
Hyper-Learning for Population-Based Incremental Learning in

Dynamic Environments

Shengxiang Yang and Hendrik Richter

Abstract— The population-based incremental learning (PBIL)
algorithm is a combination of evolutionary optimization and
competitive learning. Recently, the PBIL algorithm has been
applied for dynamic optimization problems. This paper investi-
gates the effect of the learning rate, which is a key parameter of
PBIL, on the performance of PBIL in dynamic environments. A
hyper-learning scheme is proposed for PBIL, where the learning
rate is temporarily raised whenever the environment changes.
The hyper-learning scheme can be combined with other ap-
proaches, e.g., the restart and hypermutation schemes, for PBIL
in dynamic environments. Based on a series of dynamic test
problems, experiments are carried out to investigate the effect
of different learning rates and the proposed hyper-learning
scheme in combination with restart and hypermutation schemes
on the performance of PBIL. The experimental results show that
the learning rate has a significant impact on the performance
of the PBIL algorithm in dynamic environments and that the
effect of the proposed hyper-learning scheme depends on the
environmental dynamics and other schemes combined in the
PBIL algorithm.

I. INTRODUCTION

Dynamic optimization problems (DOPs) are a class of

challenging optimization problems that involve changes over

time regarding the optmization goal, problem instances,

and/or constraints. DOPs are pervasive in real world opti-

mization problems. They challenge traditional optimization

algorithms as well as conventional evolutionary algorithms

(EAs) due to the requirement of adapting to the changing

environment with time. For DOPs, the aim is to develop

algorithms that can track the changing optimum instead of

locating a fixed optimum in the search space.

When applied for DOPs, conventional EAs face the

convergence problem: once converged, EAs can not adapt

well to the following new environments. In order to en-

hance the performance of EAs in dynamic environments,

several approaches have been developed in the literature

[10]. Generally speaking, these approaches can be classified

into four types. The first type of approaches belongs to

the diversity scheme, which maintains the diversity level

of the population by inserting random immigrants [9] or

guided immigrants [19] into the population during the run

of EAs. The second type uses memory [14], [6], [16], [22],

Shengxiang Yang is with the Department of Computer Science, University
of Leicester, University Road, Leicester LE1 7RH, United Kingdom (email:
s.yang@mcs.le.ac.uk).

Hendrik Richter is with HTWK Leipzig, Fachbereich Elektrotechnik und
Informationstechnik, Institut Mess–, Steuerungs– und Regelungstechnik, D–
04125 Leipzig, Germany (email: richter@fbeit.htwk-leipzig.de)

The work by Shengxiang Yang was supported by the Engineering and
Physical Sciences Research Council (EPSRC) of the United Kingdom under
Grant EP/E060722/1.

to store and reuse useful information to efficiently adapt

EAs in dynamic environments, especially in cyclic dynamic

environments. The third type uses multi-population schemes

[7], [15] to distribute the search forces into the search space.

The fourth type uses adaptive or self-adaptive schemes to

adjusts genetic operators and/or relevant parameters to adapt

EAs to the new environment whenever a change occurs, e.g,

the hypermutation scheme [8] and self-adaptive evolution

strategies [1], [2]. Of these four types of approaches devised

for EAs for DOPs, the fourth type of adaptive schemes has

received relatively less research so far. This paper investigates

a method that belongs to the fourth type of approaches for

EAs in dynamic environments.

The population-based incremental learning (PBIL) algo-

rithm was first proposed by Baluja [3], which combines the

idea of evolutionary optimization and competitive learning.

PBIL explicitly maintains the statistics contained in the

population of EAs [4]. PBILs have been successfully applied

for numerous stationary benchmark and real-world problems

[12]. Recently, the PBIL algorithm has been investigated for

DOPs in the literature [21], [22].

This paper investigates the effect of the learning rate

on the performance of PBILs in dynamic environments. A

hyper-learning scheme is proposed for PBILs to address

DOPs, where the learning rate is temporarily raised whenever

the environment changes. The hyper-learning scheme can

be combined with other diversity schemes, e.g., restart and

hypermutation schemes, for PBILs in dynamic environments.

