
Adaptive Learning Particle Swarm Optimizer-II for Global
Optimization

Changhe Li and Shengxiang YangMember, IEEE

Abstract— This paper presents an updated version of the
adaptive learning particle swarm optimizer (ALPSO) [6], we
call it ALPSO-II. In order to improve the performance of
ALPSO on multi-modal problems, we introduce several new
major features in ALPSO-II: (i) Adding particle’s status mo ni-
toring mechanism, (ii) controlling the number of particles that
learn from the global best position, and (iii) updating two of the
four learning operators used in ALPSO. To test the performance
of ALPSO-II, we choose a set of 27 test problems, including
un-rotated, shifted, rotated, rotated shifted, and composition
functions in comparison of the ALPSO algorithm as well as
several state-of-the-art variant PSO algorithms. The experimen-
tal results show that ALPSO-II has a great improvement of the
ALPSO algorithm, it also outperforms the other peer algorithms
on most test problems in terms of both the convergence speed
and solution accuracy.

I. I NTRODUCTION

Particle swarm optimization (PSO) is an effective op-
timization tool, especially for solving global optimization
problems. Since PSO was first proposed in 1995 [1], [4],
it has been widely studied due to its effectiveness and
simpleness. However, many experiments have shown that
the basic PSO algorithm easily falls into local optima when
solving complex multi-modal problems [3] and it is difficult
for PSO to jump out of that local optimum once it is trapped
in a local optimum.

In the literature of PSO, maintaining diversity, population
topology, hybridization with auxiliary search operators and
adaptive PSO have become four of the most promising
approaches to preventing PSO from being trapped in local
optima. In order to accelerate the convergence speed and
avoid PSO from being trapped in local optima, an ALPSO
[6] algorithm was proposed based on four learning operators.
In order to enable particles to automatically choose the
appropriate learning operator at the appropriate moment
during the search process, an adaptive selection mechanism
is introduced in ALPSO.

In this paper, we present the ALPSO-II, which is an up-
dated version of the ALPSO algorithm [6]. In ALPSO-II, we
introduce several new functions to improve the performance
of ALPSO on multi-modal problems. These new functions
include two updated learning operators, particle status mon-
itoring mechanism, and controlling the number of particles
that learn from the global best position. These approaches
can increase population diversity, as a result, ALPSO-II has
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a higher probability of exploring more promising areas in the
fitness landscape than the ALPSO algorithm.

The rest of this paper is organized as follows. Section II
gives an introduction of the ALPSO algorithm. The new
features of ALPSO-II algorithm are described in section III.
Experimental study and results are present in section IV. Fi-
nally, conclusions and future work are discussed in sectionV.

II. A DAPTIVE LEARNING PARTICLE SWARM OPTIMIZER

In the basic PSO, each particlei is represented by a
position vector~xi and a velocity vector~vi, which are updated
as follows:
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wherex′d
i andxd

i represent the current and previous positions
in thed-th dimension of particlei respectively;v′i andvi are
the current and previous velocity of particlei respectively;
~xpbesti

and ~xgbest are the best position found by particle
i so far and the best position found by the whole swarm
so far respectively;ω ∈ (0, 1) is an inertia weight, which
determines how much the previous velocity is preserved;
η1 and η2 are the acceleration constants, andr1 and r2

are random numbers generated in the interval[0.0, 1.0]
uniformly.

There are two main models of the PSO algorithm, called
gbest (global best) andlbest (local best), respectively. The
two models give different performances on different prob-
lems. Generally speaking, people believe that thegbest
model has a faster convergence speed but also has a higher
probability of getting stuck in local optima than thelbest
model [5], [8]. On the contrary, thelbest model is less
vulnerable to the attraction of local optima but has a slower
convergence speed than thegbest model.

In order to alleviate the problems of the two models and
enhance the advantages of them, ALPSO was proposed based
on an adaptive method to enable particle to carry out different
types of search (local or global) at different evolutionary
stages. In ALPSO, except thegbest particle, each particle
has four learning sources, which produced by the following
four learning operators:
Operatora: learning from itspbest position

exploitation : vd
k = ωvd
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Operatorb: learning from a random position nearby

jumping out : xd
k = xd

k + vd
avg · N(0, 1) (4)



Operatorc: learning from thepbest of its nearest particle

exploration : vd
k = ωvd

k + η · rd
k · (pbestdk nearest −xd

k) (5)

Operatord: learning from thegbest particle

convergence : vd
k = ωvd

k + η · rd
k · (pbestdgbest − xd

k) (6)

wherepbestk nearest is the pbest of the particle closest to
particlek, which is better thanpbestk; vd

avg is the average
velocity of all particles in thed-th dimension, which is
calculated byvd

avg =
∑N

k=1 |v
d
k|/N ,whereN is the popu-

lation size;N(0, 1) is a random number from the normal
distribution with mean0 and variance1.

