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Abstract— This paper presents an updated version of the a higher probability of exploring more promising areas ia th
adaptive learning particle swarm optimizer (ALPSO) [6], we fitness landscape than the ALPSO algorithm.
call it ALPSO-II. In order to improve the performance of The rest of this paper is organized as follows. Section I
ALPSO on multi-modal problems, we introduce several new . . ducti f the ALPSO al ith h
major features in ALPSO-II: (i) Adding particle’s status mo ni- gives an introduction o t_ e ag_ont m ? new
toring mechanism, (ii) controlling the number of particles that ~ features of ALPSO-II algorithm are described in section IlI
learn from the global best position, and (iii) updating two d the ~ Experimental study and results are present in section V. Fi

four learning operators used in ALPSO. To test the performarte  nally, conclusions and future work are discussed in seation
of ALPSO-II, we choose a set of 27 test problems, including

un-rotated, shifted, rotated, rotated shifted, and compogion II. ADAPTIVE LEARNING PARTICLE SWARM OPTIMIZER
functions in comparison of the ALPSO algorithm as well as ) o
several state-of-the-art variant PSO algorithms. The expgémen- In the basic PSO, each particleis represented by a

tal results show that ALPSO-II has a great improvement of the  position vectorZ; and a velocity vector;, which are updated
ALPSO algorithm, it also outperforms the other peer algorithms g5 follows:
on most test problems in terms of both the convergence speed

; rd d d d d d
and solution accuracy. v = wup + ("presti - xi) + 7727’2(17gbest - xi) 1)

I. INTRODUCTION yd
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Particle swarm optimization (PSO) is an effective op- J p ) -
timization tool, especially for solving global optimizati wherez’; andx{ represent the current and previous positions
problems. Since PSO was first proposed in 1995 [1], [4]'p the d-th dimension of particle respectivelyy’; andv; are
it has been widely studied due to its effectiveness ari#e current and previous velocity of particlerespectively;
simpleness. However, many experiments have shown th&test; @nd Zgesr are the best position found by particle
the basic PSO algorithm easily falls into local optima whei SO far and the best position found by the whole swarm
solving complex multi-modal problems [3] and it is difficult SO far respectivelyw € (0,1) is an inertia weight, which
for PSO to jump out of that local optimum once it is trappedetermines how much the previous velocity is preserved;
in a local optimum. m and n, are the acceleration constants, andand r

In the literature of PSO, maintaining diversity, populatio &€ random numbers generated in the interial, 1.0]
topology, hybridization with auxiliary search operatorsia uniformly.
adaptive PSO have become four of the most promising There are two main models of the PSO algorithm, called
approaches to preventing PSO from being trapped in locgbest (global best) andbest (local best), respectively. The
optima. In order to accelerate the convergence speed ¢ models give different performances on different prob-
avoid PSO from being trapped in local optima, an ALPSdems. Generally speaking, people believe that tbest
[6] algorithm was proposed based on four learning operatof@odel has a faster convergence speed but also has a higher
In order to enable particles to automatically choose thlrobability of getting stuck in local optima than thgest
appropriate learning operator at the appropriate momefitedel [5], [8]. On the contrary, thébest model is less
during the search process, an adaptive selection mechanié#inerable to the attraction of local optima but has a slower
is introduced in ALPSO. convergence speed than theest model.

In this paper, we present the ALPSO-II, which is an up- N order to alleviate the problems of the two models and
dated version of the ALPSO algorithm [6]. In ALPSO-II, we€nhance the advantages of them, ALPSO was proposed based
introduce several new functions to improve the performand an adaptive method to enable particle to carry out diffiere
of ALPSO on multi-modal problems. These new functiondyPes of search (local or global) at different evolutionary
include two updated learning operators, particle status-moStages. In ALPSO, except thghest particle, each particle
itoring mechanism, and controlling the number of particle§as four learning sources, which produced by the following
that learn from the global best position. These approachfr learning operators:
can increase population diversity, as a result, ALPSO-§ hdoperatora: learning from itspbest position
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Operatorc: learning from thepbest of its nearest particle ~ Algorithm 1 UpdateGbest(particlg, fes)
1: for each dimensionl of gbest do

exploration : v = wvl +n-ri- (pbestd curess —24) (B) 20 if rand() < PF then

3: ft.gbest = j'gbeszt;
Operatord: learning from thegbest particle 4 Tr_gbest|d] = Tx[d];

5: Evaluatez:; gpest;

convergence : v = wul +n-ri- (pbestgbest -z (6) . fes++;