Using the dynamic problem generator proposed in [17],

[21], a series of DOPs are constructed as the dynamic test

environments and experiments are carried out to investigate

the performance of PBILs with different learning rates and

the performance of PBILs with the hyper-learning scheme

in combination with restart and hypermutation schemes for

DOPs. Based on the experimental results, the effect of the

learning rate and the hyper-learning scheme on the perfor-

mance of PBILs in dynamic environments is analysed.

The rest of this paper is organized as follows. The next

section describes the PBIL algorithm and some work on

PBIL for DOPs. Section III describes the proposed hyper-

learning scheme for PBILs and some PBILs studied in this

paper, which integrate the hyper-learning scheme in combi-

nation with restart and hypermutation schemes. Section IV

presents the experimental design, including the dynamic test

environments, parameter settings, and performance measure.

Section V presents the experimental results and analysis.

Finally, Section VI concludes this paper with discussions on

relevant future work.

682978-1-4244-2959-2/09/$25.00 c© 2009 IEEE



t := 0

initialize the probability vector �P (0) := �0.5

generate a set S(0) of n samples by �P (0)
repeat

evaluate samples in S(t)

learn �P (t) toward the best sample �B(t) in S(t)
according to Eq. (1)

mutate �P (t) according to Eq. (2)

generate a set S(t) of n samples by �P (t)
retrieve the best sample from S(t − 1) to replace a

random sample in S(t)
t := t + 1

until a termination condition holds // e.g., t > tmax

Fig. 1. Pseudocode of the standard PBIL algorithm (SPBIL) with the
elitism scheme.

II. POPULATION-BASED INCREMENTAL LEARNING

The PBIL algorithm aims to generate a real-valued prob-

ability vector �P = {P1, . . . , Pl} (l is the binary-encoding

length), which creates high quality solutions with high prob-

abilities when sampled. Each element Pi (i = 1, . . . , l)
in the probability vector is the probability of creating an

allele “1” in the locus i. Hence, a solution is sampled from

the probability vector �P as follows: for each locus i, if a

randomly created number r = rand(0.0, 1.0) < Pi, it is set

to 1; otherwise, it is set to 0. The pseudocode for the standard

PBIL algorithm (SPBIL) investigated in this paper is shown

in Fig. 1.

The standard PBIL starts from a probability vector that

has a value of 0.5 for each element. This probability vector

can be called the central probability vector since it falls

in the central point of the search space. Sampling this

initial probability vector creates random solutions because

the probability of generating a 1 or 0 on each locus is

equal. At iteration t, a set S(t) of n solutions are sampled

from the probability vector �P (t)1. The samples are then

evaluated using the problem-specific fitness function. Then,

the probability vector is learnt towards the best solution �B(t)
of the set S(t) according to the following learning rule.

Pi(t+1) := (1−α)∗Pi(t)+α∗Bi(t), i = {1, . . . , l} (1)

where α is the learning rate, which determines the distance

the probability vector is pushed for each iteration.

After the probability vector is updated toward the best

sample, it may undergo a bitwise mutation process [5].

Mutation is applied to PBILs studied in this paper. In order to

keep the diversity of sampling, the mutation operation always

changes the probability vector toward the central probability

vector, i.e., the central point in the search space. The mutation

operation is carried out as follows. For each locus i (i =

1The elisitsm of size 1 is used in all PBIL algorithms studied in this

paper. That is, the best sample created by �P (t − 1) is inserted into S(t),

replacing a random sample in S(t) created by �P (t).

1, . . . , l), if a random number r = rand(0.0, 1.0) < pm (pm

is the mutation probability), then Pi is mutated as follows:

P ′

i =

⎧⎨
⎩

Pi ∗ (1.0 − δm), Pi > 0.5
Pi, Pi = 0.5
Pi ∗ (1.0 − δm) + δm, Pi < 0.5

(2)

where δm is the mutation shift that controls the amount a

mutation operation alters the value in each bit position. After

the mutation operation, a new set of samples is generated by

the new probability vector and this cycle is repeated.