The four learning operators play the roles of convergence,
exploitation, exploration and jumping out of the basins of
attraction of local optima, respectively. In order to enable
particles to automatically choose an appropriate learning
operator at the appropriate moment during the search process,
an adaptive selection mechanism, which is based on the
assumption that the most successful operator used in the
recent past iterations might be also successful in the future
several iterations, is introduced. For each particle, one of
the four learning operators is selected according to their
selection ratios. The operator that results in a higher relative
performance will have its selection ratio increased. Gradu-
ally, the most suitable operator will be chosen automatically
for a particle and that operator will control the particle’s
search behavior according to its local fitness landscape at
the corresponding evolutionary stage. For all particles, the
selection ratio of each operator is equally initialized to 1/4
(except thegbest particle, in which the selection ratios are set
to 1/3) and is updated according to its relative performance.

The operators’ selection ratios for a particle are updated
only if it does not improve forUf (updating frequency)
successive iterations. During the updating period for each
particle, the progress value and the reward value of operator
i are calculated as follows.

The progress valuepk
i (t) of operatori for particle k at

iterationt is defined as:

pk
i (t) =

8

<

:

| f(~xk(t)) − f(~xk(t − 1)) |, if operatori is chosen
by ~xk(t) and~xk(t) is better than~xk(t − 1)

0, otherwise,
(7)

The reward valuerk
i (t) has three components, which are the

normalized progress value, the success rate, and the previous
selection ratio. It is defined by:
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wheregk
i is the counter that records the number of successful

learning times of particlek, in which its child is fitter than
particlek by applying operatori since the last selection ratio
update;Gk

i is the total number of iterations where operatori
is selected by particlek since the last selection ratio update;
gk

i

Gk
i

is the success rate of operatori for particle k; α is a
random weight between 0.0 and 1.0;M is the number of

Algorithm 1 UpdateGbest(particlek,fes)
1: for each dimensiond of gbest do
2: if rand() < P k

l then
3: ~xt gbest := ~xgbest;
4: ~xt gbest[d] := ~xk[d];
5: Evaluate~xt gbest;
6: fes++;
7: if f(~xt gbest) < f(~xgbest) then
8: ~xgbest[d] := ~xt gbest[d];
9: end if

10: end if
11: end for

whereP k
l is the probability of particlek to learn from thegbest

particle

operators;ck
i is a penalty factor for operatori of particlek,

which is defined as follows:
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and sk
i (t) is the selection ratio of operator i for particle k

at the current iteration. Based on the above definitions, the
selection ratio of operatori for particlek in the next iteration
t + 1 is updated according to the following equation:

sk
i (t + 1) =

rk
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∑M
j=1 rk

j (t)
(1 − M ∗ γ) + γ, (10)

whereγ is the minimum selection ratio for each operator,
which is set to0.01.

For thegbest particle in ALPSO, it will be updated once
a particle gets better over time by extracting useful informa-
tion from that improved particle. Algorithm 1 describes the
update framework of thegbest particle.

There are two key parameters in ALPSO: the update
frequency (Uf ) and the learning probability (Pl). The values
of Uf andPl significantly affect the performance of ALPSO.
ALPSO introduces some methods to choose the optimal
values of the two parameters. For the parameter of update
frequency (Uf ), each particle is assigned with a different
value of Uf instead of using a same value ofUf for all
particles. The value ofUf for particle k is defined by the
following equation in ALPSO.

Uk
f = max(10 ∗ exp(−(1.6 · k/N)4), 1) (11)

where N is the population size andUk
f is the update

frequency of particlek. For the second parameter of the
learning probability (Pl), each particlek is also assigned
with a different learning probability, which is initialized by
the following equation:

P k
l = max(1 − exp(−(1.6 · k/N)4), 0.05) (12)

whereN is the population size. To adaptively adjust the value
of P k

l , ALPSO needs to calculate the particle’s improvement
ratio, which is defined by:

IMPRk(t) = max(
f(~xk(t − 1)) − f(~xk(t))

f(~xk(t − 1))
, 0) (13)



Algorithm 2 UpdatePl( )
1: Calculate the improvement ratios for all particles using Eq. (13);
2: Select the particlem that has the largest improvement ratio;
3: for each particlek do
4: Calculate theRm

k using Eq. (14);
5: Generate a uniformly distributed random numberp ∈ [0, 1];
6: if p ≤ Rm

k then
7: P k

l =P m
l ;

8: else
9: P k

l =max(1 − exp(−(1.6 · k/N)4), 0.05);
10: end if
11: end for

Algorithm 3 Update(operatori, particlek, fes)
1: if i = a then
2: Update the velocity and position of particlek using operator

a and Eq. (2);
3: else if i = b then
4: Update the position of particlek using operatorb;
5: else if i = c then
6: Choose a random particlej;
7: if f(~xpbestj

) < f(~xpbestk
) then

8: Update the velocity and position of particlek using
operatorc′ and Eq. (2);

9: else
10: Update the velocity and position of particlej using

operatorc′ and Eq. (2);
11: k := j;
12: end if
13: else
14: Update the velocity and position of particlek using operator

d′ and Eq. (2);
15: end if
16: fes++;

where IMPRk is the improvement ratio of particlek
between iterationt − 1 and iterationt.