7. if f(ft_gbest) < f(fgbest) then
where pbesty,_nearest 1S the pbest of the particle closest to 8: Tobest[d] = Tt gbest[d];
particle k, which is better thambesty; vd,, is the average end if
velocity of all particles in thed-th dimension, which is igj engnfgrlf

calculated byvg,, = >t [vf]/N where N is the popu- whereP} is the probability of particlé: to learn from theybest

lation size; N(0,1) is a random number from the normal particle

distribution with mear0 and variance.
The four learning operators play the roles of convergence,

exploitation, exploration and jumping out of the basins OBperatorsp’? is a penalty factor for operatdrof particle &,

attraction of local optima, respectively. In order to e®ablhich is défined as follows:

particles to automatically choose an appropriate learning o . IV

operator at the appropriate moment during the search gpces.* — { 0.9, if g; :_0 ands; (t) = max;Z, (7 (1)) (9)

an adaptive selection mechanism, which is based on the’ 1 otherwise

assumption .that .the mc_)st successful operator.used In tgﬁd sk(t) is the selection ratio of operator i for particle k

recent past iterations might be also successful in the éutu&t the current iteration. Based on the above definitions, the

several iterations, is introduced. For each particle, ohe Qg|action ratio of operatarfor particlek in the next iteration
the four learning operators is selected according to the,

_ ) _ : ) "+ 1 is updated according to the following equation:
selection ratios. The operator that results in a highetivela

)

rformance will have i lection ratio incr . Gr TRt
performance will have ts seectg atio increased G.adu sf(t+1)= Mz() (1= M *7)+7, (10)
ally, the most suitable operator will be chosen automdsical M r;?(t)
j=

for a particle and that operator will control the particle’s

search behavior according to its local fitness landscape \§fi€re is the minimum selection ratio for each operator,

the corresponding evolutionary stage. For all particlas, t Which is set t00.01.

selection ratio of each operator is equally initialized 14 1~ For thegbest particle in ALPSO, it will be updated once

(except theybest particle, in which the selection ratios are se@ particle gets better over time by extracting useful infarm

to 1/3) and is updated according to its relative performancton from that improved particle. Algorithm 1 describes the
The operators’ selection ratios for a particle are update#Pdate framework of thgbest particle.

only if it does not improve forl/; (updating frequency) There are two key parameters in ALPSO: the update

successive iterations. During the updating period for eadfequency Uy) and the learning probabilityr). The values

particle, the progress value and the reward value of operat®f Uy and P significantly affect the performance of ALPSO.

i are calculated as follows. ALPSO introduces some methods to choose the optimal
The progress valugk(t) of operatori for particle k at values of the two parameters. For the parameter of update
iterationt is defined as: frequency {y), each particle is assigned with a different

value of Uy instead of using a same value bf; for all

| f(Z(t)) — f(Zx(t — 1)) |, if operatori is chosen ; ; ; .
ko 2! AN o particles. The value o/; for particle £ is defined by the
pilt) = { by i (t) andZ.(¢) is better than(t —1) following equation in ALPSO.

0, otherwise,

(7 k_ e, 4
The reward value”(¢) has three components, which are the Uy = max(10+ ezp(~(1.6 - k/N)7), 1) (11)

normalized progress value, the success rate, and the psevigihere N is the population size and]}“ is the update

selection ratio. It is defined by: frequency of particlek. For the second parameter of the
PE(E) gk Ie_arning_ probability (_31), each p_qrticlek:_ is _als_o_ f'is_signed
ri(t) = A ot (1l —a)+ cFsh(t)  (8) with a different learning probability, which is initialigeby
Skt G the following equation:
whereg¥ is the counter that records the number of successful PF = max(1 — exp(—(1.6 - k/N)*),0.05) (12)

learning times of particlé:, in which its child is fitter than . o _ _
particlek by applying operatoi since the last selection ratio Whe;eN is the population size. To adaptively adjust the value
update;G* is the total number of iterations where operator Of F7", ALPSO needs to calculate the particle’s improvement
iskselected by particlé since the last selection ratio update;atio, which is defined by:

Zi- is the success rate of operatofor particle k; « is a F(@(t—1)) — f(@(t))
G* ' _ k k
random weight between 0.0 and 1./ is the number of IMPRy(t) = max( F(@n(t — 1))

,0) (13)



Algorithm 2 UpdateP,( ) are replaced by two new learning operators. Second, a
1: Calculate the improvement ratios for all particles using®@);  monitoring mechanism is introduced to monitor particle’s
2: Select the particlen that has the largest improvement ratio; gatys. Finally, an approach to controlling the number of

i forcz?gglfﬂzrttlﬁle%ckmd%smg Eq. (14); particles that learn from the global best position (named
5. Generate a uniformly distributed random numpeg [0, 1]; ~ abest position) is added into ALPSO-II. The aim of all the
6: if p< R} then enhancements is to increase diversity so that ALPSO-II can
7 Pr=p"; search far more better solutions in complex fitness landscap
gf elsg (1 L6 h/NY).0.05): The framework of ALPSO-II is described in Algorithm 4,
10 endlif_max( — eap(=(1.6- k/N)7), 0.05); which is explained in the following sections.