As the search progresses, the elements in the probability

vector move away from their initial settings of 0.5 towards ei-

ther 0.0 or 1.0, which will produce high evaluation solutions

when the probability vector is sampled. The search progress

stops when some termination condition is satisfied, e.g., the

maximum allowable number of iterations tmax is reached or

the probability vector is converged to either 0.0 or 1.0 for

each bit position.

PBIL has been applied for many optimization problems

with promising results [12]. Most of these applications are for

stationary problems. Recently, there have been some works

on studying PBIL algorithms for DOPs. Yang and Yao [21]

have investigated PBIL for DOPs by introducing dualism and

a scheme similar to the random immigrants method [9] to

improve their performance in dynamic environments. In [18],

[22], an associative memory scheme has been introduced into

PBIL for DOPs with some promising results. In this paper,

a hyper-learning scheme is proposed for PBIL in dynamic

environments, which is described in the following section.

III. HYPER-LEARNING FOR PBIL

As aforementioned, the PBIL algorithm maintains a prob-

ability vector and evolves it through creating samples from

it and learning toward the best sample created. The driving

force for PBIL to solve an optimization problem lies in the

learning of the probability vector toward the best sample

created from it iteratively. Usually, with the running of PBIL,

the probability vector will eventually converge to the one

with either 0.0 or 1.0 in each element, which will produce the

optimal solution(s) when sampled in stationary environments

due to the learning process. Here, the learning rate parameter

α controls how fast the probability vector moves toward the

best sample in each iteration. The bigger the value of α,

the faster the evolving process (though the probability vector

may converge into local optima).

Usually, PBIL with a proper learning rate can converge

well to the optimal solution(s) in stationary environments,

which gives PBIL an advantage in comparison with other

EAs [5]. However, in dynamic environments, convergence

becomes a big problem for PBIL algorithms since it deprives

the diversity of the samples created and hence make it hard

for PBIL algortihms to adapt to the new environment when a

change occurs. To address the convergence problem, several

approaches can be developed to re-introduce diversity after

a change occurs, e.g., the restart scheme.

However, using only these diversity schemes may not

adapt PBILs to a new environment to its best. We may need

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 683



t := 0

initialize the probability vector �P (0) := �0.5

generate a set S(0) of n samples by �P (0)
repeat

evaluate smaples in S(t)

learn �P (t) toward the best sample �B(t) in S(t)
according to Eq. (1)

mutate �P (t) according to Eq. (2)

generate a set S(t) of n samples by �P (t)
retrieve the best sample from S(t − 1) to replace a

random sample in S(t)

if the environment changes then

re-initialize �P (t) := �0.5
if hyper-learning is used then // for PBILrl

raise α from αl to αu for nhl generations

t := t + 1
until a termination condition holds // e.g., t > tmax

Fig. 2. Pseudo-code for the PBIL with re-start (PBILr) and the PBIL with
restart and hyper-learning (PBILrl).

to apply a high learning rate to learn the probability vector

faster toward those really useful samples produced in a new

environment and hence adapt PBIL algorithms more quickly

toward the new environment. This thinking naturally leads

to the introduction of the hyper-learning scheme into PBIL:

whenever an environmental change occurs, the learning rate

is temporarily raised for several generations from the normal

learning rate.

Obviously, to realize its best advantage, the hyper-learning

scheme should be combined with other diversity approaches

for PBIL algorithms to address DOPs. In this paper, the

hyper-learning scheme is combined with restart and hyper-

mutation [8] schemes for PBIL, which are described in the

following sub-sections respectively.