In order to update thePl of a particlek in ALPSO, particle
m that has the largest improvement ratio in the swarm will
be chosen at each iteration and then calculate a learning ratio
to the particlem by:

Rm
k = IMPRm/(IMPRm + IMPRk) (14)

If a randomly generated numberp ∈ [0, 1] is less thanRm
k ,

particlek will use Pm
l to update thegbest in Algorithm 1;

Otherwise, particlek will use its initial learning probability.
The learning probability updating method can be seen in
Algorithm 2.

It was report that ALPSO [6] can well balance the behavior
of exploitation and exploration for an independent particle
in its local search space, also it significantly enhances the
performance of PSO in terms of convergence speed and
solution accuracy comparing with the other peer algorithms.

III. A DAPTIVE LEARNING PARTICLE SWARM

OPTIMIZER-II

In order to further improve the performance of ALPSO
especially on complex multi-modal problems, we introduce
several main enhancements in ALPSO-II compared with the
ALPSO algorithm. First, two learning operators in ALPSO

are replaced by two new learning operators. Second, a
monitoring mechanism is introduced to monitor particle’s
status. Finally, an approach to controlling the number of
particles that learn from the global best position (named
abest position) is added into ALPSO-II. The aim of all the
enhancements is to increase diversity so that ALPSO-II can
search far more better solutions in complex fitness landscape.
The framework of ALPSO-II is described in Algorithm 4,
which is explained in the following sections.

A. Learning Operators in ALPSO-II

In ALPSO-II, we still use four learning operators, but the
“learning from thepbest of its nearest particle” operator
(exploration operator) is replace with “learning from the
pbest of a random particle” operator, and each particle learns
from a gbest archive position (abest) instead of learning
from thegbest particle. The two updated learning operators
are defined as follows for particlek:
Operatorc′: learning from thepbest of a random particle

exploration : vd
k = ωvd

k + η · rd
k · (pbestdrand − xd

k) (15)

Operatord′: learning from theabest position.

convergence : vd
k = ωvd

k + η · rd
k · (abestd − xd

k) (16)

where theabest position is used to store the best position
found by ALPSO-II so far.

In ALPSO-II, the bias learning scheme is also used as
in ALPSO where a particle only learns from apbestrand

position that is better than its own historical best position
pbest. Due to this scheme, more computing resources are
given to the badly performing particles to improve the whole
swarm. It can be seen in Algorithm 3.

It should be noticed that theabest position in Eq. (16)
is different from thegbest particle of the whole swarm.
Although it is the same position as thegbest particle in the
initial population, it will be updated by Algorithm 1 and
get better than thegbest particle. Different from the ALPSO
algorithm in [6], all particles in ALPSO-II learn from the
abest position including thegbest particle. The position and
velocity update is shown in Algorithm 3.

By introducing the new exploration operator, ALPSO-II
enables a particle to explore non-searched fitness landscape
with a higher probability than the ALPSO [6] since that par-
ticle will learn from a random particle instead of its nearest
neighborhood. As a result, the new exploration operator will
increase diversity and it might improve the global search
capability of ALPSO-II.

B. Monitoring Particle’s Status

Generally speaking, re-initialization is a common method
to increase population diversity in evolutionary algorithms.
However, there are some problems while using this method,
e.g. how to protect these re-initial individuals from being
eliminated since they usually have very bad fitness. When
to perform re-initialization is also an open issue. Although
the former issue does not happen in PSO since there is no
selection operation, we still have the later problem.



There are several ways to check when to perform re-
initialization. The first method is to check the population
diversity. If the population diversity is less than a threshold,
we perform re-initialization. The second is to monitor the
gbest particle, if it does not improve for a certain number of
iterations, re-initialization can be launched. For PSO algo-
rithms, we can monitor particle’s velocity. If the velocity’s
magnitude of a particle is less than a threshold value, we
can re-initialize that particle. Whichever method we use, we
have to define a threshold value to perform this operation.
However, it is very difficult to get an optimal threshold value
for a particular problem. In addition, the threshold valuesfor
different problems might be different.

The common problem of the above approaches is that they
cannot examine if an individual is in the stage of evolution or
in the stage of convergence. If that individual converges, we
can perform re-initialization. In order to monitor particle’s
status, we introduce an approach to check whether a particle
is in convergence status.

In ALPSO-II, there is a mechanism of monitoring the
performance of the four learning operators. The approach is
to monitor the selection ratios of the four learning operators.
Once a particle converges on a local optimum and none
of the four operators can help it to jump out of that local
optimum. Their selection ratios will go back to the initial
stage where they have equal values of 1/4. Hence, we can use
this information to examine whether a particle is converged
or not. By using this approach, we can easily avoid the above
problems to re-initialize particles.

