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Abstract— In this paper, a multi-agent based evolutionary
algorithm (MAEA) is introduced to solve dynamic optimization
problems. The agents simulate living organism features and
co-evolve to find optimum. All agents live in a lattice like
environment, where each agent is fixed on a lattice point.
In order to increase the energy, agents can compete with
their neighbors and can also acquire knowledge based on
statistic information. In order to maintain the diversity of
the population, the random immigrants and adaptive primal
dual mapping schemes are used. Simulation experiments on
a set of dynamic benchmark problems show that MAEA can
obtain a better performance in non-stationary environments in
comparison with several peer genetic algorithms.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) have been applied
widely to solve stationary optimization problems where

the fitness curve or the objective function maintain un-
changed during the searching process of EA. However most
real-world optimization problems are dynamic since the
objective function, environmental parameter and/or constraint
conditions maybe change over time. For example, in job
scheduling production systems, re-scheduling of the jobs
is often required due to change of the specification of
jobs or malfunction of the machines. For these dynamic
optimization problems (DOPs), the goal of an algorithm
is no longer to find an optimal solution but to track the
moving optima in the search space. In order to enhance the
performance of EAs for DOPs, many researchers have devel-
oped a number of approaches, including diversity-increasing
methods [5], diversity-keeping methods [1], [7], memory-
based approaches [3], and multi-population approaches [2],
[4].

In recent years, there has been an interesting concern from
the artificial intelligence community on agent-based compu-
tation methods, which are used to solve various optimization
problems [6], [8], [10], [9], [14]. Liu et al. [11] introduced
an application of distributed techniques for solving constraint
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satisfaction problems. They solved the 7000-queen problem
by an energy-based multi-agent model. Zhong et al. [25]
integrated multi-agent systems with GAs to form a new algo-
rithm for solving the global numerical optimization problem.
However, these problems for which agent-based computation
methods have been applied are mainly stationary problems.
They have rarely been used for addressing DOPs.

In this paper, a hybrid multi-agent based EA (MAEA)
is proposed for DOPs. The effect of introducing several
diversity schemes, such as immigrant scheme and dualism
method, into MAEA to address DOPs is investigated. In
the proposed MAEA, a population of agents that represent
potential solutions are assigned in a lattice like environment
and accomplish their update via competing in a local neigh-
borhood or learning based on the statistical feedback infor-
mation of the whole system. Just as other EAs, MAEA may
gradually converge to one point in the search space during the
run, especially when the environment has been stationary for
some time. Hence, MAEA may lose its population diversity
that is necessary for adapting efficiently to the changing
environment. In order to address this problem, two diversity
maintaining methods, random immigrants and adaptive dual
mapping, are also introduced into our MAEA to improve its
performance in dynamic environments.

The rest of this paper is organized as follows. Section
II describes the proposed algorithm in detail. Section III
presents the dynamic testing suit. Section IV reports the
experimental results. Finally, Section V concludes this paper.

II. PROPOSED ALGORITHM

A. The Framework of MAEA

According to [9], an agent is a physical or virtual entity
that essentially has the following properties:

• First, it is able to live and act in the environment.
• Second, it is able to sense its local environment.
• Third, it is driven by certain purposes.
• Fourth, it has some reactive behaviors.
Multi-agent systems are computational systems in which

several agents interact or work together in order to achieve
goals. As can be seen, the meaning of an agent is very
comprehensive, and what an agent represents is different
for different problems. In general, four elements should
be defined when multi-agent systems are used to solve
problems. The first two are the meaning and the purpose
of each agent. The following element is the environment
where all agents live and the last is how to define the local
environment of one agent since it usually has only local
perceptivity.
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In this paper, some dynamic 0-1 optimization problems
will be discussed. Obviously, each agent is a 0-1 array, which
represents a candidate solution. The energy value of an agent
may be equal to the value of the objective function. More
detailed definitions can be described as follows:

Definition 1: An agent L represents a candidate solution
to the optimization problem in hand, and can be expressed
as a 0-1 array:

L = (L1, L2, · · · , Ln), Li = 0 or 1, 1 ≤ i ≤ n, (1)

where n is the scale of the problem. The value of its energy
E(L) is equal to the value of the objective function f(L),
that is, E(L) = f(L).

