
ARTICLE IN PRESS

Engineering Applications of Artificial Intelligence 23 (2010) 806–819
Contents lists available at ScienceDirect
Engineering Applications of Artificial Intelligence
0952-19

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.com/locate/engappai
Genetic algorithms with immigrants schemes for dynamic multicast
problems in mobile ad hoc networks
Hui Cheng �, Shengxiang Yang

Department of Computer Science, University of Leicester, University Road, Leicester LE1 7RH, UK
a r t i c l e i n f o

Article history:

Received 31 May 2009

Received in revised form

19 November 2009

Accepted 16 January 2010
Available online 9 February 2010

Keywords:

Mobile ad hoc network

Dynamic multicast

Genetic algorithm

Immigrants scheme

Dynamic optimization
76/$ - see front matter & 2010 Elsevier Ltd. A

016/j.engappai.2010.01.021

esponding author. Tel.: +44 116 2525295.

ail address: hc118@le.ac.uk (H. Cheng).
a b s t r a c t

In this paper, the problem of dynamic quality-of-service (QoS) multicast routing in mobile ad hoc

networks is investigated. Lots of interesting works have been done on multicast since it is proved to be a

NP-hard problem. However, most of them consider the static network scenarios only and the multicast

tree cannot adapt to the topological changes. With the advancement in communication technologies,

more and more wireless mobile networks appear, e.g., mobile ad hoc networks (MANETs). In a MANET,

the network topology keeps changing due to its inherent characteristics such as the node mobility and

energy conservation. Therefore, an effective multicast algorithm should track the topological changes

and adapt the best multicast tree to the changes accordingly. In this paper, we propose to use genetic

algorithms with immigrants schemes to solve the dynamic QoS multicast problem in MANETs. MANETs

are considered as target systems because they represent a new generation of wireless networks. In the

construction of the dynamic network environments, two models are proposed and investigated. One is

named as the general dynamics model in which the topologies are changed due to that the nodes are

scheduled to sleep or wake up. The other is named as the worst dynamics model, in which the

topologies are altered because some links on the current best multicast tree are removed. Extensive

experiments are conducted based on both of the dynamic network models. The experimental results

show that these immigrants based genetic algorithms can quickly adapt to the environmental changes

(i.e., the network topology changes) and produce high quality solutions following each change.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A mobile ad hoc network (MANET) (Perkins, 2001; Siva Ram
Murthy and Manoj, 2004; Toh, 2002) is a self-organizing and self-
configuring multi-hop wireless network, which is comprised of a
set of mobile hosts (MHs) that can move around freely and
cooperate in relaying packets on behalf of one another. A MANET
supports robust and efficient operations by incorporating the
routing functionality into MHs. In multi-hop networks, routing is
one of the most important issues that has a significant impact on
the network’s performance. In a MANET, each mobile node is a
router and forwards packets on behalf of other nodes. Multi-hop
forwarding paths are established for nodes beyond the direct
wireless communication range. Routing protocols for MANETs
must discover such paths and maintain connectivity when links in
these paths break due to effects such as the node movement,
battery drainage, radio propagation, and wireless interference.

Multicast (Wang and Hou, 2000; Kuipers and Mieghem, 2002;
Wang et al., 2006) is an important network service, which is the
delivery of information from a source to multiple destinations
ll rights reserved.
simultaneously using the most efficient strategy to deliver the
messages over each link of the network only once, creating copies
only when the links to the destinations split. It provides under-
lying network support for collaborative group communications,
such as the video conference, distant education, and content
distribution. Group communications in MANETs are also impor-
tant in the support of mobile nodes to work in a cooperative way
(Law et al., 2005). Quality-of-service (QoS) requirements (Xiao
and Ni, 1999) proposed by different network applications are
often versatile. Among them, the end-to-end delay (Parsa et al.,
1998; Jia, 1998) is a pretty important QoS metric since the real-
time delivery of multimedia data is required. An efficient QoS
multicast algorithm should construct a multicast routing tree, by
which the data can be transmitted from the source to all the
destinations with a guaranteed QoS. The multicast tree cost,
which is used to evaluate the utilization of network resources, is
also an important metric especially in wireless mobile networks
where limited radio resources are available.