To achieve this goal, beside to calculate the normal se-
lection ratios as in ALPSO, we need to create a monitoring
selection ratio for each learning operator. In ALPSO-II, every
definition and operation to calculate and update the monitor
ing selection ratios is the same as in ALPSO to calculate
and update the normal selection ratios except calculating the
progress valuep′ki (t) of operatori for particlek at iteration
t, which is defined as:

p′ki (t) =







| f(~xk(t)) − f(~xpbest
k ) |, if operatori is

chosen by~xk and~xk is better than~xpbest
k

0, otherwise,
(17)

To distinguish the definitions related to updating monitoring
selection ratios in the two different algorithms, we put a
prime symbol after each definition defined in ALPSO, e.g.
p′ki (t) andpk

i (t) represent the monitoring progress value and
common progress value of operatori for particlek at iteration
t, respectively.

In ALPSO-II, the common selection ratios and the mon-
itoring selection ratios are updated at the same time and
once they are updated, all the component parameters are
reset to the initial states: progress values, reward values,
success rates are set to 0. The re-initialization of a particle
is performed once the variance of its monitoring selection
ratios is less than a constant value of 0.05. The procedures
of the monitoring selection ratios update and re-initialization
can be seen in Algorithm 4.

Algorithm 4 The ALPSO-II Algorithm
1: Generate the initial swarm and set up the initial parametersfor

each particle;
2: Setfes :=0, iteration countert=0;
3: while fes < T Fes do
4: for each particlek do
5: Select one learning operatori using the roulette wheel

selection mechanism with its selection ratio;
6: Update(i, k, fes);
7: Gk

i ++; G′k
i ++;

8: if f(~xk(t)) < f(~xk(t − 1) then
9: gk

i ++, and setmk := 0;
10: pk

i +:=f(~xk(t − 1)) − f(~xk(t));
11: PerformUpdateGbest(k, fes) for the abest position;
12: else
13: mk := mk + 1;
14: end if
15: if f(~xk(t)) < f(~xpbestk

) then
16: g′k

i ++;
17: p′k

i +:=f(~xpbestk
) − f(~xk);

18: ~xpbestk
:= ~xk;

19: if f(~xk) < f(~xabest) then
20: ~xabest := ~xk;
21: end if
22: end if
23: if mk ≥ Uk

f then
24: Update the common and monitoring selection ratios

according to Eq. (10);
25: for Each operatorj do
26: pk

j :=0;gk
j :=0; Gk

j :=0; p′k
j :=0;g′k

j :=0; G′k
j :=0;

27: end for
28: end if
29: if Var(~s′k) <= 0.05 then
30: Re-initialize particlek;
31: end if
32: end for
33: UpdatePl();
34: t++;
35: end while

where T Fes is the total fitness evaluations for a run and
Var(~s′k) is the variance of the four monitoring selection ratios
for particlek.

C. Controlling the Number of Particles that Learn from the
abest Position

In ALPSO algorithm, although performing local search for
a particle depends on the performance of the local search
operators (e.g. the exploitation operator and the exploration
operator), it still has a chance to perform global search.
As we know, particles, which are far away from theabest
position, may not get benefit by learning from it especially
for multi-modal problems. In ALPSO-II, to further balance
global search and local search, we only allow a certain
number of particles (Q), which are close to the theabest
position, to learn from it. That is, ALPSO-II only allows
Q particles to use the four learning operators and the other
particles do not use the convergence operator. We can see
how different values ofQ affect the performance of ALPSO-
II in the following experimental section.



TABLE I

THE TEST FUNCTIONS, WHERE n AND fmin ARE THE NUMBER OF DIMENSIONS AND THE MINIMUM VALUE OF A FUNCTION RESPECTIVELY ANDS ∈ Rn

