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Abstract— Using diploidy and dominance is one method to
enhance the performance of genetic algorithms in dynamic
environments. For diploidy genetic algorithms, there are two
key design factors: the cardinality of genotypic alleles and the
uncertainty in the dominance scheme. This paper investigates
the effect of these two factors on the performance of diploidy
genetic algorithms in dynamic environments. A generalized
diploidy and dominance scheme is proposed for diploidy genetic
algorithms, where the cardinality of genotypic alleles and/or
the uncertainty in the dominance scheme can be easily tuned
and studied. The experimental results show the efficiency
of increasing genotypic cardinality rather than introducing
uncertainty in the dominance scheme.

I. INTRODUCTION

Many optimization problems in the real world are subject
to dynamic environments. For example, in the manufacturing
industry, new jobs may arrive stochastically and machines
may break down. The nature of dynamic environments chal-
lenges traditional optimization algorithms because it requires
them to be able to adapt to the changing environment with
time. For dynamic optimization problems (DOPs), genetic
algorithms (GAs) are a good choice because they are inspired
from the principles of biological evolution, which takes place
in a dynamic environment in nature. However, when solving
DOPs, traditional GAs face a big problem: the convergence
problem. Convergence deprives GAs’ adaptability to the
changing environment: Once converged, they are unable
to adapt to the new environment when change occurs. In
order to enhance the performance of GAs for DOPs, several
approaches have been developed [3], such as random immi-
grants [8], [24], hypermutation [4], memory [1], [15], [16],
[19], [20], and multi-population schemes [2]. Many of these
approaches are inspired from biological principles, e.g., the
diploidy and dominance mechanisms.

In biology, most complicated organisms have a diploid
or multiploid structure in their genetic representation and
relevant dominance scheme for gene expression [10]. In
the diploid structure, two set of homologue chromosomes
are twisted together into a duplex structure. Genes are the
smallest hereditary unit that contains genetic information
and the alternative forms/values that genes occupying the
same locus on homologue chromosomes can take are called
alleles. The genotype of an individual consists of all the
genes located on all the homologue chromosomes and those
genes that are expressed form the phenotype of the individual.
A dominant allele is always expressed while a recessive allele
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may be expressed only when both genes occupying the same
locus of the pair of homologue chromosomes have the same
recessive value. Whether an allele is dominant or recessive
is determined by a dominance scheme.

Diploidy and dominance are the driving force for organ-
isms to adapt to and survive in the ever-changing environ-
ment in nature. In diploidy organisms, it requires two genes
for each biological trait and only the gene with dominant
allele gets expressed. Though the other gene is not expressed
and seems redundant, it helps keep the genetic diversity,
which allows organisms to respond to environmental changes
more quickly and efficiently and hence gives organisms a
better chance to survive.

The mechanisms of diploidy and dominance in biology
have been integrated into traditional GAs to enhance their
performance for DOPs [7], [17], [18]. GAs with diploidy
representation and dominance schemes are called diploid
genetic algorithms (DGAs). DGAs have proved advantageous
to deal with dynamic environments. For DGAs, there are
two important design factors: the cardinality of genotypic
representation, i.e., the number of alleles a gene can take, and
the dominance scheme, which maps genotype to phenotype.

This paper investigates the effect of the cardinality of
genotypic representation and the existence of uncertainty in
the dominance scheme for DGAs in dynamic environments.
For this aim, a generalized genotype representation and dom-
inance scheme is proposed. In this generalized scheme, it is
convenient to tune the cardinality of genotypic representation
and the uncertainty in the genotype to phenotype mapping
for DGAs. Using the dynamic problem generator proposed in
[23], [25], a series of DOPs are constructed as the dynamic
test environments. And two sets of experiments are carried
out: to investigate the performance of DGAs with different
genotypic cardinalities and to investigate the performance of
DGAs with deterministic and non-deterministic dominance
schemes (to be described in Section III). The experimental
results show the efficiency of increasing cardinality in the
genotypic representation rather than introducing uncertainty
in the genotype-to-phenotype mapping for DGAs in dynamic
environments.

