− s+ s+ s+ s− s+ s+ s+ s+ s+

MUMDAi − MUMDA s− s− s+ s+ s− s− s+ s+ s− s− s− s−

UMDA − MEGAi s+ s+ s− s− s+ s− s− s− s+ s+ − s+
MUMDAi − MEGAi s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

efficiency of introducing the memory scheme into UMDA.
From Figure 7, it can be seen that the performance of

MUMDA and MUMDAi stays at a much higher fitness level
than UMDAm. And both MUMDA and MUMDAi achieve
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Figure 6: Experimental results of UMDAm, UMDAi, MUMDA, MUMDAi, and MEGAi on random dynamic problems.

Table 2: The t-test results of comparing investigated algorithms on random dynamic environments.
t-test Result OneMax NK(25, 4) Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
UMDAi − UMDA s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s−

MUMDA − UMDA s− s+ s+ s+ − s+ s+ s+ s+ s+ s+ +
MUMDA − UMDAi s− s− s− s+ s− s− s− s+ s− s− s− s+

MUMDAi − MUMDA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s−

UMDA − MEGAi s+ s− s− s− s− s− s− s− s+ s− s− s+
MUMDAi − MEGAi s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s+

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
UMDAi − UMDA s− s+ s+ s+ s− s+ s+ s+ + s+ s+ s−

MUMDA − UMDA − + s+ s+ − + s+ s+ + s+ s+ +
MUMDA − UMDAi s+ s− s− s+ s+ s− s− s+ + s− s− s+

MUMDAi − MUMDA s− s+ s+ s+ s− s+ s+ s+ s− s+ s+ s−

UMDA − MEGAi s+ s+ s− s− s+ s− s− s− s+ − s− s+
MUMDAi − MEGAi s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
UMDAi − UMDA s− s− s+ s+ s− s− s+ s+ s− s+ s+ s−

MUMDA − UMDA − s− s+ s+ − s− s+ s+ − s− s+ +
MUMDA − UMDAi s+ s+ s− s+ s+ s+ s− s+ s+ s− s− s+

MUMDAi − MUMDA s− s− s+ s+ s− s− s+ s+ s− s+ s+ s−

UMDA − MEGAi s+ s+ s− s− s+ s+ s− s− s+ s+ s− s+
MUMDAi − MEGAi s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

better performance improvement over UMDAm on cyclical
environments than on random dynamic environments. This

result means that the effect of the memory scheme depends
on whether the environment changes cyclically or not.
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Figure 7: Dynamic behaviour of algorithms on cyclical dy-
namic (a) OneMax, (b) NK(25, 4) and (c) Deceptive
functions with τ = 25 and ρ = 0.2.

Second, the addition of the random immigrants scheme
improves the performance of UMDA on most dynamic
problems, see the t-test results regarding UMDAi – UM-
DAm. This also validates the benefit of maintaining the
diversity for UMDA in dynamic environments. However,
when ρ is small, e.g., 0.1, for several cases the random im-

migrants scheme has negative effect on the performance of
UMDAm. This happens because when the severity of en-
vironmental changes is low, the random immigrants added
slow down the continuous search progress of original UM-
DAs when change occurs.

Third, when comparing the memory scheme and the ran-
dom immigrants scheme, it can be seen that the effect of
the memory scheme is significantly greater (better) than the
random immigrants scheme on most cyclical dynamic prob-
lems, see the t-test results regarding MUMDA – UMDAi in
Table 1. However, for random dynamic problems, the ran-
dom immigrants scheme outperforms the memory scheme
on most cases. This happens because for random DOPs,
random immigrants may track the new environment more
efficient than memory samples.

Fourth, when examining the interactive effect between
the memory scheme and the random immigrants scheme, it
can be seen that MUMDAi outperforms UMDAi on most
cyclical and random dynamic problems. This means when
the random immigrants scheme is used, the addition of the
memory scheme always has positive effect on UMDA’s per-
formance. However, MUMDAi is beaten by MUMDA for
many cyclical problems. That is, when the memory scheme
is used, the addition of the random immigrants may have
negative effect in cyclical dynamic environments.

Finally, comparing the performance of MEGAi with
UMDAs, it can be seen that MEGAi outperforms UMDAm
under many dynamic environments, see the t-test results re-
garding UMDAm – MEGAi. However, MEGAi is signif-
icantly beaten by both MUMDA and MUMDAi on most
dynamic test problems, see the relevant t-test results. This
happens due to two factors. The first factor lies in that
UMDAs have better search capacity than MEGAi and this
factor contributes to the fact that even UMDA outperforms
MEGAi on several dynamic test problems. This point can
be seen from Figure 7. On almost all dynamic problems
UMDAs achieve a much higher fitness improvement than
MEGAi does during each environmental period.

The second factor is because that the memory scheme
in MUMDA and MUMDAi has a stronger effect than the
memory scheme in MEGAi. This can be clearly seen in
the dynamic behaviour of algorithms in Figure 7. On cycli-
cal dynamic problems MUMDA and MUMDAi are able to
maintain a higher fitness level than MEGAi does.

5 Conclusions and Future Work

This paper investigates the application of the memory
scheme for UMDAs in dynamic environments. Within this
memory scheme, the best samples are stored in the memory
by replacing the most similar memory point. When the en-
vironmental change is detected, the memory is merged with
the population to build new probability vectors. This paper
also investigates the relationship between memory and ran-
dom immigrants for UMDAs in dynamic environments. An
experimental study was carried out based on a series of sys-
tematically constructed dynamic test environments. From
the experimental results, several conclusions can be drawn
on the dynamic test environments.



First, the memory scheme is efficient to improve the per-
formance of UMDAs in dynamic environments. Second, the
experimental results indicate that different interaction exists
between the random immigrants scheme and the memory
scheme. In general, when random immigrants is used for
UMDA, the addition of the memory scheme has a positive
effect on UMDA’s performance in dynamic environments.
Random immigrants improves the performance of UMDA
when no memory is used. However, when memory is used
for UMDA, random immigrants have a negative effect on
UMDA’s performance in the cyclical dynamic test environ-
ments. Third, the memory-enhanced UMDAs seem a better
choice than the memory-enhanced GA for the dynamic test
problems.

The work studied in this paper can be extended in sev-
eral ways. Developing other memory management and re-
trieval mechanisms would be an interesting future work for
memory-based UMDAs and other estimation of distribution
algorithms [2, 13] in dynamic environments. Comparing
the memory scheme investigated in this paper with the as-
sociative memory scheme studied in [20] is another future
work. And it is also an interesting work to further investi-
gate the interactions between the memory scheme and other
approaches, such as multi-population and adaptive opera-
tors, for UMDAs in dynamic environments.
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