Name Test Function n S fmin

Sphere f1(~x) =
Pn

i=1
x2

i 30 [−100, 100] 0

Rastrigin f2(~x) =
P

n
i=1

(x2
i − 10 cos(2πxi) + 10) 30 [-5.12, 5.12] 0

Schwefel f3(~x) = 418.9829 · n +
P

n
i=1

−xi sin (
p

|xi|) 30 [-500, 500] 0

Ackley f4(~x) = −20 exp(−0.2
q

1
n

P

n
i=1

x2
i
) − exp( 1

n

Pn
i=1

cos(2πxi)) + 20 + e 30 [-32, 32] 0

Rosenbrock f5(~x) =
Pn

i=1
100(x2

i+1 − xi)
2 + (xi − 1)2) 30 [-2.048, 2.048] 0

Schwefel2 22 f6(~x) =
Pn

i=1
|xi| +

Qn
i=1

|xi| 30 [-10, 10] 0

Schwefel1 2 f7(~x) =
P

n
i=1

(
P

i
j=1

xj)
2 30 [-100, 100] 0

Schwefel2 21 f8(~x) = maxn
i=1 |xi| 30 [-100, 100] 0

Penalized1 f9(~x) = π
30

{10 sin2 (πy1) +
Pn−1

i=1
(yi − 1)2 · [1 + 10 sin2 (πyi+1)]+ 30 [-50, 50] 0

(yn − 1)2} +
Pn

i=1
u(xi, 5, 100, 4), yi = 1 + (xi + 1)/4

H Com f10(~x) =Hybrid Composition function (F15) in [10] 30 [-5, 5] 0

RH Com f11(~x) =Rotated Hybrid Composition function (F16) in [10] 30 [-5, 5] 0

IV. EXPERIMENTAL STUDY

A. Test Functions

To test the performance of ALPSO-II, we chose 27 test
functions including the traditional functions, the shifted
functions and the rotated shifted functions, which are widely
used in the literature [7], [3], [12] as well as the complex
hybrid composition functions proposed recently in [2], [10].
The details of test functionsf1 to f11 are given in Table I.
Functions f12-f27 are noisy problems, shifted problems,
rotated problems, and rotated shifted problems, which are
extended from four selected problems in Table I by (a) adding
noises; (b) shifting the landscape; (c) rotating the landscape;
and (d) combining shifting and rotating of the landscape.
The corresponding functions can be seen in Table II. In
Table II, “O” represents the original problems, and “N”,“S”,
“R” and “RS” represent the modified problems by adding
noisy, shifting, rotating, and combination of shifting and
rotating, respectively.

TABLE II

TEST FUNCTIONS OFf13 TO f27

O N S R RS O N S R RS
Sphere f1 f16 f15 f20 f24 Schwefel f3 f17 f12 f22 f25

Rastrigin f2 f19 f14 f21 f27 Ackley f4 f18 f13 f23 f26

B. Parameter Settings for the Involved PSO Algorithms

Experiments were conducted to compare ALPSO-II with
six PSO algorithms on the 27 test problems in 30 dimensions.
The peer algorithms include the cooperative PSO (CPSO-Hk)
[11], the fully informed PSO (FIPS) [7], the comprehensive
learning PSO (CLSPO) [3], the adaptive PSO (APSO) [12],
the standard PSO (SPSO) proposed in [9], and the ALPSO
algorithm [6]. The configuration of each peer algorithm,
which is exactly the same as it appeared in the original paper.
For ALPSO-II,η1, η2, andω were set to the same values as
used in SPSO.Vmax was set to the half of the search domain
for each test function, which can be seen from Table I. We

used different parameter values ofQ to test the performance
of ALPSO-II.

To fairly compare ALPSO-II with the other six algorithms,
all algorithms were run independently 30 times on the 27 test
problems in 30 dimensions. The initial population and stop
criteria are the same for all algorithms for each run. The
maximal number of fitness evaluations (T Fes) used as the
stop criteria was set to 100000 for all algorithms on each test
function. The population size was set to 10 for all problems.

C. Results and Discussion

We first test how the parameterQ affects the performance
of ALPSO-II. The different values ofQ in set 0,1,3,5,7,10
were used. The results is shown in Table III. From the results,
we can see that different values ofQ give quite different
performance on most problems. For functionsf3, f21, and
f22, no particle learning from theabest position gives the
best results. TheQ value of 1 helps ALPSO-II to achieve the
best performance on functionsf12,f16,f17,f18,f19,f23,and
f25. For functionsf14 and f27, the best performance is
obtained by setting the neighborhood size of 3 for theabest
position. For functionsf10 andf11, the optimal value ofQ
is 5. While 7 is the optimal value ofQ for functionf26. And
the other functions achieve the best performance by setting
Q value of 10, which is the population size.

Table IV describes the comparison of the mean and
variance of the performance of ALPSO-II and the other six
peer algorithms over 30 runs on each test function. A two-
tailed T-test with 58 degrees of freedom at a 0.05 level of
significance was conducted between ALPSO-II and the other
six algorithms and the results are shown in Table V. The
performance difference is significant between two algorithms
if the absolute value of the T-test result is greater than 2.0.
In Table V, the suffix “+”,”∼” or “-” is attached to the end
of each result, which represents whether the performance of
ALPSO is significantly better than, statistically equivalent
to or significantly worse than the performance of its rival
respectively.

From Table IV and Table V, we can see that ALPSO-II
has a great improvement compared with ALPSO and also



TABLE III

THE MEAN AND VARIANCE FOR ALPSO-II WITH DIFFERENT VALUES OFQ

f f1 f2 f3 f4 f5 f6 f7 f8 f9

0 3.19e-04 0.0866856 40.0767 0.0382586 26.3309 0.006414916064.91 2.25853 0.00113198
±0.00492394±0.872817±234.696±0.365471 ±45.8418 ±0.10128 ±13031 ±6.99178 ±0.00827409

1 1.82e-25 2.63e-05 71.1226 8.77e-14 10.5521 2.33e-15 774.272 0.0940275 2.78e-22
±4.33e-24 ±7.73e-04 ±461.993±1.22e-12 ±53.6101 ±4.51e-14 ±6554.44 ±1.36323 ±8.19e-21

3 1.05e-37 3.14e-05 206.929 3.34e-14 14.075 2.00e-23 12.5449 0.020876 1.85e-32
±3.10e-36 ±9.15e-04 ±974.673±6.11e-14 ±110.567 ±5.65e-22 ±170.868 ±0.127035 ±6.14e-32