11: end for A. Learning Operators in ALPSO-I|

In ALPSO-II, we still use four learning operators, but the
“learning from thepbest of its nearest particle” operator
(exploration operator) is replace with “learning from the

Algorithm 3 Update(operatoi, particlek, fes)
1: if ¢ = a then
2:  Update the velocity and position of partidieusing operator

a and Eq. (2); pbest of a random particle’_’ pperator, and each particle !earns

3: else ifi — b then from a gbest archive position d¢best) instead of learning
4:  Update the position of particle using operatob; from the gbest particle. The two updated learning operators
5 else ifi = c then - are defined as follows for particle
g i(f:r?fo((;?iii;)aid?r(}iixﬁhen Operatorc’: learning from thepbest of a random particle
8: Update tbe velocity and position of particle using exploration : v,‘f = wv,‘f +7- rg . (pbeSt;i'and — xﬁ) (15)

operator¢’ and Eq. (2);
9. else Operatord’: learning from theabest position.
10: Update the velocity and position of particlg using

operatorc’ and Eq. (2); convergence : vg = wvg +n- Tg - (abest® — xZ) (16)
E ens ,f_] where theabest position is used to store the best position
13: else found by ALPSO-II so far.
14: Update the velocity and position of particteusing operator  In ALPSO-Il, the bias learning scheme is also used as
. eng ifa”d Eq. (2); in ALPSO where a particle only learns fromdest,qna
16 fest: position that is better than its own historical best positio

pbest. Due to this scheme, more computing resources are
given to the badly performing particles to improve the whole
. . . . swarm. It can be seen in Algorithm 3.

where IM PR, is the improvement ratio of particld: It should be noticed that thebest position in Eq. (16)

between iteratiort — 1 and |terat|o_rrt. ) ) is different from thegbest particle of the whole swarm.
In order to update th&, of a particlek in ALPSO, particle (A

hat has the | ! o in th Although it is the same position as tlgéest particle in the
m that has the largest improvement ratio in the swarm Wij;i;, population, it will be updated by Algorithm 1 and

be chosen_at each iteration and then calculate a learniiog raéet better than thebest particle. Different from the ALPSO
to the particlem by: algorithm in [6], all particles in ALPSO-II learn from the

" — [MPR,,/(IMPR,, + IMPR},) (14) abest position including theybest particle. The position and

. velocity update is shown in Algorithm 3.

If a randomly generated numbgre [0, 1] is less thank;", By introducing the new exploration operator, ALPSO-I|
particle & will use P to update thejbest in Algorithm 1;  enables a particle to explore non-searched fitness lanelscap
OtherW|se_, particle: vx{l!l use its _|n|t|al learning probability. with a higher probability than the ALPSO [6] since that par-
The learning probability updating method can be seen ificle will learn from a random particle instead of its neares
Algorithm 2. neighborhood. As a result, the new exploration operatdr wil

It was report that ALPSO [6] can well balance the behavioihcrease diversity and it might improve the global search
of exploitation and exploration for an independent paeticl capability of ALPSO-II.

in its local search space, also it significantly enhances the o .

performance of PSO in terms of convergence speed afd Monitoring Particle’s Satus

solution accuracy comparing with the other peer algorithms Generally speaking, re-initialization is a common method

to increase population diversity in evolutionary algarith

However, there are some problems while using this method,

e.g. how to protect these re-initial individuals from being
In order to further improve the performance of ALPSCeliminated since they usually have very bad fithess. When

especially on complex multi-modal problems, we introducéo perform re-initialization is also an open issue. Althbug

several main enhancements in ALPSO-II compared with thtbe former issue does not happen in PSO since there is no

ALPSO algorithm. First, two learning operators in ALPSOselection operation, we still have the later problem.

IIl. ADAPTIVE LEARNING PARTICLE SWARM
OPTIMIZER-II



There are several ways to check when to perform redlgorithm 4 The ALPSO-II Algorithm
initialization. The first method is to check the population 1: Generate the initial swarm and set up the initial paraméters
diversity. If the population diversity is less than a threish each particle;
Lo . . 2: Set fes :=0, iteration counter=0;
we perform re-initialization. The second is to monitor the

. o . . 3: while fes < T_Fes do
gbest particle, if it does not improve for a certain number of 4. for each particle: do

iterations, re-initialization can be launched. For PSQoalg s:
rithms, we can monitor particle’s velocity. If the velocity
magnitude of a particle is less than a threshold value, Wé5f
can re-initialize that particle. Whichever method we use, w ¢
have to define a threshold value to perform this operationg.
However, it is very difficult to get an optimal threshold valu 1o0:
for a particular problem. In addition, the threshold valtms 11:
different problems might be different. 12:
The common problem of the above approaches is that thég’(j