A. Hyper-Learning with Restart

Restart is a simple and natural way for EAs to address

DOPs. For PBIL with the restart scheme, whenever the

environment changes, the probability vector is re-initialized

to the central probability vector. The pseudo-code of the

PBIL with restart, denoted PBILr in this paper, is shown

in Fig. 2. The corresponding PBIL with restart and hyper-

learning schemes, denoted PBILrl in this paper, is also shown

in Fig. 2. Within PBILrl, whenever the environment changes,

the learning rate α is raised from the basic low value αl to

a high value αu for the following nhl generations.

B. Hyper-Learning with Hypermutation

Hypermutation is another scheme to re-introduce the pop-

ulation diversity for EAs to address DOPs and has been

studied in several works [8], [13]. Hypermutation can also be

integrated into PBIL to deal with DOPs. The pseudo-code of

the PBIL with hypermutation, denoted PBILm in this paper,

t := 0

initialize the probability vector �P (0) := �0.5

generate a set S(0) of n samples by �P (0)
repeat

evaluate smaples in S(t)

learn �P (t) toward the best sample �B(t) in S(t)
according to Eq. (1)

mutate �P (t) according to Eq. (2)

generate a set S(t) of n samples by �P (t)
retrieve the best sample from S(t − 1) to replace a

random sample in S(t)

if the environment changes then

raise pm from pl
m to pu

m for nhm generations

if hyper-learning is used then // for PBILml

raise α from αl to αu for nhl generations

t := t + 1
until a termination condition holds // e.g., t > tmax

Fig. 3. Pseudo-code for the PBIL with hypermutation (PBILm) and the
PBIL with hypermutation and hyper-learning (PBILml).

is shown in Fig. 3. Within PBILm, whenever the environment

changes, the mutation probability pm is raised from the basic

low value pl
m to a high value pu

m for the following nhm

generations. The corresponding PBIL with the hypermutation

and hyper-learning schemes, denoted PBILml in this paper,

is also shown in Fig. 3.

IV. EXPERIMENTAL DESIGN

A. Dynamic Test Environments

For this paper, we use the DOP generator proposed in [17],

[21] to construct dynamic test problems. This generator can

construct DOPs from any binary-encoded stationary function

f(�x) as follows. Suppose the environment changes every τ
generations. For each environment k, an XORing mask �M(k)
is incrementally generated as follows:

�M(k) = �M(k − 1) ⊕ �T (k), (3)

where “⊕” is a bitwise exclusive-or (XOR) operator (i.e.,

1 ⊕ 1 = 0, 1 ⊕ 0 = 1, and 0 ⊕ 0 = 0) and �T (k) is an

intermediate binary template generated for environment k.
�T (k) is generated with ρ× l (ρ ∈ (0.0, 1.0]) random loci set

to 1 while the remaining loci set to 0. For the initial envi-

ronment k = 1, �M(1) is set to a zero vector, i.e., �M(1) = �0.

Given the above descriptions, an individual at generation

t is then evaluated as follows:

f(�x, t) = f(�x ⊕ �M(k)), (4)

where k = �t/τ� is the environmental index at time t. With

this XOR DOP generator, τ and ρ control the speed and

severity of environmental changes respectively. Smaller τ
means faster changes while bigger ρ means severer changes.

684 2009 IEEE Congress on Evolutionary Computation (CEC 2009)



In this paper, three 100-bit binary functions are selected

as the base stationary functions to construct dynamic test

environments. The first one is the well-known OneMax

function that aims to maximize the number of ones in a

binary string. The second one is a Plateau function, which

consists of 25 contiguous 4-bit building blocks (BBs). Each

BB contributes 4 to the total fitness if all bits inside it

have the allele of one; otherwise, it contributes 0. The third

problem is a 100-item 0-1 knapsack problem with the weight

and profit of each item randomly created in the range of

[1, 30] and the capacity of the knapsack set to be half of the

total weight of all items. The fitness of a feasible solution is

the sum of the profits of the selected items. If a solution

overfills the knapsack, its fitness is set to the difference

between the total weight of all items and the weight of

selected items, multiplied by a small factor 10−5 in order

to make it in-competitive with those solutions that do not

overfill the knapsack.