5 4.35e-44 0.0331653 327.68 3.42e-14 4.72059 3.66e-32 0.265745 0.158123 1.57e-32
±1.28e-42 ±0.978236±1055.14±4.60e-14 ±31.3837 ±1.07e-30 ±4.7862 ±1.31022 ±4.50e-47

7 1.66e-68 3.00e-04 414.535 3.57e-14 5.28914 4.54e-38 0.0476268 0.0711354 1.59e-32
±3.65e-67 ±0.0088403±1337.36±5.12e-14 ±27.559 ±1.34e-36 ±0.872162 ±0.599369 ±5.08e-33

10 5.31e-76 5.92e-17 513.413 2.74e-14 4.53951 9.29e-46 0.0254195 0.00865984 1.59e-32
±1.57e-74 ±1.75e-15 ±1233.32±5.31e-14 ±19.1285 ±2.65e-44 ±0.336377 ±0.161593 ±5.08e-33

f f10 f11 f12 f13 f14 f15 f16 f17 f18

0 164.566 291.695 74.8229 0.0364695 0.659069 0.0045937 0.0946551 104.134 0.753227
±864.696 ±2030.23 ±678.928±0.345891 ±2.86712 ±0.0993323±0.222948 ±626.772 ±1.74489

1 90 124.051 63.1713 1.55e-13 0.0663306 3.19e-25 0.048237871.1746 0.115955
±668.581 ±1557.17 ±434.616±2.78e-12 ±1.35937 ±5.22e-24 ±0.0657736±430.397 ±0.15188

3 40.0024 86.6691 194.295 2.90e-14 0.00269966 0 0.0511641 146.356 0.167982
±268.317 ±966.775 ±920.474±4.51e-14±0.0575712 ±0 ±0.0934132±619.848 ±0.709299

5 33.3333 86.6667 261.594 2.93e-14 0.266642 0 0.0565925 264.782 0.258714
±258.199 ±966.782 ±756.297±4.31e-14 ±2.78712 ±0 ±0.0994114 ±848.96 ±1.33818

7 36.6667 134.312 369.496 3.24e-14 0.166786 0 0.0601956 466.056 0.551791
±435.507 ±1667.37 ±1040.58±4.20e-14 ±2.0288 ±0 ±0.10302 ±931.616 ±3.2679

10 40 106.923 436.871 2.67e-14 0.198992 0 0.0765519 414.7230.486582
±363.318 ±1085.64 ±885.548±4.73e-14 ±2.59454 ±0 ±0.107511 ±943.544 ±2.88669

f f19 f20 f21 f22 f23 f24 f25 f26 f27

0 0.847822 0.0106357 136.259 5213.58 4.28073 0.0651118 5971.65 20.8468 109.569
±1.77004 ±0.11919 ±271.161 ±7829.31 ±6.84644 ±0.906418 ±7590.21 ±0.521797 ±128.283

1 0.0936267 3.56e-23 158.297 5585.91 3.371 1.36e-22 5595.76 20.8049 116.906
±0.593525 ±9.92e-22 ±261.794 ±7215.21 ±5.76803 ±2.86e-21 ±7438.25 ±0.77854 ±184.589

3 0.136432 6.78e-35 151.134 6263.7 4.79908 6.01e-15 6345.16 20.7147 105.898
±1.05414 ±1.74e-33 ±290.152 ±5098.66 ±10.2086 ±1.77e-13 ±5255.19 ±0.884154 ±148.957

5 0.214971 5.03e-54 152.012 6049.45 5.3534 7.41e-30 6329.44 20.7125 121.169
±1.72119 ±1.41e-52 ±254.374 ±4999.13 ±11.9327 ±1.56e-28 ±4272.98 ±0.814065 ±198.013

7 0.24976 1.36e-60 156.398 6060.51 4.13264 4.56e-29 6140.41 20.6834 125.032
±1.44984 ±4.00e-59 ±276.979 ±7980.64 ±6.42352 ±9.66e-28 ±6874.17 ±0.793542 ±170.94

10 0.184728 8.52e-71 174.759 5595.8 3.92293 0 6076.07 20.745 107.643
±1.34848 ±2.29e-69 ±266.957 ±7897.55 ±8.06215 ±0 ±7207.31 ±0.592678 ±193.516