The rest of this paper is organized as follows. The next
section briefly reviews the background on DGAs and domi-
nance schemes. Section III details the proposed generalized
genotype representation and dominance scheme. Section IV
presents the experimental study, including the dynamic test
environments, experimental design, experimental results and
relevant analysis. Finally, Section V concludes the paper with
some discussions.
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t := 0 and initialize population P (0) randomly
evaluate population P (0)
repeat

P ′(t) := selectForReproduction(P (t))
crossover(P ′(t), pc) // pc is the crossover probability
mutate(P ′(t), pm) // pm is the mutation probability
evaluate the interim population P ′(t)
if dominance change used and condition holds then

change dominance scheme

until terminated = true // e.g., t > tmax

Fig. 1. Pseudo-code of general diploid genetic algorithms.

II. RELEVANT RESEARCH

A. Diploid Genetic Algorithms

As mentioned above, DGAs are inspired by the genetic en-
coding and expression mechanisms in biology. The pseudo-
code of general DGAs is shown in Fig. 1, where dominance
change may be integrated. DGAs differs from traditional
GAs mainly in two aspects: the representation and evaluation
scheme and the reproduction operations.

For the first aspect, each individual in DGAs has two
genotypic chromosomes. In order to evaluate an individual
we need first map the diploid genotype into a haploid
phenotype according to some dominance mechanism. Then,
the phenotype is evaluated according to the external envi-
ronment to give the individual a fitness. The representation
and evaluation scheme for DGAs is illustrated in Fig. 2. In
DGAs, each gene in the genotype may have several alleles
while in the phenotype it usually takes binary values 0 or 1.
The black and white bars in Fig. 2 represents 0 and 1 in the
phenotype respectively, vice versa.

For the second aspect, in DGAs crossover is divided
into two steps. In the first step, two parents exchange their
chromosomes randomly to create two temporary offsprings.
Each offspring has one chromosome from each parent and
hence the genotypic materials from the parents are mixed
and propagated to the offsprings. In the second step, two
chromosomes in each offspring undergo the crossover op-
eration with a probability pc, which is the same as in
traditional GAs. After crossover, each of the two genotypic
chromosomes of an offspring is independently subject to
a bitwise mutation with a probability pm. Since mutation
operates on the genotype of an individual, a mutation of a
gene may not change the phenotype of an individual. This is
called neutral mutation in the biological terminology [10].

B. Genotype Representation and Dominance Schemes

As mentioned before, genotypic representation and domi-
nance schemes play a key role in the performance of DGAs.
Researchers have developed several genotypic representation
and dominance schemes [5], [7], [9], [13], [22].

In [12], Hollstien proposed a tri-allelic dominance scheme
where genotypic genes take alleles from {0, 1, 2} and both
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Fig. 2. Representation and evaluation of an individual for DGAs with (a)
deterministic and (b) non-deterministic dominance scheme.

genotypic alleles “2” and “1” map to phenotypic “1”, but
“2” dominates “0” and “0” dominates “1”. Holland [11]
later studied Hollstien’s tri-allelic scheme and introduced the
clearer 3-alphabet {0, 10, 1} instead. Goldberg and Smith [7]
compared the performance of a haploid GA, a diploid GA
with fixed dominance map where 1’s dominate 0’s, and a
diploid GA with Holstien-Holland tri-allelic dominance map
on a non-stationary knapsack problem and concluded that
Holstien-Holland’s tri-allelic dominance is better than either
fixed dominance or haploid structure.

In [17], Ng and Wong proposed a dominance scheme
that uses four genotypic alleles: dominant “1” and “0”,
and recessive “i” and “o”. The dominant allele is always
expressed in the phenotype. If contention exists between two
dominant or two recessive alleles, one is randomly chosen to
be expressed. The occurrence of “1i” or “0o” is prohibited. If
it occurs the recessive gene is promoted to be dominant. The
genotype-to-phenotype mapping is shown in Fig. 3(a). Ng
and Wong also incorporated a dominance change scheme:
when the fitness of an individual drops by a threshold
percentage 20% between successive evaluation cycles, the
dominance values of all allele-pairs are inverted such that
“11” becomes “ii”, “00” becomes “oo”, “1o” becomes “i0”,
and vice versa. The genotype-to-phenotype mapping keeps
unchanged.
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Fig. 3. Two dominance schemes: (a) Ng-Wong and (b) additive.

In [18], Ryan proposed an additive dominance scheme,
where genotypic alleles are represented by ordered values
that are combined using a pseudo-arithmetic to determine
the phenotypic allele. Ryan used four genotypic alleles A,
B, C, and D, and allocated the values 2, 3, 7, and 9 to them
respectively. An addition is performed on the values allocated
with the two genotypic alleles for each gene locus. If the
sum is greater than 10, the phenotypic allele becomes 1;
otherwise, it becomes 0. The resulting dominance map is
shown in Fig. 3(b).