In order to realize the local perceptivity of agents con-
veniently, the environment is organized as a ring-shaped lat-
ticelike structure. All agents live in a latticelike environment,
which is called an agent lattice LL. The size of environment
is Lsize × Lsize.

Each agent is fixed on a lattice-point and only interacts
with its neighbors. Suppose that the agent located at (i, j) is
represented as Li,j . And the agents which can interact with
Li,j could be decided by the apperceive range Rs. Thus, the
neighbor agents of Li,j could be calculated as follows:

Lk,l, i − Rs ≤ k ≤ i + Rs, j − Rs ≤ l ≤ j + Rs. (2)

Due to the ring-shaped lattice structure, if k < 1, then
k = k + Lsize, if k > Lsize, then k = k − Lsize; if l < 1,
then l = l+Lsize, if l > Lsize, then l = l−Lsize. The agents
that can interact with Li,j are called its neighbor Ni,j .

Therefore, the agent lattice can be represented as the
one in Fig. 1. Each circle represents an agent, the data
in a circle represents its position in the lattice, and two
agents can interact with each other if and only if there is
a line connecting them. In traditional GAs, those individuals
that will generate offspring are usually selected from all
individuals according to their fitness. Therefore, the global
fitness distribution of a population must be determined. But
in nature, a global selection does not exist, and the global
fitness distribution cannot be determined either.

Fig. 1. Model of the agent lattice

Procedure general MAEA

initialize all the parameters
t := 0
initialize a Lsize × Lsize agent lattice LL(0)
evaluate every agent in LL(0)
repeat

for each agent Lij in LL(t) do
execute one behavior to Lij

t := t + 1
until a termination condition is met

Fig. 2. Pseudocode for general MAEA

In fact, the real natural selection only occurs in a local
environment, and each individual can only interact with those
around it. That is, in some phase, the natural evolution is just
a kind of local phenomenon. The information can be shared
globally only after a process of diffusion. In the agent lattice,
to achieve their purposes, agents will compete or cooperate
with others so that they can gain more resources. Since each
agent can only sense its local environment, its behaviors of
competition and cooperation can only take place between the
agent and its neighbors. At the same time, the feedback of the
best agent can usually influence the behavior of the agents.
An agent interacts with its neighbors so that information
is transferred to them, and the information feedback from
the Lattice can help agents to learn. In such a manner, the
information is diffused to the whole agent lattice. As can
be seen, the model of the agent lattice is more close to the
real evolutionary mechanism in nature than the model of
the population in traditional GAs. In summary, the general
MAEA can be illustrated in Fig. 2.

B. Behaviors of Agents

In MAEA, all the agents update and evolve by executing
a certain behavior. Here, competitive and learning behaviors
are defined. For each agent, if its energy is not the best in its
neighborhood, then it will execute the competitive behavior;
if there’s no better agent in the neighborhood, the statistics
-based learning behavior is executed to use the information
feedback from the whole multi-agent system. The detailed
discussion is given as follows.

1) Competitive Behavior: The apperceive range of each
agent is 1, and its neighborhood is called competitive
neighborhood. Thus, there are 8 agents in the competitive
neighborhood of each agent. For agent Li,j , it will compare
its energy with the agents in its neighborhood. If its energy is
not less than any agent in the neighborhood, then it can live;
else, it will extinct and its position will be replaced by the
offspring of the best agent in its neighborhood. The details
are further discussed as follows.

Assume Li,j = L1

i,j , L
2

i,j , · · · , Ln
i,j , Lmax =

L1

max, L2

max, · · · , Ln
max, and ∀L ∈ Ni,j , E(L) < E(Lmax).

If E(Li,j) < E(Lmax), then Lmax is used to generate an
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offspring L′

i,j = L′1

i,j , L
′2

i,j , · · · , L′n
i,j to replace Li,j . There

are two kinds of generating methods.
In the first competitive method, the information of Li,j and

Lmax are utilized together to generate an offspring L′

i,j . It
randomly chooses some position that Li,j differs from Lmax

to alter the corresponding position in Li,j .