TABLE V

T-TEST RESULTS OF COMPARINGALPSO-II WITH THE OTHER SIX

ALGORITHMS

f ALPSO APSO CLPSO CPSOH FIPS SPSO
f1 -1.06075∼ -1.6214∼ -4.69789+ -2.41383+ -23.9359+ -1.29748∼

f2 -1.97963∼ -6.66404+ -5.27699+ -13.801+ -65.3468+ -25.4596+

f3 -9.34763+ -1.21912∼ -5.50877+ -26.9873+ -31.6033+ -51.0314+

f4 -1.51581∼ -2.40284+ -5.11173+ -2.05477+ -50.3275+ -17.785+

f5 -5.98233+ -4.03117+ -25.1538+ -8.09945+ -31.8857+ -7.86615+

f6 -1.00041∼ -1.06707∼ -4.6305+ -3.6539+ -13.8511+ -1.15167∼

f7 -4.20748+ 2.22762− -13.9907+ -1.50177∼ -25.7935+ 2.22621−

f8 1.57979∼ -6.74729+ -14.8828+ 1.5379∼ -83.2277+ -4.14957+

f9 1∼ -1.02882∼ -3.57904+ -1∼ -4.62343+ -3.57485+

f10 -2.38093+ -1.62823∼ -0.0142319∼ -5.155+ -29.5374+ -35.4169+

f11 -2.14081+ -4.822+ 0.019596∼ -4.47075+ -23.1037+ -27.2468+

f12 -7.31876+ -1.33746∼ -4.56862+ -24.0973+ -27.2351+ -62.1658+

f13 0.18239∼ -6.22259+ -1.0046∼ -1.76531∼ -22.5143+ -19.3547+

f14 -3.69469+ -8.75107+ -6.59355+ -13.9833+ -46.9044+ -20.335+

f15 0∼ -2.19825+ -2.52609+ -1.46632∼ -7.47617+ -9.54448+

f16 -5.6533+ 0.810908∼ 11.8988− 14.347− -27.7775+ -1.25726∼

f17 -8.16028+ 4.43758− -3.26512+ -24.8334+ -36.6763+ -56.3514+

f18 -8.1065+ -4.82325+ 7.74591− 13.4864− -26.3917+ -16.8855+

f19 -3.35534+ -12.3139+ -5.61884+ -12.3992+ -62.3134+ -21.0353+

f20 -1.00001∼ -1.27409∼ -4.47775+ -2.21081+ -9.93093+ -1.00001∼

f21 -2.68428+ 1.06262∼ 2.2155− -4.8912+ -12.4983+ 3.14306−

f22 -6.07757+ -9.48845+ -7.0023+ -11.1986+ -4.73968+ -11.0022+

f23 -4.10924+ -2.8342+ 6.89448− -6.66128+ -24.8334+ -9.96075+

f24 0∼ -1∼ -4.58573+ -1.70125∼ -10.1283+ -4.73096+

f25 -5.99211+ -7.90853+ -6.55136+ -11.5386+ -1.54965∼ -10.0283+

f26 5.42885− -11.8899+ -12.3133+ -6.4556+ -10.6357+ -9.90871+

f27 -3.45041+ -6.15082+ -1.72509∼ -12.5193+ -21.5318+ -9.45723+

STA 16+,10∼,1- 15+,10∼,2- 19+,3∼,5- 19+,6∼,2- 26+,1∼,0- 21+,4∼,2-

outperforms the other algorithms on most test functions. As
can be seen from Table V, the performance of ALPSO-II is
significantly better than the performance of the other peer
algorithms on 15 out of 27 functions.

Fig. 1 shows the comparison of convergence speed of
the seven algorithm on 15 selected problems. From the
comparison result, ALPSO-II shows fast convergence speed
(e.g. on functionsf1, f3,f6, andf11) and capability of getting
out of local optima (e.g. on functionsf2, f5,f10, andf14).

V. CONCLUSIONS ANDFUTURE WORK

This paper presents an updated version of the ALPSO al-
gorithm based on four leanring operators. In order to increase
diversity of ALPSO, we introduce several new approaches
in ALPSO-II, including two updated learning operators, re-
initialization mechanism, and controlling the neighborhood
size of theabest position. From the experimental results,
we can draw two conclusions from the comparison of the
seven algorithms in terms of convergence speed and solution
accuracy. First, ALPSO-II greatly improves the performance
of ALPSO. The other one is that ALPSO-II outperforms the
other state-of-the-art algorithms on most test problems.

Although ALPSO-II has a good performance compared
with the other PSO algorithms, several issues should be
addressed in the future. How to adaptively tune the neigh-
borhood size of theabest position is the first issue. Second,



TABLE IV

THE MEAN AND VARIANCE OF THE SEVEN ALGORITHMS

f f1 f2 f3 f4 f5 f6 f7 f8 f9

ALPSOII 5.31e-76 5.92e-17 40.0767 2.74e-14 4.53951 9.29e-46 0.0254195 0.00865984 1.59e-32
±1.57e-74±1.75e-15±234.696±5.31e-14 ±19.1285 ±2.65e-44 ±0.336377 ±0.161593 ±5.08e-33

ALPSO 1.34e-70 0.165827 489.545 3.06e-14 24.1441 3.28e-363.01274 4.97e-06 1.57e-32
±3.73e-69±2.47076±1398.71±3.25e-14 ±94.7484 ±9.67e-35 ±20.9394 ±7.19e-05 ±4.50e-47

APSO 7.65e-67 1.76802 157.788 0.198783 16.7165 2.85e-35 1.51e-05 0.109862 6.73e-24
±1.39e-65±7.82543±2838.24±2.44014 ±87.0207 ±7.87e-34 ±2.47e-04 ±0.411838 ±1.93e-22

CLPSO 6.58e-28 0.862298 157.26 4.64e-14 24.3217 8.07e-18 342.719 8.35236 3.44e-28
±4.13e-27±4.81982±581.893±9.56e-14 ±13.1225 ±5.14e-17 ±722.481 ±16.5354 ±2.84e-27