In [14], Lewis et. al. extended Ryan’s scheme by adding
a dominance change scheme where genotypic alleles are
demoted or promoted by one grade. For example, demoting
a “B” makes it a “A” whereas promoting it makes it a
“C”. Allele “A” cannot be demoted and “D” cannot be
promoted. As in the Ng-Wong approach, dominance change
occurs when the fitness of an individual drops by a threshold
percentage 20% between successive evaluation cycles. If this
happens, for each locus one of the two genotypic alleles is
randomly chosen to undergo the following procedure:

• If the phenotypic allele at this locus is 1, then demote
the chosen genotypic allele, unless it is an “A”.

• If the phenotypic allele at this locus is 0, then promote
the chosen genotypic allele, unless it is a “D”.

Lewis et. al. [14] compared the Ng-Wong and the additive
dominance schemes with or without dominance change on a
dynamic knapsack problem and concluded that some form
of dominance change is essential for DGAs to adapt to
environmental changes as a diploid encoding is not enough
in itself to allow flexible response to changes.

In [21], [22], Uyar and Harmanci proposed an adaptive
dominance mechanism for DGAs where the dominance char-
acteristics for each gene locus is adapted according to the
current population through a statistics calculation.

III. GENERALIZED DIPLOIDY AND DOMINANCE SCHEME

From above brief review, it can be seen that researchers
have used different cardinalities in the genotypic represen-
tation. And in the developed dominance schemes there may
exist uncertainty: giving two different genotypic alleles the
phenotypic allele may be random. For example, in the Ng-
Wong scheme when “0” meets “1” in the genotype at a locus,
the phenotype can be either 0 or 1 for that locus, see Fig. 3
(a). In this paper, we call those dominance mechanisms that
have no uncertainty in their genotype-to-phenotype mapping
deterministic and those with uncertainty non-deterministic.

For deterministic dominance mechanisms, when two differ-
ent genotypic alleles meet several times in the genotype of an
individual at different loci, the phenotypic alleles are always
the same for those loci, as illustrated in Fig. 2 (a), while
for non-deterministic dominance mechanisms the phenotypic
alleles may differ at those loci, as illustrated in Fig. 2 (b).

In order to investigate the effect of the cardinality of the
genotypic representation and the uncertainty in the domi-
nance scheme, this paper proposes a generalized diploidy
representation and dominance scheme for DGAs, which
comes in two types: deterministic and non-deterministic. The
generalized dominance scheme is described as follows.

Let �A={A1, · · · , Ac} denote the set of genotypic alleles
with cardinality c. And let �C1 = {C1

1 , · · · , C1
l } and �C2 =

{C2
1 , · · · , C2

l } denote the two chromosomes in the genotype
of an individual in the population, where l is the encoding
length, and �P = {P1, · · · , Pl} be the corresponding pheno-
type of the individual. For locus i, we further assume C1

i =
Am and C2

i = An, i.e., the first and second chromosomes
have a genotypic allele Am and An (m,n ∈ {1, · · · , c})
for locus i respectively. For non-deterministic generalized
dominance scheme, C1

i and C2
i are mapped to Pi as follows:

Pi =




0, m + n < c + 1
1, m + n > c + 1
0/1, m + n = c + 1,

(1)

where 0/1 means a 0 or 1 with equal probability.
For deterministic generalized dominance scheme, we fur-

ther assume that the cardinality is a multiple of 4, i.e., c = 4k.
Then, C1

i and C2
i are mapped to Pi as follows:

Pi =




0, m + n < c + 1
1, m + n > c + 1
0, m + n=c + 1 & min{m,n} > c/4 = k

1, m + n=c + 1 & min{m,n}<= c/4 = k

(2)

For example, Fig. 4 shows the deterministic and non-
deterministic generalized dominance schemes with the set
of genotypic alleles defined as �A = {A1, A2, A3, A4} =
{A,B,C,D}. It can be seen that the generalized determinis-
tic dominance scheme in Fig. 4(a) is the same as the additive
dominance scheme shown in Fig. 3(b). The difference lies in
that now there are no ordered values allocated to alleles.
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Fig. 4. Two 4-cardinality generalized (a) deterministic and (b) non-
deterministic dominance schemes with �A = {A, B, C, D}.