In this paper, the QoS multicast routing in MANETs is
investigated. The QoS multicast routing problem involves a
classical combinatorial optimization problem arising in many
design and planning contexts (Oliveira and Pardalos, 2005; Tyan
et al., 2003; Xue, 2003). In a MANET, the network topology keeps
changing due to its inherent characteristics, such as the node

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2010.01.021
mailto:hc118@le.ac.uk


ARTICLE IN PRESS

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819 807
mobility and energy conservation. Therefore, the multicast
problem in MANETs turns out to be a dynamic optimization
problem (DOP). An effective multicast algorithm should track the
topological changes and adapt the best multicast tree to the
changes accordingly. There are mainly two types of algorithms for
the multicast problem: the deterministic algorithms and
the search heuristics. Given the multicast request, only one
multicast tree is constructed for a given topology by a determi-
nistic algorithm, e.g., the shortest path tree (SPT) (Narvaez et al.,
2000) algorithm. However, by the search heuristics, such
as genetic algorithms (GAs) (Gen and Cheng, 2000) and simulated
annealing (SA) algorithms (Wang et al., 2006), lots of multicast
trees are searched and the best one is selected as the final result.

All the deterministic algorithms have polynomial time com-
plexity. Therefore, they will be effective in fixed infrastructure
wireless or wired networks. But, they exhibit an unacceptably
high computational complexity for real-time communications
involving rapidly changing network topologies (Ahn et al., 2001;
Ahn and Ramakrishna, 2002). Therefore, for the dynamic multi-
cast problem in a changing network environment, the search
heuristics are worthy of investigation. In recent years, studying
evolutionary algorithms (EAs) for DOPs has attracted a growing
interest due to its importance in EA’s real world applications
(Yang and Yao, 2008). The simplest way of addressing DOPs is to
restart EAs from scratch whenever an environment change is
detected. Although the restart scheme really works for some cases
(Yang and Yao, 2005), for many DOPs it is more efficient to
develop other approaches that make use of knowledge gathered
from old environments. Over the years, several approaches have
been developed for GAs to address dynamic environments
(Branke, 2002; Morrison, 2004; Weicker, 2003), such as main-
taining diversity during the run via random immigrants (Gre-
fenstette, 1992; Vavak and Fogarty, 1996) and increasing diversity
after a change.

In this paper, we adapt and investigate several genetic
algorithms that are developed to deal with general DOPs to solve
the dynamic multicast routing problem. First, we design the
components of the standard GA specifically for the dynamic
multicast problem. Then, we integrate several immigrants
schemes into the GA to enhance its searching capacity of the
optimal multicast tree in dynamic environments. Once the topo-
logy is changed, the new immigrants can help guide the search of
good solutions in the new environment. For the comparison
purpose, we also implement two traditional GA schemes, i.e.,
Standard GA and Restart GA, as the peer algorithms. By simulation
experiments, these GAs are evaluated under different parameter
settings to find the best combinations. More importantly, they are
evaluated under various settings of dynamic environments to see
the performance and find the best match between algorithms and
environmental characteristics. Generally speaking, the investi-
gated well-designed GAs work well in the dynamic real-world
networks.

The rest of this paper is organized as follows. Section 2
discusses related work. The network model and problem model
are provided in Section 3. The design of a GA for the multicast
problem is presented in Section 4. We describe the GAs with
immigrants schemes for the dynamic multicast routing problem
in Section 5. Section 6 presents the extensive experimental results
and analysis. Finally, Section 7 concludes this paper.
2. Related work