Select one learning operataérusing the roulette wheel
selection mechanism with its selection ratio;
Update(s, k, fes);
GF++; GlF++;
if f(Zr(t)) < f(Zx(t—1) then
gF++, and setmy, :=0;
pE+=f(@(t— 1) — F(@(1));
PerformUpdateGbest(k, fes) for the abest position;
else
mp = mg + 1;
end if

cannot examine if an individual is in Fhe_s_tage of evolution 07 it f(25(t)) < f(Zpbest, ) then
in the stage of convergence. If that individual converges, wie: g+
can perform re-initialization. In order to monitor pargsd 17 P +=f (Bppesty,) — f(Tr);

status, we introduce an approach to check whether a partié{%: :’presgk = Tk "

is in convergence status. o f éif’“i :<:f %i‘be“) then
In ALPSO-II, there is a mechanism of monitoring the,;. end if '

performance of the four learning operators. The approach 23: end if

to monitor the selection ratios of the four learning opersto 23: if ;. > U} then o _ .
Once a particle converges on a local optimum and norfé Update the common and monitoring selection ratios
of the four operators can help it to jump out of that local .. ?ocrcgs(':?]gotgegbélgg’

optimum. Their selection ratios will go back to the initial 56 phi=0;g5:=0; G*:=0; p'F:=0;¢/":=0; G'F:=0;

stage where they have equal values of 1/4. Hence, we can use end for

this information to examine whether a particle is converge@s: end if

or not. By using this approach, we can easily avoid the abO%f

if Var(s'y) <= 0.05 then
problems to re-initialize particles. Re-initialize particlek;

. . . 31: end if
To achieve this goal, beside to calculate the normal s>  end for
lection ratios as in ALPSO, we need to create a monitorings:  UpdateP,();

selection ratio for each learning operator. In ALPSO-lemgyv  34:  ++

definition and operation to calculate and update the monitgp: €nd while . .

i lection ratios is the same as in ALPSO to calculate where T'-Fes s the total fitness evaluations for & run and
Ing s€ ) ) ) Var(s’y) is the variance of the four monitoring selection ratios
and update the normal selection ratios except calculaliag t
progress value’*(t) of operatori for particlek at iteration

t, which is defined as:
| f(@x(t)) — f(@") |, if operatori is

chosen by7, and 7y is better than?"**"
0, otherwise,

for particle k.

plF(t) = C. Controlling the Number of Particles that Learn from the

abest Position

(17)
To distinguish the definitions related to updating monitgri
selection ratios in the two different algorithms, we put a In ALPSO algorithm, although performing local search for
prime symbol after each definition defined in ALPSO, e.ga particle depends on the performance of the local search
p'F(t) andpk (t) represent the monitoring progress value andperators (e.g. the exploitation operator and the exprat
common progress value of operatdor particlek at iteration operator), it still has a chance to perform global search.
t, respectively. As we know, particles, which are far away from théest

In ALPSO-II, the common selection ratios and the monposition, may not get benefit by learning from it especially
itoring selection ratios are updated at the same time arfidr multi-modal problems. In ALPSO-II, to further balance
once they are updated, all the component parameters @lebal search and local search, we only allow a certain
reset to the initial states: progress values, reward valugsumber of particles@), which are close to the thebest
success rates are set to 0. The re-initialization of a particposition, to learn from it. That is, ALPSO-II only allows
is performed once the variance of its monitoring selectiofy particles to use the four learning operators and the other
ratios is less than a constant value of 0.05. The procedunearticles do not use the convergence operator. We can see
of the monitoring selection ratios update and re-initetian  how different values of) affect the performance of ALPSO-
can be seen in Algorithm 4. II'in the following experimental section.



TABLE |
THE TEST FUNCTIONS WHERE 1 AND f,in ARE THE NUMBER OF DIMENSIONS AND THE MINIMUM VALUE OF A FUNCTION RESPECTIVELY ANDS € R,

Name Test Function n S fmin
Sphere @) =20, 2} 30 [-100,100] 0
Rastrigin f2(Z) = 30, (2 — 10cos(2mz;) + 10) 30 [-5.12, 5.12] 0
Schwefel f3(%) = 418.9829 - n + S0 | —w;sin (v/]z4]) 30 [-500, 500] 0
Ackley fa(&) = —20exp(—0.24/ 2 3= | 22) —exp(2 31, cos(2ma;)) + 20+ e 30 [-32, 32] 0
Rosenbrock f5(8) = 300, 100(2F ) — @) + (2 — 1)7) 30  [-2.048, 2.048] 0
Schwefel2.22  fo (&) = >0 |oq| + [17-, |24 30 [-10, 10] 0
Schwefell2  f7(&) = X1, (Zhoy #5)? 30 [-100, 100] 0
Schwefel2 21 fs (%) = max}_; |=;| 30 [-100, 100] 0
PenalizedL fo(®) = Z{10sin® (7y1) + S0 (yi — 1) - [1 + 10sin® (ryip1)]+ 30 [-50, 50] 0
(yn = D2} + 3072, ulwi,5,100,4), y; = 1+ (2w + 1) /4
H_Com f10(Z) =Hybrid Composition function (F15) in [10] 30 [-5, 5] 0
RH_Com f11(Z) =Rotated Hybrid Composition function (F16) in [10] 30 [-5, 5] 0
IV. EXPERIMENTAL STUDY used different parameter values@fto test the performance
of ALPSO-II.