As in the Ng-Wong and additive dominance schemes, the
generalized dominance scheme is unbiased toward 0 or 1
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because the total probability of creating a phenotypic allele
0 or 1 is exactly 0.5. And as in the modified additive scheme
[14], for the generalized dominance scheme we can integrate
dominance change via demoting or promoting genotypic
alleles by one grade as follows. If a dominance change is
triggered by some environmental change detection scheme,
for each gene locus one of the two genotypic alleles is
randomly chosen to undergo the following procedure:

• If the phenotypic allele at this locus is 1, then demote
the chosen genotypic allele Ai to Ai−1, unless it is A1.

• If the phenotypic allele at this locus is 0, then promote
the chosen genotypic allele Ai to Ai+1, unless it is Ac.

For the generalized dominance scheme, increasing the
value of c will increase the diversity of genotypic alleles and
changing the formula from Eq. (2) to Eq. (1) will increase
the diversity of phenotypic alleles due to the uncertainty in-
troduced in the dominance scheme. In the following section,
we will investigate the effect of these two aspects on the
performance of DGAs via experiments.

IV. EXPERIMENTAL STUDY

A. Dynamic Test Environments

The DOP generator proposed in [23], [25] is used to
construct dynamic test environments. This generator can
construct DOPs from any binary-encoded stationary function
f(�x) as follows. Suppose the environment changes every τ
generations. For each environment k, an XORing mask �M(k)
is incrementally generated as follows:

�M(k) = �M(k − 1) ⊕ �T (k), (3)

where “⊕” is a bitwise exclusive-or (XOR) operator and
�T (k) is an intermediate binary template for environment k.
�T (k) is created with ρ × l (ρ ∈ (0.0, 1.0]) random loci set
to 1 while the remaining loci set to 0. For the first initial
environment k = 1, �M(1) is set to a zero vector.

An individual at generation t are evaluated as follows:

f(�x, t) = f(�x ⊕ �M(k)), (4)

where k = �t/τ� is the environmental index at time t. With
this XOR generator, τ and ρ control the speed and severity of
environmental changes respectively. Smaller τ means faster
changes while bigger ρ means severer changes.

Three 100-bit binary functions are selected as base station-
ary functions to construct dynamic test environments. All the
three functions have an optimum fitness of 100. The first is
the well-known OneMax function that aims to maximize the
number of ones in a binary string. The second one is a variant
of Forrest and Mitchell’s Royal Road function [6], which
consists of 25 contiguous 4-bit building blocks (BBs). Each
BB of Royal Road contributes 4 to the total fitness if all bits
inside the BB have the allele of one; otherwise, it contributes
0. The third function also consists of 25 contiguous 4-bit
building blocks. Each building block, BBi, for the third
function is fully deceptive and is defined as follows.

f(BBi) =

{
4, u(BBi) = 4

3 − u(BBi), u(BBi) < 4,
(5)

where u(BBi) is the unitation function of BBi, which
returns the number of ones inside BBi.

Dynamic environments are constructed from each of the
three base functions using the aforementioned dynamic prob-
lem generator. For each dynamic environment, the landscape
is periodically changed every τ generations during the run
of a GA. In order to compare the performance of DGAs in
different dynamic environments, the parameters τ is set to 10,
25 and 50 and ρ is set to 0.1, 0.2, 0.5, and 1.0 respectively.
Hence, a series of 12 DOPs with 3 values of τ times 4 values
of ρ are constructed from each stationary function.

B. Experimental Design

Two sets of experiments were carried out on the above
constructed DOPs to investigate the effect of the cardinality
of genotype alleles and uncertainty in the dominance scheme
respectively. For the first set, we test DGAs with the non-
deterministic generalized dominance scheme and set the
cardinality c to 2, 3, 4, 6, and 8. The DGAs are denoted
as c-NDDGA accordingly. For the second set, we fix c to 4
and 8 and test DGAs with non-deterministic and determin-
istic dominance schemes. The DGAs with the generalized
deterministic dominance scheme are denoted as c-DDDGA
accordingly.

For all DGAs, parameter settings are as follows: gener-
ational with population size n = 100, uniform crossover
with pc = 0.6, bit flip mutation with pm = 0.01, standard
tournament selection with tournament size of 2, and elitism
of size 1. For all DGAs, the dominance change scheme is
triggered whenever the environment changes.