Multicast routing trees produced by deterministic algorithms
can be classified into two types, i.e., Steiner minimum tree (SMT)
(Hwang and Richards, 1992) and shortest path tree (Narvaez et al.,
2000). An SMT is also the minimum-cost multicast tree. An SPT is
constructed by applying the shortest path algorithm to find the
shortest (e.g., minimum cost or delay) path from the source to
each destination and then merging them. The problem of finding
an SMT has been proved to be NP-complete (Jia et al., 1997) and
lots of approximation algorithms (Aharoni and Cohen, 1998;
Helvig et al., 2000; Robins and Zelikovsky, 2000) have been
developed. An SPT provides a good solution for finding delay-
constrained multicast tree because it determines the minimum
delay path from the source to each destination. Inspired by SMT
and SPT, many heuristic algorithms (Parsa et al., 1998; Jia, 1998;
Khuller et al., 1995) have been proposed to construct a QoS-aware
multicast tree by making a tradeoff between them. QoS multicast
routing is still a challenging problem due to its intractability and
comprehensive application backgrounds. The research on it has
lasted for decades and is still going on.

Intelligent search heuristics is a type of promising techniques
to solve combinatorial optimization problems (Papadimitriou and
Steiglitz, 1998) including the SMT problem. GAs are a class of
representative intelligent global search heuristics. GAs are a type
of stochastic meta-heuristic optimization methods that model the
biological principles of Darwinian theory of evolution and
Mendelian principles of inheritance (Goldberg, 1989; Holland,
1975). GAs have been extensively used in solving the QoS
multicast problems in various networks such as the wired
multimedia networks (Wang et al., 2006) and optical networks
(Din, 2005). As one of our previous work (Wang et al., 2006), we
also developed a unified framework for achieving QoS multicast
trees using intelligent search heuristics and proposed three QoS
multicast algorithms based on GAs, simulated annealing, and tabu
search, separately.

In Wang et al. (2006), the binary encoding is adopted
where each bit of the binary string corresponds to a different
node in the network. For each binary string, a graph G

0

is derived
from the network topology G by including all the nodes
appearing in the string and the links connecting these nodes.
Then, the minimum spanning tree T of G

0

acts as the candidate
multicast tree represented by the binary string. This encoding
method is a bit complicated and each binary string cannot directly
represent a candidate solution. A multicast tree is a union of the
routing paths from the source to each receiver. Hence, it is a
natural choice to adopt the path-oriented encoding method (Ahn
and Ramakrishna, 2002; Din, 2005) instead of the binary
encoding.

In MANETs, a number of multicast routing protocols, using a
variety of basic routing algorithms and techniques, have been
proposed over the past few years (Cordeiro et al., 2003). However,
they mainly focus on the discovery of the optimal multicast
forwarding structure (i.e., tree or mesh) spanning mobile nodes
and do not consider the everlasting changes in the network
topologies. Topology dynamics is the inherent characteristics in
wireless mobile networks. For example, at time T1, the network
topology is G1. At time T2, the network topology may change to G2.
Although G1 and G2 are different, they are highly relevant since
each change alters part of the topology only. Therefore, the
solutions obtained on G1 could benefit the search of good
solutions on G2. An effective multicast algorithm should track
the topological changes and adapt the multicast trees to the
changes accordingly. We are not aware of any other work that
considers the dynamic multicast routing in the environment
where the network topology keeps changing in a contiguous way,
although there are quite a few works that are related to some
relevant aspects. For example, some researchers have investigated
the multicast problem where the dynamic group membership
exists (Adelstein et al., 2003; Yong et al., 2008). In a dynamic
group, nodes are allowed to join or leave it.



ARTICLE IN PRESS

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819808
3. Network and problem model

In this section, the model of a MANET is first presented and
then the dynamic multicast routing problem is formulated. We
consider a MANET operating within a fixed geographical region. It
is modelled by a undirected and connected topology graph G0(V0,
E0), where V0 represents the set of wireless nodes (i.e., routers)
and E0 represents the set of communication links connecting two
neighboring routers falling into the radio transmission range. A
communication link (i, j) cannot be used for packet transmission
unless both node i and node j have a radio interface each with a
common channel. However, the channel assignment is beyond the
scope of this paper. In addition, message transmission on a
wireless communication link will incur remarkable delay and
cost.