A. Test Functions To fairly compare ALPSO-II with the other six algorithms,

To test the performance of ALPSO-II, we chose 27 tesill algorithms were run independently 30 times on the 27 test
functions including the traditional functions, the shifte problems in 30 dimensions. The initial population and stop
functions and the rotated shifted functions, which are Vyide criteria are the same for all algorithms for each run. The
used in the literature [7], [3], [12] as well as the complexmaximal number of fitness evaluatioriE_¢"es) used as the
hybrid composition functions proposed recently in [2],][10 stop criteria was set to 100000 for all algorithms on each tes
The details of test functiong, to f1; are given in Table I. function. The population size was set to 10 for all problems.
Functions fi,-fo7 are noisy prob[ems, shifted probl_ems,c. Results and Discussion
rotated problems, and rotated shifted problems, which aré ]
extended from four selected problems in Table | by (a) adding VVe first test how the parameter affects the performance
noises; (b) shifting the landscape; (c) rotating the langsgc Of ALPSO-Il. The different values of) in set 0,1,3,5,7,10
and (d) combining shifting and rotating of the landscapeVere used. The resn_JIts is shown in Tablg II. F.rom t.he results
The corresponding functions can be seen in Table II. I¥€ can see that different values of give quite different
Table II, “O” represents the original problems, and “N”,*s” Performance on most problems. For functiofis f2,, and

“R” and “RS” represent the modified problems by adding':% no particle learning from thebest position gives the
noisy, shifting, rotating, and combination of shifting andPest results. Thé value of 1 helps ALPSO-II to achieve the

rotating, respectively. best performance on functionf, fi6,f17.f18./19,f23,and.
f25. For functions f14 and fy7, the best performance is
TABLE I obtained by setting the neighborhood size of 3 for dhest
TEST FUNCTIONS OFf13 TO fa7 position. For functionsf;p and f11, the optimal value of)
5o N S R R 0N S R RS is 5. While 7 is _the optimal value d@ for function fy6. And _
Sphere| f1 fie fis f20 f2a] Schwefdl fs fi7 fi2 fa2 fs the other functions achieve the best performance by setting
Rastrigif f2 fi9 fia f21 for Ackleyj fa f18 f13 fo3 f26 @ value of 10, which is the population size.

Table IV describes the comparison of the mean and
variance of the performance of ALPSO-II and the other six
. . peer algorithms over 30 runs on each test function. A two-
B. Parameter Settings for the Involved PSO Algorithms tailed T-test with 58 degrees of freedom at a 0.05 level of

Experiments were conducted to compare ALPSO-II witlsignificance was conducted between ALPSO-II and the other
six PSO algorithms on the 27 test problems in 30 dimensionsix algorithms and the results are shown in Table V. The
The peer algorithms include the cooperative PSO (CP&P-Hperformance difference is significant between two algarih
[11], the fully informed PSO (FIPS) [7], the comprehensivéf the absolute value of the T-test result is greater than 2.0
learning PSO (CLSPO) [3], the adaptive PSO (APSO) [12]n Table V, the suffix “+”~" or “-” is attached to the end
the standard PSO (SPSO) proposed in [9], and the ALPS&® each result, which represents whether the performance of
algorithm [6]. The configuration of each peer algorithmALPSO is significantly better than, statistically equivale
which is exactly the same as it appeared in the original papéo or significantly worse than the performance of its rival
For ALPSO-II, 11, n2, andw were set to the same values agespectively.
used in SPSOV,,,.. was set to the half of the search domain From Table IV and Table V, we can see that ALPSO-II
for each test function, which can be seen from Table |I. Whas a great improvement compared with ALPSO and also