L′k
i,j =

{
Lk

max, k �∈ D or (k ∈ D and random(2)=0)
1 − Lk

max, otherwise,
(3)

where k = 1, 2, · · · , n, set D record the sequence number
of the position that Li,j differs from Li,j . Namely, D =
{k|Lk

i,j �= Lk
max, k = 1, · · · , n, }. random(2) means to

generate 0 or 1 randomly.
The second competitive method is the position based

mutation, which is often used in evolutionary computation.

L′k
i,j =

{
Lk

max, rand() > 1

n
1 − Lk

max, otherwise,
(4)

where k = 1, 2, · · · , n, and rand() means to generate a real
number between 0.0 and 1.0.

The number of elements in set D actually equals to the
Hamming distance between Li,j and Lmax. When |D| is
small, it means the Hamming distance between Li,j and
Lmax is small, and the two agents are similar. Then the
probability of using the first competitive pattern to generate
better agent is small, thus we introduce a parameter Dk ∈
(0, 1) to determine which pattern should be used to generate
L′

i,j : If |D|/n > Dk, then the first method is adopted;
otherwise, the second one is used.

2) Statistics Based Learning Behavior: The purpose of
the learning behavior is to enhance the energy of an
agent by statistics based adaptive non-uniform mutation
(SANUM) [20] or statistics based adaptive non-uniform
crossover (SANUX) [19] with the elite (the best agent in
the current generation). Because the resource is limited in
the environment, only when the energy of an agent is not
less than any of the agents in its neighborhood, it can get a
chance to learn. The first learning scheme is statistics based
mutation and the second is statistics based crossover with the
elite agent. The schemes are described as follows.

First of all, we decide how to calculate the uniform
crossover or mutation probability of a locus using a statistics-
based approach. Here we use a global information-based
statistics, which has been proved to be effective to enhance
the exploration capability of GAs by Yang [19], [20]. Let p(i)
denote the crossover or mutation probability of the locus i,
fki denote the frequency of k′s in the gene locus i over
all the past generations, where i = 1, 2, · · · , n and k is the
allele value for the gene locus. Then, in the binary encoding
space, we have f1i + f0i = 1, 0 ≤ f0i, f1i ≤ 1, and f1i

can be regarded as the tendency to ‘1’ for the locus i over
all the past populations. SANUM and SANUX make use
of this convergence information as feedback information to
control mutation and crossover by adjusting the probability
of each locus. Thus the one-dimension statistic vector F1 =

{f11, f12, · · · , f1n} can express the convergence degree of
the population from the gene level. Then, p(i) can be
calculated from f1i as follows:

p(i) = pmax − 2 × |f1i − 0.5| × (pmax − pmin), (5)

where |y| denotes the absolute value of y, pmin and pmax

denote the minimum and maximum allowable mutation or
crossover probability for a locus respectively. For example,
for the mutation probability, we have pmin = 10−4 and
pmax = 1

n , and for the crossover probability, we have
pmin = 0.0 and pmax = 0.5. We first calculate the
distribution of 1’s f1(i) for each locus i over the lattice, and
from this obtain the crossover and mutation probability p(i)
for that gene locus. For the global statistics based method,
the learning behavior can be adjusted by the convergence
degree of the population.

The first learning scheme is the statistics based adaptive
non-uniform mutation (SANUM). If L gets a chance to learn,
L is first mutated to generate L′. If E(L′) > E(L), then
agent L is replaced by L′.

Both SANUM and SANUX belong to the class of adaptive
mechanisms that occur at the bottom level of mutation
and crossover. Traditional bit mutation and crossover keep
a constant mutation and crossover probability over all the
loci. As the population converges, in fact fewer and fewer
offspring generated by mutating and crossover will survive
in the next generation. That is, many operations are wasted
on those converged loci. Most of these wasted operations
and hence wasted fitness evaluations are saved by SANUM
and SANUX through adaptively decreasing p(i) to pmin for
those converged loci.

We introduce a population index ξ [13] in order to measure
its diversity and it can be calculated as follows:

ξ =
Ebest − Eave

Ebest
, (6)

where Ebest and Eave are respectively the best and average
energy among the energy values of the agents. Obviously,
the index ξ can measure the state of agents via the energy
calculation. When ξ decreases from 1 to 0, it means that the
agents lose the diversity gradually.