We summarize the notations that are used throughout this
paper as follows:
�

me

sho
G0(V0, E0), the initial MANET topology graph.

�
 Gi(Vi, Ei), the MANET topology graph after the i th change.

�
 s, the source node of the multicast request.

�
 R = {r0,r1,yrm}, the set of receivers of the multicast request.

�
 TiðVTi

;ETi
Þ, a multicast tree with nodes VTi

and links ETi
.

�
 PTi
ðs; rjÞ, a path from s to rj on the tree Ti.
�
 dl, the transmission delay on the communication link l.

�
 cl, the cost on the communication link l.

�
 CTi

, the cost of the tree Ti.

�

1

0

2

11

8

9

10

8910

2910
DðPiÞ, the total transmission delay on the path Pi.

The dynamic multicast routing problem can be informally
described as follows. Initially, given a MANET consisting of
wireless routers, a delay upper bound, and a multicast commu-
nication request from a source node to a set of receiver nodes, we
wish to find a delay-bounded least cost loop-free multicast tree
on the topology graph.1 Then, after each topology change, the
objective of our problem is to quickly find the new delay-
constrained least cost acyclic tree.

It is an extremely difficult job to completely model the
network dynamics in a single way. Here, we propose two models
to describe it and they are named as the general dynamics model
and the worst dynamics model, respectively. In the general model,
periodically or stochastically, due to energy conservation or other
reasons, some nodes are scheduled to sleep or some sleeping
nodes are scheduled to wake up. Therefore, the network topology
changes from time to time. Since in most cases, the selected nodes
may not belong to the present best multicast tree, the topological
changes have relatively moderate effect on the routing problem.
In the worst model, each change is generated manually by
removing a few links on the present best multicast tree. Thus, the
topological changes will destroy the present best solution and
thereby cause the worst effect on the problem. Although these
two models cannot cover the full cases of network dynamics, they
correspond to the general scenario and the worst scenario,
respectively. Based on these two representative models, the
multicast routing problem can be investigated in a relatively
thorough way.

More formally, we consider a MANET G(V, E) and a multicast
communication request from the source node s to the set of
receivers R with the delay upper bound D. The dynamic delay-

constrained multicast routing problem is to find a series of trees
fTijiAf0;1; . . .gg over a series of graphs fGijiAf0;1; . . .gg, which
1 Since the end-to-end delay (Parsa et al., 1998) is a pretty important QoS

tric to guarantee the real-time data delivery, it is required that the routing path

uld satisfy the delay constraint.
satisfy the delay constraint as shown in Eq. (1) and have the least
tree cost as shown in Eq. (2):

max
rj AR

X
lAPT ðs;rjÞ

dl

8<
:

9=
;rD; ð1Þ

CðTiÞ ¼min
T AGi

X
lATðVT ;ET Þ

cl

8<
:

9=
;: ð2Þ

4. Design of the GA for the dynamic QoS multicast problem

4.1. Genetic representation

As mentioned before, a multicast tree is a union of the routing
paths from the source to each receiver. Hence, it is a natural
choice to adopt the path-oriented encoding method (Ahn and
Ramakrishna, 2002; Din, 2005). A routing path is encoded by a
string of positive integers that represent the IDs of nodes through
which the path passes. Each locus of the string represents an order
of a node. The first locus is for the source and the last one is for the
receiver. The length of a routing path should not exceed the
maximum length jV j, where V is the set of nodes in the network.

For a multicast tree T spanning the source s and the set of
receivers R, there are jRj routing paths all originating from s.
Therefore, a tree is encoded by an integer array in which each row
encodes a routing path along the tree. For example, for a tree T

that spans s and R, the j-th row in the corresponding array A lists
up node IDs on the routing path from s to rj along T. Therefore, A is
an array of jRj rows. Fig. 1 illustrates a multicast tree and its
representation in an array. All the solutions are encoded under the
delay constraint. In case the delay constraint is violated, the
encoding process is usually repeated so that it is satisfied.