TABLE Ill
THE MEAN AND VARIANCE FORALPSO-IIWITH DIFFERENT VALUES OFQ

O~

1 f2 f3 fa fs fe fr fs fo

+0.00492394+£0.872817 +£234.696+0.365471 +45.8418 +0.10128

=

0.0866856 40.0767 0.0382586 26.3309 0.0064146064.91 2.25853  0.00113198
+13031 £6.99178 +£0.00827409
2.63e-05 71.1226 8.77e-14 10.5521 2.33e-15 2774. 0.0940275  2.78e-22
+4.33e-24 £7.73e-04 £461.993+1.22e-12 +53.6101 =+4.51e-14 +6554.44 +1.36323 =+8.19e-21
1.05e-37 3.14e-05 206.929 3.34e-14 14.075 2.00e-23 42.54 0.020876 1.85e-32
+3.10e-36 +9.15e-04 +£974.673+6.11e-14 +110.567 +5.65e-22 +170.868 +0.127035 +6.14e-32
4.35e-44 0.0331653 327.68 3.42e-14 4.72059 3.66e-32 5m4B6 0.158123 1.57e-32
+1.28e-42 £0.978236 +£1055.144+4.60e-14 +31.3837 +1.07e-30 +4.7862 +1.31022 +4.50e-47
1.66e-68 3.00e-04 414.535 3.57e-14 5.28914 4.54e-38 762868 0.0711354  1.59e-32
+3.65e-67 +0.0088403+1337.36+5.12e-14 +27.559 +1.34e-36 +0.872162 £0.599369 +5.08e-33
5.31e-76 5.92e-17  513.413 2.74e-14  4.53951 9.29e-46 254105 0.00865984  1.59e-32
+1.57e-74 £1.75e-15 +£1233.324+5.31e-14 +19.1285 +2.65e-44 +0.336377 +£0.161593 +5.08e-33

3.19e-04

1.82e-25

f10 fi1 fi2 fi3 f1a fis fi6 fi7 fis

164.566 291.695 74.8229 0.0364695 0.659069 0.0045937946561 104.134 0.753227
+864.696 £2030.23 +678.928+0.345891 +2.86712 +0.0993323 £0.222948 +626.772 +1.74489
90 124.051  63.1713 1.55e-13 0.0663306 3.19e-25  0.0482378.1746 0.115955
+668.581 £1557.17 +434.616+2.78e-12 +1.35937 +£5.22e-24 +£0.0657736 £430.397 +0.15188
40.0024 86.6691  194.295 2.90e-14 0.00269966 0 0.05116446.336 0.167982
+268.317 +966.775 +920.474+4.51e-14+0.0575712 40.0934132 +619.848 +0.709299
33.3333 86.6667  261.594 2.93e-14  0.266642 0.0565925 .7@B4 0.258714
+258.199 £966.782 +756.297 £4.31e-14 +2.78712 +0.0994114 +848.96 +1.33818
36.6667 134.312  369.496 3.24e-14 0.166786 0.0601956 .08®6 0.551791
+435.507 +1667.37 +1040.58+4.20e-14 +2.0288 +0.10302 +931.616 +3.2679
40 106.923  436.871 2.67e-14  0.198992 0.0765519  414.728.486582
+363.318 +£1085.64 +885.548+4.73e-14 +2.59454 +0 +0.107511 +943.544 +2.88669

+0

0
+0

0
+0

0

fi9 f20 fo1 fa2 fo3 faa fas fa6 far

0.847822  0.0106357 136.259 5213.58 4.28073  0.0651118 1.6®7 20.8468 109.569
+1.77004 £0.11919 +271.161 £7829.31 =+6.84644 +0.906418 +7590.21 +0.521797 +128.283
0.0936267 3.56e-23  158.297 5585.91 3.371 1.36e-22 5595.720.8049 116.906
40.593525 +£9.92e-22 +261.794 +7215.21 +5.76803 +42.86e-21 +7438.25 +0.77854 +184.589
0.136432 6.78e-35 151.134  6263.7 4.79908 6.01e-15 6345.120.7147 105.898
41.05414 +1.74e-33 +290.152 +5098.66 +10.2086 +1.77e-13 +5255.19 40.884154 +148.957
0.214971 5.03e-54 152.012 6049.45 5.3534 7.41e-30 6829.420.7125 121.169
+1.72119 +1.41e-52 £254.374 £4999.13 +11.9327 £1.56e-28 +4272.98 +0.814065 +198.013
0.24976 1.36e-60 156.398 6060.51 4.13264 4.56e-29 61.40.420.6834 125.032
+1.44984 +4.00e-59 +276.979 +7980.64 +6.42352 +9.66e-28 +6874.17 +0.793542 +170.94

10 0.184728 8.52e-71  174.759  5595.8

+1.34848

3.
+2.29e-69 £266.957 £7897.55 +8.06215

92293 0

+0

6076.07 20.74 107.643
+7207.31 +0.592678 +193.516

TABLE V
T-TEST RESULTS OF COMPARINGALPSO-IIWITH THE OTHER SIX
ALGORITHMS

outperforms the other algorithms on most test functions. As
can be seen from Table V, the performance of ALPSO-II is
significantly better than the performance of the other peer

7 ALPSO _ APSO CLPSO _CPSOH __ FIPS SPSO algorithms on 15 out of 27 functions.

f1 -1.06075" -1.6214~ -4.69789" -2.41383" -23.9359" -1.29748" F|g 1 shows the Comparison of convergence Speed of
fo -1.97963 -6.66404" -5.27699° -13.801" -65.3468 -25.4596" .