Dynamic environments are constructed from each of the

three base functions using the aforementioned XOR DOP

generator. For each dynamic environment, the landscape is

periodically changed every τ generations during the run of

a PBIL algorithm. In order to compare the performance

of PBIL algorithms in different dynamic environments, the

speed of change parameter τ is set to 20 and 50 respectively.

The severity of change parameter ρ is set to 0.1, 0.2, 0.5, and

0.9 respectively.

B. Parameter Settings and Performance Measure

Two sets of experiments were carried out in this paper

on the above constructed dynamic test environments. The

first set of experiments investigates the effect of the learning

rate on the performance of the standard PBIL, i.e., SPBIL,

for DOPs. The second set investigates the effect of the

hyper-learning scheme on the performance of several PBIL

algorithms with restart or hypermutation enhancements, as

described in Section III.

For all PBIL algorithms, some common parameters are

set as follows: the population size n = 100, the learning

rate α = 0.10, the mutation probability pm = 0.05 with the

mutation shift δ = 0.05, and elitism of size 1. For the first

set of experiments, the learning rate α in SPBIL is set to

0.05, 0.10, 0.25, 0.50, and 0.75 respectively (and the SPBIL

is denoted as α-SPBIL accordingly). For the second set of

experiments, the parameters are set as follows. The learning

rate α is fixed to 0.10 for SPBIL, PBILr, and PBILm and

is set to the base value αl = 0.10 for normal generations

or the hyper value αu = 0.25 for the interim generations

when the hyper-learning scheme is triggered for PBILrl and

PBILml. For PBILm and PBILml, the mutation probability

pm is set to the base value pl
m = 0.05 for normal generations

or the hyper value pu
m = 0.3 for the interim generations

when the hypermutation scheme is triggered. Whenever the

environment changes, the hyper-mutation or hyper-learning

schemes for PBILs are triggered for 5 generations, i.e.,

nhm = 5 and nhl = 5.

For each experiment of a PBIL algorithm on a DOP, 50

independent runs were executed with the same set of random

seeds. For each run, 50 environmental changes were allowed.

For each run the best-of-generation fitness was recorded

every generation. The overall performance of an algorithm

on a DOP is defined as:

FBOG =
1

G

G∑
i=1

(
1

50

50∑
j=1

FBOGij
), (5)

where G = 50∗τ is the total number of generations for a run

and FBOGij
is the best-of-generation fitness of generation i

of run j. The off-line performance FBOG is the best-of-

generation fitness averaged over 50 runs and then averaged

over the data gathering period.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Results on Selection Pressure

The experimental results of the first set of experiments

are plotted in Fig. 4. The corresponding statistical results

of comparing PBILs by one-tailed t-test with 98 degrees of

freedom at a 0.05 level of significance are given in Table I.

The t-test result with respect to Alg. 1−Alg. 2 is shown as

“+”, “−”, “s+”, or “s−” when Alg. 1 is better than, worse

than, significantly better than, or significantly worse than

Alg. 2 respectively. From Fig. 4 and Table I, the following

two results can be observed.

First, it can be seen that the learning rate does have a

significant effect on the performance of SPBIL on most

dynamic test problems. This result can be clearly seen from

Table I, where most t-test results are shown as either “s+”

or “s−”.

Second, the exact effect of increasing the learning rate on

the performance of SPBIL depends on the base function used

for DOPs and the environmental dynamics. The effect is quite

different across dynamic OneMax, Plateau and Knapsack

problems. For dynamic OneMax problems, it seems that a

higher learning rate increases the performance of SPBIL

except for severely changing environments (e.g., ρ = 0.5
for τ = 20 and ρ = 0.9 for both τ = 20 and τ = 50). For

dynamic Plateau and Knapsack problems, when the learning

rate is raised from 0.05 to 0.10, the performance of SPBIL

improves, as indicated by the t-test results regarding 0.10-

SPBIL − 0.05-SPBIL. When the learning rate is increased to

0.25, the performance of SPBIL degrades on dynamic Plateau

problems while improving on dynamic Knapsack problems.