For each experiment of a DGA on a DOP, 50 independent
runs were executed with the same set of random seeds.
For each run 50 environmental changes were allowed. For
each run the best-of-generation fitness was recorded every
generation. The overall performance of an algorithm on a
DOP is defined as:

FBOG =
1
G

G∑
i=1

(
1
50

50∑
j=1

FBOGij
), (6)

where G = 50∗τ is the total number of generations for a run
and FBOGij

is the best-of-generation fitness of generation i
of run j. The off-line performance FBOG is the best-of-
generation fitness averaged over 50 runs and then averaged
over the data gathering period.

C. Experimental Results and Analysis

The experimental results of the first and second set of
experiments are plotted in Fig. 5 and 6 respectively. The
corresponding statistical results of comparing DGAs by one-
tailed t-test with 98 degrees of freedom at a 0.05 level of
significance are given in Table I and II respectively. The
t-test result regarding Alg. 1 − Alg. 2 is shown as “+”,
“−”, “s+” or “s−” when Alg. 1 is better than, worse than,
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Fig. 5. Experimental results of comparing NDDGAs with different cardinalities on dynamic test problems.

TABLE I

THE t-TEST RESULTS OF COMPARING NDDGAS WITH DIFFERENT CARDINALITIES ON DOPS.

t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
3-NDDGA − 2-NDDGA s+ s+ + s− s+ s+ s+ s+ s+ s+ s+ s+
4-NDDGA − 3-NDDGA s+ s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+
6-NDDGA − 4-NDDGA s+ s+ s− s− s+ s+ + s+ s+ s+ s+ s+
8-NDDGA − 6-NDDGA + + s− s− s+ s+ + s+ s+ s+ s+ s+

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
3-NDDGA − 2-NDDGA s+ s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+
4-NDDGA − 3-NDDGA s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s+
6-NDDGA − 4-NDDGA s+ s+ s− s− s+ s+ + s+ s+ s+ s+ s+
8-NDDGA − 6-NDDGA s+ s+ s− s− s+ s+ − s+ s+ s+ s+ s+

τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
3-NDDGA − 2-NDDGA s+ s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+
4-NDDGA − 3-NDDGA s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s+
6-NDDGA − 4-NDDGA s+ s+ s− s− s+ s+ + s+ s+ s+ s+ s+
8-NDDGA − 6-NDDGA s+ s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+

significantly better than or significantly worse than Alg. 2
respectively. The dynamic behaviour of several DGAs with
respect to best-of-generation fitness against generations on
DOPs with τ = 50 and ρ = 0.1 and ρ = 1.0 is plotted

in Fig. 7 and 8 respectively. In Fig. 7 and 8, the first 10
environmental changes, i.e., 500 generations, are shown and
the data were averaged over 50 runs. From the tables and
figures, several results can be observed.
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Fig. 6. Experimental results of comparing NDDGAs and DDDGAs on dynamic test problems.

TABLE II

THE t-TEST RESULTS OF COMPARING NDDGAS AND DDDGAS ON DOPS.

t-test Result OneMax RoyalRoad Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
4-DDDGA − 4-NDDGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
8-DDDGA − 8-NDDGA s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s+
8-DDDGA − 4-DDDGA + s− s− s− + − s− − + s+ s− s+

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
4-DDDGA − 4-NDDGA s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s+
8-DDDGA − 8-NDDGA s+ s+ s+ s+ s+ s+ s+ + s+ s+ s+ s+
8-DDDGA − 4-DDDGA s+ + s− s− + − s− s+ s+ s+ s− +

τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
4-DDDGA − 4-NDDGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
8-DDDGA − 8-NDDGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
8-DDDGA − 4-DDDGA s+ s+ s− s− s+ − s− s+ s+ s+ s− +

First, from Fig. 5 and Table I it can be seen that the per-
formance of NDDGA rises when the value of c is increased
on most DOPs. This result shows the efficiency of increasing
the diversity in the genotypic representation. When the value
of c is raised from 2 to 3 and from 3 to 4 the performance of
NDDGA is significantly improved on almost all dynamic test

problems except on dynamic OneMax problems with large
values of ρ, see the t-test results regarding 3-NDDGA −
2-NDDGA and 4-NDDGA−3-NDDGA in Table I. For ex-
ample, on the dynamic Royal Road function with τ = 50 and
ρ = 0.1, when c is raised from 2 to 3 to 4, the performance
of NDDGA is improved from FBOG(2-NDDGA) = 62.5
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Fig. 7. Dynamic behaviour of DGAs on DOPs with τ = 50 and ρ = 0.1.

to FBOG(3-NDDGA) = 68.0 and to FBOG(4-NDDGA) =
74.9. When c is further raised to 6 and 8, the performance
gain is much smaller, e.g., FBOG(6-NDDGA) = 77.1 and
FBOG(8-NDDGA) = 78.0. The effect of the cardinality can
be more clearly observed from the dynamic behaviour of
NDDGAs, as shown in Fig. 7. In Fig. 7, every time the
environment changes 4-NDDGA and 8-NDDGA can climb
to a much higher fitness level than 2-NDDGA can do.