s 934763 -121912° -5.50877 -26.9873 -31.6033 -51.0314" the seven algorithm on 15 selected problems. From the
fi -1.5158T° -2.40284" -5.11173 -2.05477" -50.3275 -17.785" comparison result, ALPSO-Il shows fast convergence speed
fs -5.98233" -4.03117" -25.1538  -8.09945 -31.8857" -7.86615" n function n n ili f in

Fs -1.0004T° -1.06707° -4.6305" -3.6539" -13.8511" -1.15167" (e.9.onfu Cto.gcl’f‘?”fG’a dfu).a d capability of getting

fr -4.20748 2.22762° -13.9907" -1.50177" -25.7935" 2.22621 out of local optima (e.g. on function, fs,fi0, and f14).

fs 157979° -6.74729" -14.8828" 1.5379° -83.2277" -4.14957"

fo 1~ -1.02882° -3.57904 -1~  -4.62343 -3.57485 V. CONCLUSIONS ANDFUTURE WORK

fio -2.38093" -1.62823" -0.0142319° -5.155"7 -29.5374" -35.4169" . -

fi1 -2.14081° -4.822° 0.019596" -4.47075 -23.1037" -27.2468" This paper presents an updated version of the ALPSO al-
fi2 -7.31876 -1.33746° -4.56862" -24.0973" -27.2351" -62.1658" gorithm based on four leanring operators. In order to irgea
f1s 0.18239° 622259 -1.0046 -1.76531" -225143 -19.3547" diversity of ALPSO, we introduce several new approaches
f14 -3.69469° -8.751070 -6.59355" -13.9833" -46.9044" -20.335" . . ; .

fic -5.6533" 0.810908°" 11.8988  14.347 -27.7775 -1.25726" initialization mechanism, and controlling the neighbarto
;17 _8511%%? i 737255?9% 'f;fggﬁ ggg;?i igggég size of theabest position. From the experimental results,
18 -O. -4, . . -£0. -10. . .

F10 -3.35534° -12.3139° -5.61884" -12.3992" -62.3134" -21.0353" we can draw two conclusions from the comparison of the
F20 -1.0000; -1.2740;: -4.47775 -2.210821: -9-9309§ -1.00001” seven algorithms in terms of convergence speed and solution
;z; :2:33‘71; -2'21%2535* 2720252? _-141.?918@ ;11_27"3‘32@ _31'11_‘:)?(’)%; accuracy. First, ALPSO-II greatly improves the performanc
fos -4.109247 -2.8342F  6.89448 -6.66128" -24.8334" -9.96075 of ALPSO. The other one is that ALPSO-II outperforms the
faa 0" A~ -458573" -1.70125" -10.1283 -4.73096" other state-of-the-art algorithms on most test problems.

f25 -5.992117 -7.90853" -6.55136" -11.5386" -1.54965 -10.0283"

f26 5.42885 -11.8899° -12.3133 -6.4556" -10.6357" -9.90871 _A|th0U9h ALPSO-II has a good performance compared
for -3.45041° -6.15082" -1.72509° -12.5193 -21.5318 -9.45723 with the other PSO algorithms, several issues should be
STA 16+,10v,1- 15+,107,2- 19+,3v,5- 10+,6v,2- 26+,%v,0- 21+,4v,2-

addressed in the future. How to adaptively tune the neigh-
borhood size of thebest position is the first issue. Second,