When the learning rate is further increased to 0.50 and 0.75,

the performance of SPBIL degrades on both dynamic Plateau

and Knapsack problems, as indicated in the corresponding t-
test results in Table I. When the environment involves severe

changes (i.e., ρ = 0.9), the performance of SPBIL degrades

when the learning rate increases on most DOPs.

Generally speaking, it seems that setting the learning

rate parameter α to 0.10 gives the best or second best

performance of SPBIL on the test DOPs in comparison

with other settings. For the following experiments, we set

α = 0.10 for relevant PBIL algorithms.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 685



Fig. 4. Experimental results of comparing SPBILs with different learning rates α on DOPs.

TABLE I

THE t-TEST RESULTS OF COMPARING SPBILS WITH DIFFERENT LEARNING RATES ON DOPS.

t-test Result OneMax P lateau Knapsack

τ = 20, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

0.10-SPBIL − 0.05-SPBIL s+ s+ − s− s+ s+ s+ s+ s+ s+ s− s−
0.25-SPBIL − 0.10-SPBIL s+ s+ s− s− s− s− s− s− s+ s+ s− s−
0.50-SPBIL − 0.25-SPBIL s+ s+ s− s− s− s− s− s− s− s− s− s−
0.75-SPBIL − 0.50-SPBIL s− s− s− s− s− s− s− s− s− s− s− s−

τ = 50, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

0.10-SPBIL − 0.05-SPBIL s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s−
0.25-SPBIL − 0.10-SPBIL s+ s+ s+ s− s− s− s− s− + s+ s+ s−
0.50-SPBIL − 0.25-SPBIL s− s+ s+ s− s− s− s− s− s− s− s− s−
0.75-SPBIL − 0.50-SPBIL s− s− + s− s− s− s− s− s− s− s− s−

B. Experimental Results on Hyper-Learning

The experimental results of the second set of experiments

regarding the effect of the hyper-learning scheme are plotted

in Fig. 5. The corresponding t-test results of comparing

PBILs are given in Table II. In order to better understand the

performance of PBILs, the dynamic behaviour of PBILs with

respect to the best-of-generation fitness against generations

on DOPs with τ = 50 and ρ = 0.1 and ρ = 0.9 is plotted

in Fig. 6. In Fig. 6, the first 10 environmental changes, i.e.,

500 generations, are shown and the data were averaged over

50 runs. From Figs. 5 and 6 and Table II, several results can

be observed.

First, regarding the restart scheme, it can be seen that

PBILr outperforms SPBIL on DOPs with ρ set to 0.5 or 0.9

while is beaten by SPBIL on DOPs with ρ set to 0.1 or 0.2,

as indicated by the t-test results regarding PBILr − SPBIL

in Table II. This happens because when the environment

changes slightly, a high diversity introduced may divert the

searching force too much and hence degrades the perfor-

mance of PBIL algorithms. However, when the environment

changes significantly, restart can bring in sufficient diversity

686 2009 IEEE Congress on Evolutionary Computation (CEC 2009)



Fig. 5. Experimental results of comparing PBIL algorithms with and without hyper-learning on DOPs.

TABLE II

THE t-TEST RESULTS OF COMPARING DIFFERENT PBIL ALGORITHMS ON DOPS.

t-test Result OneMax P lateau Knapsack

τ = 20, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

PBILm − SPBIL + s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s+
PBILr − SPBIL s− s− s+ s+ s− s− s+ s− s− + s+ s+
PBILr − PBILm s− s− s+ s+ s− s− s+ s− s− s− s+ s+

PBILml − PBILm s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
PBILrl − PBILr s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

PBILrl − PBILml s− s− s+ s+ s− s− s+ s− s− s− s+ s+
τ = 50, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

PBILm − SPBIL s− s+ s+ s+ s+ s+ s+ s+ + s+ s+ s+
PBILr − SPBIL s− s− s+ s+ s− s− s+ s+ s− s− s+ s+
PBILr − PBILm s− s− s+ s+ s− s− s+ s+ s− s− s+ s+

PBILml − PBILm s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
PBILrl − PBILr s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s−

PBILrl − PBILml s− s− s+ s+ s− s− s+ s+ s− s− s+ s+

for PBIL to search for the new optima, which may be far

away from the optima of the previous environment.