4.2. Population initialization

In a GA, each chromosome corresponds to a potential solution.
The initial population Q is composed of a certain number, denoted
as q, of chromosomes. A general method to initialize the
population is to explore the genetic diversity. That is, for each
chromosome, all its routing paths are randomly generated. We
start to search a random path from s to rjAR by randomly
selecting a node v1 from N(s), the neighborhood of s. Then, we
111010

Fig. 1. Illustration of the array representation of a multicast tree.



ARTICLE IN PRESS

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819 809
randomly select a node v2 from N(v1). This process is repeated
until rj is reached. Thus, we get a random path PT(s, rj) ={s, v1, v2,
y, rj}. Since no loop is allowed on the multicast tree, the nodes
that are already included in the current tree are excluded, thereby
avoiding reentry of the same node. In this way, the initial
population Q = {Ch0, Ch1, y, Chq�1} is obtained. The pseudo-code
is shown in Algorithm 1.

Algorithm 1. Population initialization.
1:
 i ¼: 0;

2:
 while ioq do

3:
 // Generate chromosome Chi
4:
 j ¼: 0;

5:
 VT :¼ ET :¼ |;

6:
 while jo jRj do

7:
 Search a random path PT(s, rj) which can guarantee

T [ PT be an acyclic graph;

8:
 Add all the nodes and links in PT into VT and ET,

respectively;

9:
 j++;

10:
 end while

11:
 i++;

12:
 end
 while
4.3. Fitness function

Given a solution, its quality should be accurately evaluated by
the fitness value, which is determined by the fitness function. In
our algorithms, we aim to find the least cost multicast tree from
the source to a set of receivers. The criterion used to evaluate the
solution quality is the tree cost. Therefore, among a set of
candidate solutions (i.e., multicast trees), we choose the one with
the minimal tree cost. The fitness value of chromosome Chi

(representing the tree T), denoted as f(Chi), is given by

f ðChiÞ ¼
X

lATðVT ;ET Þ

cl

2
4

3
5
�1

: ð3Þ
1

0
11

14

8

12

13

10

1

0
11

14

8

9

13

C
rossover

Fig. 2. Illustration of a c
The proposed fitness function is to be maximized and only
involves the total tree cost. As mentioned above, the delay
constraint is checked for each chromosome during the evolu-
tionary process.
4.4. Selection scheme

Selection plays an important role in improving the average
quality of the population by passing the high quality chromo-
somes to the next generation. The selection of chromosomes is
based on the fitness value. We adopt the scheme of pair-wise
tournament selection without replacement (Lee et al., 2008) as it
is simple and effective.
4.5. Crossover and mutation

The performance of a GA relies heavily on two basic genetic
operators, i.e., crossover and mutation. Crossover exchanges part
of the current solutions in order to find better ones. Mutation
helps a GA keep away from local optima. The type and
implementation of operators depends on the encoding and also
on a problem.

In our algorithm, since a chromosome is expressed by a tree
data structure, we adopt a single point crossover to exchange
partial chromosomes (sub-trees) at positionally independent
crossing sites between two chromosomes (Ahn and Ramakrishna,
2002). With a crossover probability, each time we select two
chromosomes Chi and Chj for crossover. To at least one receiver,
Chi and Chj should possess at least one common node from which
one, denoted as v, is randomly selected. In Chi, there is a path

consisting of two parts: (s �!
Chi

v) and (v �!
Chi

rk). In Chj, there is a

path consisting of two parts: (s�!
Chj

v) and (v �!
Chj

rk). The crossover

operation exchanges the paths (v �!
Chi

rk) and (v �!
Chj

rk). Fig. 2
illustrates a crossover operation, where node 13 is the selected
receiver and node 11 is the selected common node. The partial
paths ð11-12-13Þ and ð11-8-13Þ are swapped.
1

0
11

14

8
13

10

1

0
11

14

8

12
9

13

rossover operation.