TABLE IV
THE MEAN AND VARIANCE OF THE SEVEN ALGORITHMS

f f1 f2 f3 fa fs fe fr fs fo
ALPSOIl 5.31e-76 5.92e-17 40.0767 2.74e-14 4.53951 94e- 0.0254195 0.00865984 1.59e-32
+1.57e-744+1.75e-154+-234.696+5.31e-14 +19.1285 +2.65e-44 +0.336377 +0.161593 +5.08e-33
ALPSO 1.34e-70 0.165827 489.545 3.06e-14 24.1441 3.28e-38.01274 4.97e-06 1.57e-32
+3.73e-69 £2.47076 £1398.714+3.25e-14 +94.7484 +9.67e-35 +20.9394 +7.19e-05 +4.50e-47
APSO  7.65e-67 1.76802 157.788 0.198783 16.7165 2.85e-3551e-D5 0.109862 6.73e-24
+1.39e-65 +7.82543 +-2838.24 +2.44014 +87.0207 +7.87e-34 +2.47e-04 +0.411838 +1.93e-22
CLPSO 6.58e-28 0.862298 157.26 4.64e-14 24.3217 8.07e-1842.713 8.35236 3.44e-28
+4.13e-27 +4.81982 +£581.8934+9.56e-14 +13.1225 +5.14e-17 +722.481 +16.5354 +2.84e-27
CPSOH 4.43e-28 16.9397 2796.49 3.59e-14 22.0575 1.78e-1647.567 2.34e-04  0.00345563
+5.41e-27 +36.2039 +-3003.46+1.08e-13 +60.8597 +1.44e-15 +6825.95 +0.0017262740.101927
FIPS 2431.85 192.656 4320.67 10.8636 211.692 17.8312 22488 31.7602 41800.1
+2996.72 +86.9591 +3988.23 +6.36685 +190.669 +37.9714 +25716.5 +11.2515 +2.67e+05
SPSO 1.12e-47 61.7205 5793.69 7.19459 11.924 0.001128 e-B5l2 0.0623961 1.00945
+2.56e-46 +71.5052 £3317.25+11.9319 +20.0204 +0.0288894 +7.84e-04 +0.346101 +48.3289
f fio fi1 fi2 fi3 f1a fis fie fi7 fis
ALPSOIl 33.3333 86.6667 63.1713 2.67e-14 0.00269966 0 32843 71.1746 0.115955
+258.199 +966.782 +434.616+4.73e-144+0.0575712 +0 +0.0657736 +430.397 +0.15188
ALPSO 106.667 311.081 461.118 2.64e-14 1.12762 0 0.100977 33.031 1.22046
+871.015 +2936.92 +1543.78+3.26e-14 +8.98039 +0 +0.267188 +1613.12 +4.0159
APSO 80 879.673 382.984 0.755438 1.85726 3.86e-21 0.042652.09857 0.708133
+804.984 +4753.44 +£7039.6 +£3.58086 +6.25058 +5.18e-20 +0.192236 +116.334 +3.61818
CLPSO 33.5097 85.8032 193.45 2.51e-09 2.91855 7.19e-27 190708 158.015 0.0705996
+258.73 +868.593 +720.108+7.38e-08 +13.0437 +8.40e-26 +0.0255626 +655.871 +0.0822234
CPSOH 270.283 743.255 2463.02 0.162784 34.9236 2.34628 141006 2669.17 0.0446544
+1330.96 +£4222.58+2905.15+2.71988 +73.6607 +47.1965 +0.0206748 +3055.6 +0.0353483
FIPS 899.526 1097.82 3837.65 12.3237 155.269 6262.96 2B39. 4427.77 12.295
+825.531 +855.428 +4064.61+16.1451 +97.6382 +24709.3 +2483.96 +3477.12 +13.6106
SPSO 1015.9 1637.58 5944.94 15.1416 129.68 5013.49 57.1525881.63 7.30832
+776.499 +1372.63+2756.67 +23.0752 +188.097 +15493.4 +1339.68 +3010.73 +12.5628
f f19 f20 fa1 fa2 fas3 f24 f2s5 f26 faz
ALPSOIl 0.0936267 8.52e-71 136.259 5213.58 3.371 0 5595.7620.6834 105.898
+0.593525+2.29e-69+271.161 +7829.31 +5.76803 +0 +7438.25 +0.793542 +148.957
ALPSO 0.623781 1.49e-57 169.841 7106.47 5.69469 0 7524.69 0.4335 140.432
+4.62247 +£4.39e-561+250.277 +-4805.87 +15.6501 +0 +5901.55 +1.08866 4+254.88
APSO 4.01811 5.05e-49 124.336 8277.67 5.02724 1.06e-11 4.B29 21.1134 174.313
+9.38165 +£1.17e-47+189.744 +5424.76 +16.2428 +3.13e-10 +6778.97 +0.712975 +292.312
CLPSO 1.05972 2.92e-10 113.986 7249.84 1.78883 4.46e-10 95.98 21.0282 115.922
+5.03658 £1.92e-09+119.995+3503.26 +3.54214 +2.87e-09 +3217.71 +0.229321 +84.7718
CPSOH 225102 1.94e-25 199.695 8961.86 13.9178 0.0021968057.52 20.8902 248.576
+53.322 +2.59e-24+269.837 46014 +46.3428 +0.0380737 +4793.71 +0.51237 +301.347
FIPS 186.546 6678.58 259.5 6880.84 14.8485 20813.9 6217.4620.992 242.08
+88.2546 419836 +105.185+6808.54 +12.3519 +460614.1 +9203.25 +0.320154 +112.309
SPSO 58.3943 3.10e-14 103.376 9005.49 9.89541 8413.14 4814 20.9681 198.885
+81.7474 £9.15e-13+147.309 +-6484.17 +18.4389 +52452.8 +4848.07 +0.29758 +248.837

comparing ALPSO-II with other non-PSO algorithms is alsg9] Shi, Y. and R. C. Eberhart,"A modified particle swarm ogitier,” in
an important work. Finally, exploring new learning operato __Proc. [EEE Int. Conf. Evol. Comput., 1998, pp. 69-73.
is also an interesting work.
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