Second, regarding the hypermutation scheme, it can be

seen that hypermutation is beneficial for the performance of

PBILs on almost all DOPs. This result indicates that it is

important to introduce a proper level of diversity when the

environment changes. Another observation lies in that the

performance of PBILm and PBILml is more sensitive to the

value of ρ. Their performance drops sharply when the value

of ρ increases from 0.1 to 0.2, 0.5 to 0.9.

It can also be seen that the hypermutation scheme out-

performs the restart scheme when the environment changes

slightly, i.e., when ρ = 0.1 and 0.2. On the contrast, when

the environment changes significantly, i.e., when ρ = 0.5

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 687



Fig. 6. Dynamic behaviour of PBIL algorithms on DOPs with τ = 50 and ρ = 0.1 (Left) and ρ = 0.9 (Right).

and 0.9, hypermutation is beaten by restart, as indicated by

the t-test results regarding PBILr − PBILm and PBILrl −
PBILml in Table II respectively.

Finally, regarding the effect of the hyper-learning scheme,

it can be seen that hyper-learning significantly improves

the performance of both PBILr and PBILm on almost all

dynamic functions, as indicated by the t-test results regarding

PBILrl − PBILr and PBILml − PBILm in Table II respec-

tively. This result confirms our expectation of combining

the hyper-learning scheme with diversity schemes for PBIL

algorithms in dynamic environments. The effect of the hyper-

learning scheme can also be clearly seen from the dynamic

behaviour of PBILrl on Dops with ρ = 0.10 in Fig. 6. Each

time when the environment changes, it will take PBILr some

time to make real searching progress while PBILrl can make

real searching progress quite quickly after a change.

VI. CONCLUSION AND FUTURE WORK

Developing adaptive genetic operators is one type of

approaches for EAs to address dynamic environments. This

paper investigates the effect of the learning rate on the

performance of PBIL algorithms in dynamic environments

and proposes a hyper-learning scheme for PBIL algorithms

to address DOPs. When an environmental change occurs,

688 2009 IEEE Congress on Evolutionary Computation (CEC 2009)



the learning rate is temporarily raised. This hyper-learning

scheme can be combined with other schemes in the litera-

ture, e.g. restart and hypermutation, for PBIL algorithms in

dynamic environments.

The effect of the learning rate and the hyper-learning

scheme for PBIL algorithms in dynamic environments were

experimentally studied based on a series of dynamic test

problems. From the experimental results and relevant analy-

sis, three major conclusions can be drawn on the dynamic test

environments. First, the learning rate does have a significant

effect on the performance of PBIL algorithms in dynamic

environments. Second, the effect of increasing the learning

rate on the performance of PBIL in dynamic environments

depends on the problem and environmental dynamics. Third,

the proposed hyper-learning scheme significantly improves

the performance of PBIL algorithms with diversity schemes

in dynamic environments.

Generally speaking, this paper investigates the effect of

the learning rate and the hyper-learning scheme for PBIL

algorithms in dynamic environments with some preliminary

experiments. The results observed may be used to guide

the design of new PBIL algorithms for DOPs. For example,

developing more efficient learning schemes that can adjust

the learning rate adaptively during the running of PBIL

algorithms may be an interesting future work. Combining

the hyper-learning scheme with other mechanisms for PBIL

in dynamic environments is another interesting future work.

REFERENCES

[1] D. V. Arnold and H.-G. Beyer. Random dynamics optimum tracking
with evolution strategies. Parallel Problem Solving from Nature VII,
pp. 3–12, 2002.

[2] D. V. Arnold and H.-G. Beyer. Optimum tracking with evolution
strategies. Evolutionary Computation, 14(3): 291–308, 2006.