However, when ρ = 1.0, i.e., the environment oscillates
between two opposite fitness landscape, the effect of c on the
performance of NDDGAs is quite different on the dynamic
OneMax problems than on the dynamic Royal Road and
Deceptive problems. When the value of c increases, the
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Fig. 8. Dynamic behaviour of DGAs on DOPs with τ = 50 and ρ = 1.0.

performance of NDDGAs decreases on the dynamic OneMax
problems while increases on the dynamic Royal Road and
Deceptive problems, see the t-test results regarding the ρ =
1.0 column. This result can be further observed from the
dynamic behaviour of NDDGAs in Fig. 8. In Fig. 8, it
can be seen that on the dynamic OneMax problem, each
time the environment changes the performance of 2-NDDGA
drops much less than 4-NDDGA and 4-NDDGA drops much
less than 8-NDDGA. In the contrast, on the dynamic Royal
Road and Deceptive problems, 8-NDDGA manages to keep
a higher fitness level than 4-NDDGA and 4-NDDGA keeps
a higher fitness level than 2-NDDGA across the dynamic
environments.
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Second, from Fig. 6 and Table II it can be seen that
DDDGAs significantly outperform corresponding NDDGAs
with the same c on most DOPs, see the t-test results re-
garding 4-DDDGA−4-NDDGA and 8-DDDGA−8-NDDGA
in Table II. This result shows that the existence of un-
certainty in the dominance scheme is disadvantageous for
the performance of DGAs. This is because for each given
environment the allele for each locus in the optimal solution
is deterministic for the test DOPs, which prefers deterministic
phenotypic alleles. This result can be seen from the dynamic
behaviour of DGAs in Fig. 7 and Fig. 8, where 4-DDDGA
and 8-DDDGA can climb to or maintain a higher fitness
level than 4-NDDGA and 8-NDDGA respectively during
each dynamic environment.

Third, when comparing the performance of 8-DDDGA
over 4-DDDGA, it can be seen that there is no clear winner
between them on the DOPs. It seems 8-DDDGA performs
better than 4-DDDGA on most DOPs with smaller ρ while
worse than 4-DDDGA on most DOPs with bigger ρ. This
result can be observed from the dynamic behaviour of 4-
DDDGA and 8-DDDGA in Fig. 7 and Fig. 8 respectively.

Another relevant result is that the performance difference
between 8-DDDGA and 4-DDDGA is much less than that
between 4-DDDGA and 4-NDDGA.

V. CONCLUSIONS

Integrating diploidy representation and dominance mech-
anisms into traditional GAs has long been one approach
studied by researchers to enhance their performance for
dynamic optimization problems. This paper investigates the
two important design factors for DGAs: the cardinality of
genotypic representation and the existence of uncertainty
in the genotype-to-phenotype mapping. For this purpose, a
generalized dominance mechanism is proposed for DGAs
in dynamic environments. With this generalized dominance
scheme we can conveniently adjust the cardinality of geno-
typic representation and switch on or off the uncertainty in
the dominance map. The effect of these two aspects for
DGAs were experimentally studied based on a series of
constructed dynamic test problems.

From the experimental results and relevant analysis, two
major conclusions can be drawn on the dynamic test envi-
ronments. First, increasing the cardinality of the genotypic
representation improves the performance of DGAs in dy-
namic environments. It seems setting the cardinality of the
genotypic representation in the range of [4, 8] is a good
choice for DGAs. Second, the existence of uncertainty in the
dominance scheme significantly degrades the performance of
DGAs in dynamic environments.

Generally speaking, our preliminary experiments indicate
that the diversity game in designing DGAs for dynamic
environments should be played in the genotypic level instead
of in the dominance scheme. The result observed can be used
to guide the design of new DGAs for dynamic environments.
Combining the generalized dominance mechanism with other
advanced dominance changing schemes is now under in-
vestigation. We also believe that combining the generalized

dominance scheme with other memory schemes will further
improve the performance of DGAs in dynamic environments.
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