The criterion of selecting a learning scheme is based on
the value of ξ as follows.

• If ξ < 0.1, the first statistics based mutation learning
scheme is applied since the mutation operation can help
a converging population to jump from a local optimum.

• If ξ > 0.9, the second statistics based crossover learning
scheme is applied since the crossover operation can
accelerate the exploitation to a diversifying population.

• If 0.1 < ξ < 0.9, one of the two learning schemes
is chosen randomly. Random means to generate a real
number between 0 and 1. If Random < 0.5, the first
learning scheme is selected; else, the second one is
chosen.
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C. Two Methods to Maintain the Diversity of Agents

In dynamic environments, the fitness landscape could
change over time, that is, the current optimum point may
become a local optimum and the past local optimum maybe
become a new global optimum point. Considering a spread-
out population can adapt to these changes more easily, two
diversity-keeping methods, namely random immigrants (RI)
and adaptive dual mapping (ADM), are introduced into our
algorithm framework of MAEA for DOPs.

1) Random Immigrants Method (RI): Among the ap-
proaches developed for GAs for DOPs, the random immi-
grants scheme have proved to be beneficial for many DOPs.
The random immigrants scheme aims to maintain the di-
versity of the population by replacing worst or randomly se-
lected individuals from the population with randomly created
individuals [26]. Here, we always choose the worst energy
agents to be replaced by randomly generated individuals
every generation. In order to avoid that random immigrants
disrupt the ongoing search progress too much, especially
during the period when the environment does not change, the
ratio of the number of random immigrants to the population
size is usually set to a small value, e.g., 0.1.

2) Adaptive Dual Mapping Method(ADM): Dualism and
complementarity are quite common in nature, such as the
double-stranded structure in DNA molecules. Inspired by the
complementarity mechanism in nature, a primal-dual genetic
algorithm has been proposed and applied for DOPs [21].
In this paper, we investigate the application of dualism into
MAEA. For the convenience of description, we first introduce
the definition of dual agent here. Given an agent L, its dual
agent is defined as L′, where L′k = 1 − Lk, k = 1, · · · , n.
With this definition, an agent elite is to evaluate its dual
(elite′) firstly before executing statistics based learning. If
its dual is evaluated to have more energy, that is, E(elite′) >
E(elite), then elite is replaced by elite′.

Given the above discussion, the proposed MAEA incor-
porate two diversity maintaining techniques (RI and ADM)
for DOPs can be illustrated in Fig. 3.

III. THE TESTING SUIT

A set of well studied stationary problems, forming a
range of difficulty levels for EAs, is selected as the ex-
perimental functions to compare the performance between
MAEA, traditional standard GA (SGA), the Primal-Dual
GA (PDGA) [21], and the GA with RI (RIGA), where the
worst 10% individuals are replaced with random indiivduals
every generation. In this paper, dynamic test problems are
constructed from these stationary problems by a dynamic
problem generator, which is called the XOR generator.

A. Stationary Test Problems

1) One-Max Function: This problem simply aims to max-
imize ones in a binary string. The fitness of a string is the
number of ones it contains. A string length of 100 bits will
be used for this study. And the unique optimum solution has
a fitness of 100.

Procedure proposed MAEA

initialize all the parameters
t := 0
initialize a Lsize × Lsize agent lattice LL(0)
evaluate every agent in LL(0)
calculate crossover and mapping prob. p(i), i = 1, · · · , n
repeat

for each agent Li,j in LL(t) do
if there exists an agent Lmax ∈ Ni,j with

E(Lmax) > E(Li,j) then
calculate |D|/n, where |D| is the Hamming

distance between Lmax and Li,j

if |D|/n > Dh then
select the first competitive scheme

else Select the second competitive scheme
else

L′

i,j := Dual(Li,j)
if (E(L′

i,j) > E(Li,j)) then
Li,j := L′

i,j

if (ξ < 0.1) then
select the first learning scheme to mutate Li,j

else if (ξ > 0.9) then
select the second learning scheme to crossover

Li,j with elite, which is the best agent so far
else

randomly select the first or second learning
scheme and execute it for Li,j

calculate ξ
t := t + 1

until a termination condition is met

Fig. 3. Pseudocode for the proposed MAEA for DOPs.