[3] S. Baluja. Population-based incremental learning: A method for in-
tegrating genetic search based function optimization and competitive
learning. Technical Report CMU-CS-94-163, Carnegie Mellon Univer-
sity, USA, 1994.

[4] S. Baluja and R. Caruana. Removing the genetics from the standard
genetic algorithm. Proc. of the 12th Int. Conf. on Machine Learning,
pp. 38-46, 1995.

[5] S. Baluja. An empirical comparison of seven iterative and evolutionary
function optimization heuristics. Technical Report CMU-CS-95-193,
Carnegie Mellon University, USA, 1995.

[6] J. Branke. Memory enhanced evolutionary algorithms for chang-
ing optimization problems. Proc. of the 1999 IEEE Congress on

Evol. Comput., vol. 3, pp. 1875–1882, 1999.

[7] J. Branke, T. Kaußler, C. Schmidth, and H. Schmeck. A multi-
population approach to dynamic optimization problems. Proc. of the

4th Int. Conf. on Adaptive Computing in Design and Manufacturing,
pp. 299–308, 2000.

[8] H. G. Cobb and J. J. Grefenstette. Genetic algorithms for tracking
changing environments. Proc. of the 5th Int. Conf. on Genetic Algo-

rithms, pp. 523–530, 1993.

[9] J. J. Grefenstette. Genetic algorithms for changing environments.
Parallel Problem Solving from Nature II, pp. 137–144, 1992.

[10] Y. Jin and J. Branke. Evolutionary optimization in uncertain environ-
ments: a survey. IEEE Trans. on Evol. Comput., 9(3): 303–317, 2005.

[11] J. Lewis, E. Hart, and G. Ritchie. A comparison of dominance
mechanisms and simple mutation on non-stationary problems. Proc. of

the 4th Int. Conf. on Parallel Problem Solving from Nature, pp. 139–
148, 1998.

[12] P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms:

A New Tool for Evolutionary Computation, Kluwer Academic Pub-
lishers, 2002.

[13] R. W. Morrison and K. A. De Jong. Triggered hypermutation revisited.
Proc. of the 2000 IEEE Congress on Evol. Comput., pp. 1025-1032,
2000.

[14] K. P. Ng and K. C. Wong. A new diploid scheme and dominance
change mechanism for non-stationary function optimisation. Proc. of

the 6th Int. Conf. on Genetic Algorithms, 1995.
[15] D. Parrott and X. Li. Locating and tracking multiple dynamic op-

tima by a particle swarm model using speciation. IEEE Trans. on

Evol. Comput., 10(4): 444-458, 2006.
[16] K. Trojanowski and Z. Michalewicz. Searching for optima in non-

stationary environments. Proc. of the 1999 IEEE Congress on

Evol. Comput., pp. 1843–1850, 1999.
[17] S. Yang. Non-stationary problem optimization using the primal-dual

genetic algorithm. Proc. of the 2003 IEEE Congress on Evol. Comput.,
vol. 3, pp. 2246-2253, 2003.

[18] S. Yang. Population-based incremental learning with memory scheme
for changing environments. Proc. of the 2005 Genetic and Evolution-

ary Computation Conference, vol. 1, pp. 711-718, 2005.
[19] S. Yang. Genetic algorithms with memory- and elitism-based immi-

grants in dynamic environments. Evolutionary Computation, 16(3):
385-416, 2008.

[20] S. Yang and R. Tinós. Hyper-selection in dynamic environments. Proc.

of the 2008 IEEE Congress on Evol. Comput., pp. 3185-3192, 2008.
[21] S. Yang and X. Yao. Experimental study on population-based incre-

mental learning algorithms for dynamic optimization problems. Soft

Computing, 9(11): 815-834, 2005.
[22] S. Yang and X. Yao. Population-based incremental learning with asso-

ciative memory for dynamic environments. IEEE Trans. on Evol. Com-

put., 12(5): 542-561, 2008.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 689



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