CPSOH 4.43e-28 16.9397 2796.49 3.59e-14 22.0575 1.78e-16 347.567 2.34e-04 0.00345563
±5.41e-27±36.2039±3003.46±1.08e-13 ±60.8597 ±1.44e-15 ±6825.95 ±0.00172627±0.101927

FIPS 2431.85 192.656 4320.67 10.8636 211.692 17.8312 22488.7 31.7602 41800.1
±2996.72 ±86.9591±3988.23±6.36685 ±190.669 ±37.9714 ±25716.5 ±11.2515 ±2.67e+05

SPSO 1.12e-47 61.7205 5793.69 7.19459 11.924 0.001128 3.12e-05 0.0623961 1.00945
±2.56e-46±71.5052±3317.25±11.9319 ±20.0204 ±0.0288894 ±7.84e-04 ±0.346101 ±8.3289

f f10 f11 f12 f13 f14 f15 f16 f17 f18

ALPSOII 33.3333 86.6667 63.1713 2.67e-14 0.00269966 0 0.0482378 71.1746 0.115955
±258.199 ±966.782±434.616±4.73e-14±0.0575712 ±0 ±0.0657736 ±430.397 ±0.15188

ALPSO 106.667 311.081 461.118 2.64e-14 1.12762 0 0.100977 533.071 1.22046
±871.015 ±2936.92±1543.78±3.26e-14 ±8.98039 ±0 ±0.267188 ±1613.12 ±4.0159

APSO 80 879.673 382.984 0.755438 1.85726 3.86e-21 0.0426524.09857 0.708133
±804.984 ±4753.44 ±7039.6 ±3.58086 ±6.25058 ±5.18e-20 ±0.192236 ±116.334 ±3.61818

CLPSO 33.5097 85.8032 193.45 2.51e-09 2.91855 7.19e-27 0.0197708 158.015 0.0705996
±258.73 ±868.593±720.108±7.38e-08 ±13.0437 ±8.40e-26 ±0.0255626 ±655.871 ±0.0822234

CPSOH 270.283 743.255 2463.02 0.162784 34.9236 2.34628 0.0147016 2669.17 0.0446544
±1330.96 ±4222.58±2905.15±2.71988 ±73.6607 ±47.1965 ±0.0206748 ±3055.6 ±0.0353483

FIPS 899.526 1097.82 3837.65 12.3237 155.269 6262.96 2339.31 4427.77 12.295
±825.531 ±855.428±4064.61±16.1451 ±97.6382 ±24709.3 ±2483.96 ±3477.12 ±13.6106

SPSO 1015.9 1637.58 5944.94 15.1416 129.68 5013.49 57.15225881.63 7.30832
±776.499 ±1372.63±2756.67±23.0752 ±188.097 ±15493.4 ±1339.68 ±3010.73 ±12.5628

f f19 f20 f21 f22 f23 f24 f25 f26 f27

ALPSOII 0.0936267 8.52e-71 136.259 5213.58 3.371 0 5595.7620.6834 105.898
±0.593525±2.29e-69±271.161±7829.31 ±5.76803 ±0 ±7438.25 ±0.793542 ±148.957

ALPSO 0.623781 1.49e-57 169.841 7106.47 5.69469 0 7524.69 20.4355 140.432
±4.62247 ±4.39e-56±250.277±4805.87 ±15.6501 ±0 ±5901.55 ±1.08866 ±254.88

APSO 4.01811 5.05e-49 124.336 8277.67 5.02724 1.06e-11 8294.13 21.1134 174.313
±9.38165 ±1.17e-47±189.744±5424.76 ±16.2428 ±3.13e-10 ±6778.97 ±0.712975 ±292.312

CLPSO 1.05972 2.92e-10 113.986 7249.84 1.78883 4.46e-10 7395.84 21.0282 115.922
±5.03658 ±1.92e-09±119.995±3503.26 ±3.54214 ±2.87e-09 ±3217.71 ±0.229321 ±84.7718

CPSOH 22.5102 1.94e-25 199.695 8961.86 13.9178 0.002196019057.52 20.8902 248.576
±53.322 ±2.59e-24±269.837 ±6014 ±46.3428 ±0.0380737 ±4793.71 ±0.51237 ±301.347

FIPS 186.546 6678.58 259.5 6880.84 14.8485 20813.9 6217.4620.992 242.08
±88.2546 ±19836 ±105.185±6808.54 ±12.3519 ±60614.1 ±9203.25 ±0.320154 ±112.309

SPSO 58.3943 3.10e-14 103.376 9005.49 9.89541 8413.14 8614.45 20.9681 198.885
±81.7474 ±9.15e-13±147.309±6484.17 ±18.4389 ±52452.8 ±4848.07 ±0.29758 ±248.837

comparing ALPSO-II with other non-PSO algorithms is also
an important work. Finally, exploring new learning operators
is also an interesting work.
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Fig. 1. Evolutionary process of the algorithms on 15 selected functions.