2) Royal Road Function: This function was proposed by
Michel, Forrest and Holland [12]. It is defined on a 64 bit
string consisting of eight contiguous building-blocks (BBs)
and each BB has 8 adjacent bits. The fitness of this function
is defined as follows:

f(x) =
8∑

i=1

ciδi(x), (7)

where ci = 8 and δi = {1, ifx ∈ S; 0, otherwise}. The
optimal for this function is given as f(111 . . . 1) = 64.

3) Deceptive Function: Deceptive functions are a family
of functions where there exists low-order BBs that do not
combine to form the higher-order BBs. In this study, a
deceptive function is constructed, which consists of 10 copies
of the order-4 fully deceptive function DF2 [18] and has an
optimum fitness value of 300. DF2 is defined as follows:

f(0000)=28 f(0001)=26 f(0010)=24 f(0011)=18
f(0100)=22 f(0101)=6 f(0110)=14 f(0111)=0
f(1000)=20 f(1001)=12 f(1010)=10 f(1011)=2
f(1100)=8 f(1101)=4 f(1110)=6 f(1111)=30

4) Strongly Interrelated Deceptive Function: A six rank
bipolar Strongly Interrelated Deceptive function [15] dis-
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cussed here consists of 10 copies of 6 rank bipolar deceptive
function DF1.

f(a) =

n/6∑
i=1

fbipolar6(a6i−5, a6i−4, a6i−3, a6i−2, a6i−1, a6i)

(8)
DF1 is designed as follows:

fbipolar6(a1, a2, a3, a4, a5, a6) =

⎧⎪⎪⎨
⎪⎪⎩

0.9, if u = 3
0.8, if u = 2 or 4
0, if u = 1 or 5
1, if u = 0 or 6,

where u is the number of 1s in the variable. The strongly
interrelated deceptive function has an optimum fitness of 10.

B. Generating Dynamic Test Problems

In this paper, the dynamic test environments are con-
structed from the above stationary functions using an “XOR”
operator [22], [24]. Suppose that the environment is pe-
riodically changed every τ generations, the environemntal
dynamics can be formulated as follows:

f(x, t) = f(x ⊕ M(k)), (9)

where k = �t/τ� is the period index, t is the generation
counter, and M(k) is the XOR mask for period k. Given a
value for parameter ρ, M(k) can be incrementally generated
as follows:

M(k) = M(k − 1) ⊕ T (k), (10)

where T (k) is an intermediate binary template randomly
created for period k containing ρ × n ones. For the period
k = 1, M(1) is initialized to be a zero vector.

In this way, we can change the fitness landscape but still
keep certain properties of the original fitness landscape, e.g.,
the total number of optima and fitness values of optima
though their locations shifted. For example, if we apply
a template T = 11111 to a 5-bit One-Max function, the
original optimal point x∗ = 11111 becomes the least fit
point while the original worst point x = 00000 becomes the
new optimal point in the changed landscape, but the optimal
fitness value (i.e., 5) and the uniqueness of optimum remain
invariant.

In this paper, we construct dynamic versions of above
stationary problems. In the periodically randomly shifting
version, every 100 generations the fitness landscape is ran-
domly shifted with a randomly created template T that
contains 10 percent ones and 90 percent zeros, half ones and
half zeros, 90 percent ones and 10 percent zeros respectively.
In other words, the frequency of change is set to 100
generations and the severity of change is set to 0.1, 0.5 and
0.9 respectively, that is, the change varies from a small one
to a moderate one, then to an intense one in the environment
in terms of the Hamming distance.