ARTICLE IN PRESS

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819810
The population will undergo the mutation operation after the
crossover operation is performed. With a mutation probability,
each time we select one chromosome Chi on which one receiver rk

is randomly selected. On the path (s �!
Chi

rk) one gene is selected as
the mutation point (i.e., mutation node) denoted as v. The
mutation will replace the path (v �!

Chi
rk) by a new random path.

Both crossover and mutation may produce new chromosomes
which represent infeasible solutions. Therefore, we check whether
the multicast trees represented by the new chromosomes are
acyclic. If not, the repair function used in Oh et al. (2006) will be
applied to eliminate the loops. The delay checking is incorporated
into both the crossover and mutation operations to guarantee that
all the new chromosomes produced satisfy the delay constraint.
5. Investigated GAs for the dynamic multicast problem

In this paper, we investigate both traditional GAs and
immigrants based GAs for the dynamic QoS multicast problem.
As mentioned in Section 3, we propose two models to describe the
practical network dynamics. Under the general dynamics model,
GAs with immigrants schemes are applied. However, under the
worst dynamics model, improved GAs with immigrants schemes
are proposed to help conquer the extra difficulties arisen from the
topology changes.
5.1. Traditional GAs

The dynamic QoS multicast problem can still be addressed using
the specialized GA described above with two variants, denoted
Standard GA (SGA) and Restart GA. In the SGA, when an environ-
mental change leads to infeasible solutions, SGA handles them by
taking the measure of penalty. That is, infeasible solutions are set to
a very low fitness. In this way, the population in SGA can keep
evolving even in a continuously changing environment. In the
Restart GA, once a change is detected, the population will be re-
initialized based on the new network topology.
Fig. 3. Pseudocode for the elitism-based immigrants GA (EIGA) and the hybrid

immigrants GA (HIGA), where the elitism of size one is used.
5.2. GAs with immigrants schemes

In stationary environments, convergence at a proper pace is
usually what we expect for GAs to locate the optimum solutions
for many optimization problems. However, for DOPs, convergence
usually becomes a big problem for GAs because changing
environments usually require GAs to keep a certain population
diversity level to maintain their adaptability. To address this
problem, the random immigrants approach is a quite natural and
simple way (Grefenstette, 1992; Tinos and Yang, 2007; Yang and
Tinos, 2007; Yu et al., 2009, 2008). It was proposed by
Grefenstette with the inspiration from the flux of immigrants
that wander in and out of a population between two generations
in nature. It maintains the diversity level of the population
through replacing some individuals of the current population with
random individuals, called random immigrants, every generation. As
to which individuals in the population should be replaced, usually
there are two strategies: replacing random individuals or replacing
the worst ones (Vavak and Fogarty, 1996). In this paper, the random
immigrants based GA, denoted RIGA, uses the second replacement
strategy, i.e., random immigrants replace the worst individuals of
the current population. In order to avoid that random immigrants
disrupt the ongoing search progress too much, especially during the
period when the environment does not change, the ratio of the
number of random immigrants to the population size is usually set
to a small value, e.g., 0.2.
However, in a slowly changing environment, the introduced
random immigrants may divert the searching force of the GA
during each environment before a change occurs and hence may
degrade the performance. On the other hand, if the environment
only changes slightly in terms of the severity of changes, random
immigrants may not have any actual effect even when a change
occurs because individuals in the previous environment may still
be quite fit in the new environment. Based on the above
consideration, an immigrants approach, called elitism-based
immigrants, was proposed for GAs to address DOPs (Yang,
2007). The elitism-based immigrants GA (EIGA) is also investi-
gated for the dynamic QoS multicast problem in this paper. The
pseudo-code for the EIGA is given in Fig. 3.

Within the EIGA, for each generation t, after the normal genetic
operations (i.e., selection and recombination), the elite E(t�1)
from the previous generation is used as the base to create
immigrants. From E(t�1), a set of rei � n individuals are iteratively
generated by mutating E(t�1) with a probability pm

i , where n is
the population size and rei is the ratio of the number of elitism-
based immigrants to the population size. The generated indivi-
duals then act as immigrants and replace the worst individuals in
the current population. It can be seen that the elitism-based
immigrants scheme combines the idea of elitism with traditional
random immigrants scheme. It uses the elite from the previous
population to guide the immigrants toward the current environ-
ment, which is expected to improve the performance of GAs in
dynamic environments.