IV. EXPERIMENTAL STUDY

A. Experimental Setting

For MAEA, Lsize = 10. When the mutation probability
is computated, pmin is set to be 10−4, and pmax is set to
1/n. And pmin = 0.0 and pmax = 0.5 are set for crossover
probability computation. For SGA, RIGA and PDGA, param-
eters are set as follows: the population size pop size is set to
100, one-point crossover with a fixed probability pc = 0.6,
bit mutation with the mutation probability pm = 0.001,
and fitness proportionate selection with roulette wheel. The
best N chromosomes among all the parents and children
are always transferred to the next generation population.
The best-of-generation fitness was recorded every generation.
And for each run of an algorithm on a dynamic problem,
10 periods of environmental changes are allowed. Each
experimental result is averaged over 100 runs with different
random seeds.

For dynamic optimization problems, there does not exist
only one single optimal solution. Hence, it is not enough
to compare only optimal solution obtained at last. It is more
important to compare the performance of algorithms at every
generation. The overall offline performance of an algorithm
on a DOP is defined as:

FBOG =
1

G

G∑
i=1

(
1

100

100∑
j=1

FBOGij
), (11)

where G = 1000 is the total number of generations for a run
and FBOGij

is the best-of generation fitness of generation
i of run j. The off-line performance FBOG is the best-of-
generation fitness averaged over 100 runs and then averaged
over the data gathering period, i.e., 1000 generations.

B. Experimental Results

The experimental results with respect to the average-
of-generation fitness against evaluations of four EAs on
dynamic test problems with ρ = 0.1, ρ = 0.5, and ρ = 0.9
are shown in Figs. 4, 5, and 6 respectively. The corresponding
statistical results of comparing algorithms by one-tailed t-test
with 38 degrees of freedom at a 0.05 level of significance
are given in Table 1 and Table 2 respectively. In Table 1
and 2, the t-test result regarding Alg.1−Alg.2 is shown as
”+”, ”−”and ”∼” when Alg.1 is significantly better than,
significantly worse than, and statistically equivalent to Alg.2
respectively. From these tables and figures several results can
be observed.

First, when the environment shifted, MAEA can always
outperform other algorithms on almost all the problems.
MAEA can converge faster and trace the optimal better
in both the stationary and dynamic environments. On the
One-Max problem , when the environment shifts a little
(see Fig. 4(a)), MAEA performs as well as SGA, PDGA
and RIGA; when ρ = 0.5 (see Fig. 5(a)), MAEA keeps
performing perfectly well with the best-of-generation fitness
staying in the optimum over all dynamic periods; when
ρ = 0.9 (see Fig. 6(a)), both MAEA and PDGA performs
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Fig. 4. Experimental results with respect to the mean best-of-generation fitness against evaluations of four EAs on dynamic test problems with ρ = 0.1:
(a) One-Max, (b) Royal Road, (c) Deceptive, and (d) Strongly Interrelated Deceptive.
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Fig. 5. Experimental results with respect to mean best-of-generation fitness against evaluations of four EAs on dynamic test problems with ρ = 0.5: (a)
One-Max, (b) Royal Road, (c) Deceptive, and (d) Strongly Interrelated Deceptive.
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Fig. 6. Experimental results with respect to mean best-of-generation fitness against evaluations of four EAs on dynamic test problems with ρ = 0.9: (a)
One-Max, (b) Royal Road, (c) Deceptive, and (d) Strongly Interrelated Deceptive.

TABLE I

EXPERIMENTAL RESULTS OF ALGORITHMS ON DYNAMIC PROBLEMS (ALG.1 TO ALG.4 DENOTE MAEA, SGA, PDGA AND RIGA RESPECTIVELY).

F̃unction One-Max Problem Royal Road Function Deceptive Function Strongly Interrelated Deceptive Function
ρ Alg.1 Alg.2 Alg.3 Alg.4 Alg.1 Alg.2 Alg.3 Alg.4 Alg.1 Alg.2 Alg.3 Alg.4 Alg.1 Alg.2 Alg.3 Alg.4

0.1 99.6 96.0 98.3 97.4 51.3 36.2 40.1 37.8 295.8 270.1 273.6 273.6 9.49 9.21 9.38 9.29
0.5 91.2 76.3 80.7 78.1 37.7 29.8 32.1 30.4 288.5 268.3 283.8 270.5 9.42 9.17 9.24 9.21
0.9 97.4 78.2 96.1 83.6 41.1 28.3 32.2 29.0 288.6 270.3 279.2 272.3 9.46 9.18 9.30 9.20

TABLE II

STATISTICAL RESULTS OF ALGORITHMS ON DYNAMIC PROBLEMS (ALG.1 TO ALG.4 DENOTE MAEA, SGA, PDGA AND RIGA RESPECTIVELY).

t-test Result One-Max Problem Royal Road Function Deceptive Function Strongly Interrelated Deceptive Function
ρ → 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

Alg.1 - Alg.2 + + + + + + + + + + + +

Alg.1 - Alg.3 ∼ + + + + + + + + + + +

Alg.1 - Alg.4 + + + + + + + + + + + +

Alg.2 - Alg.3 − − − − − − − − − − − −
Alg.2 - Alg.4 − − − − ∼ − ∼ − ∼ − − ∼
Alg.3 - Alg.4 + + + + + + + + + + + +

much better than SGA and RIGA, and also after a change
took place, it can be seen from the figure that both MAEA
and PDGA can converge fast and make good performance
when intense shift happens. On the Royal Road Problem and
Deceptive Problem, when ρ = 0.1 and ρ = 0.9 (see Fig. 4(b),
Fig. 4(c), and Fig. 6(b), Fig. 6(c)), MAEA outperforms
SGA, PDGA and RIGA; and when the environment half
shift (see Fig. 5(b), Fig. 5(c)), both MAEA and PDGA
perform well. The average-of-generation fitness first drops
a little when changes occur, then rises up quickly to near

optimum value. This is because the complementary and
dominance mechanisms embedded in MAEA work perfectly
under the condition of extreme environment change. On
the the Strongly Interrelated Deceptive problem, MAEA
outperforms SGA, PDGA and RIGA for all periods in all the
shifting environments (see Fig. 4(d), Fig. 5(d) and Fig. 6(d)).
For MAEA, whenever the fitness function changes, the statis-
tics based mechanism and diversity maintaining mechanisms
in MAEA rapidly draw back the best individuals in the last
generation of previous period. And the lattice construction
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also helps to suit the new environment.
Second, MAEA has a more quickly and robust converge

capability than SGA, PDGA and RIGA. And also, it can
be seen from the figures, for all the tseting problems, that
PDGA has the ability to track the optimal faster than SGA
and RIGA due to the primal dual mapping.

Third, the competitive and learning behaviors in MAEA
make MAEA have a better exploitation ability than GAs. All
the agents accomplish their update via competing in a local
neighborhood or learning based on the statistical feedback
information of the whole system, so MAEA has a rapid
convergence capability.

Fourth, the combination of the two diversity maintaining
schemes RI and ADM are introduced into MAEA, hence
improve the adaptability of MAEA in non-stationary en-
vironments. The information of the former generation is
reserved and the diversity is increased, therefore, MAEA with
reserved information and multiplex diversity can adapts to the
dynamic environment due to effectiveness of the combined
maintaining scheme of RI and ADM.

V. CONCLUSIONS

This paper investigates the application of a multi-agent
based evolutionary algorithm (MAEA) for DOPs. Two spe-
cial behaviors of agents, competing and learning, are pro-
posed. Two diversity schemes, random immigrants and adap-
tive dual mapping scheme, are integrated into MAEA in
order to improve its performance in dynamic environments.
From the experimental results, we can draw the following
conclusions on the dynamic test problems.

First, the competing and learning behaviors of agents can
always help MAEA obtain a better performance than the
studied GAs can do. Second, random immigrants scheme
and dual mapping method can both help to increase the
population diversity of EAs. Combining them together also
improves the performance of MAEA in dynamic environ-
ments efficiently. Third, some dynamic characteristics of the
environments may affect the performance of algorithms.

Generally speaking, the experimental results indicate that
the MAEA with the random immigrants and adaptive
dual mapping schemes exhibits very good performance in
dynamic environments. MAEA combining some diversity
schemes seems to be a good choice to address DOPs.

For future work, it is interesting to hybridize MAEA
with other advanced diversity schemes, e.g., hybrid memory
schemes [17], [23]. Another interesting work is to further
investigate the idea of MAEA to solve other optimiza-
tion problems with sequential and real encodings in non-
stationary environments.
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