In order to address significant changes that the dynamic QoS
multicast problem may suffer, the elitism-based immigrants can
be hybridized with traditional random immigrants scheme. The
GA with the hybrid immigrants scheme, denoted HIGA, is also
investigated in this paper. Within HIGA, in addition to the rei � n

immigrants created from the elite of the previous generation, rri �

n immigrants are also randomly created, where rri is the ratio of
the number of random immigrants to the population size. These
two sets of immigrants will then replace the worst individuals in
the current population. The pseudo-code for HIGA is also shown
in Fig. 3.

In our implementation of elitism-based immigrants in both
EIGA and HIGA, if the mutation probability pm

i is satisfied, the elite
E(t�1) will be used to generate new immigrants by a mutation
operation; otherwise, E(t�1) itself will be directly used as a new
immigrant.



ARTICLE IN PRESS

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819 811
5.3. Improved GAs with immigrants schemes

In the proposed worst model of network dynamics, every
change is caused by removing a few links from the present
optimal multicast tree. Therefore, when the environment changes,
the present population undergoes dramatic changes and some
individuals become infeasible. The general immigrants based GAs
do not consider this case and thereby cannot perform well under
the worst dynamics model. We propose improved RIGA, EIGA, and
HIGA, denoted as iRIGA, iEIGA, and iHIGA, respectively, to address
these difficulties.

When there is no environmental changes detected, the above
three improved immigrants based GAs just follow the procedures
of their corresponding original GAs, respectively. When a change
occurs, in iRIGA, all the infeasible individuals are replaced by
random immigrants. In iEIGA, all the infeasible individuals are
repaired to become feasible and then the elitism is re-selected. In
iHIGA, when the environmental change occurs, for each infeasible
solution, we either replace it by a random immigrant or repair it
with an equal probability of 0.5.

In iEIGA, since the infeasible solutions are previous elitisms, it
is required to keep as many feasible components in them as
possible. Therefore, the repair should result in the least change to
the tree structure. The proposed repair method works as follows.
For each removed link, we search a random path starting from its
downstream node. Once an existing tree node is encountered, the
search ends. This random path is added to the tree to solve
the unconnected problem caused by that removed link. After all
the removed links are dealt with, the tree becomes feasible again.
Intuitively, this simple method can repair an infeasible tree with
the least cost added.
6. Performance evaluation

In the simulation experiments, we implement the two
traditional GAs (i.e., SGA and Restart GA) and the six immigrants
based GAs (i.e., RIGA, EIGA, HIGA, iRIGA, iEIGA, and iHIGA) for the
dynamic QoS multicast problem. In SGA, if the change makes one
individual in the current population infeasible (e.g., one or more
links in the corresponding path are lost), a penalty value is added
to its tree cost. By simulation experiments, their performance is
evaluated in a continuously changing wireless network. The
simulation software for both the dynamic topology generation
and the various GAs are developed using C++. The experiments
were run on a 160 CPU AMD Opteron cluster system, which is
provided by the University of Leicester’s Centre for Mathematical
Modelling as the shared high-performance computing resources.
6.1. Dynamic test environments

6.1.1. Common issues

Since we consider two dynamics models (i.e., the general one
and the worst one), two dynamic test environments are set up
accordingly. The initial network topology is generated using the
following method. We first specify a square region with the area
of 200� 200 that has the width [0, 200] on the x axis and the
height [0, 200] on the y axis. Then, we generate 100 nodes and
the position (x, y) of each node is randomly specified within the
square area. If the distance between two nodes falls into the radio
transmission range D, a link will be added to connect them and
both the cost and the delay of this link are randomly assigned
within the corresponding ranges. Finally, we check if the
generated topology is connected. If not, the above process is
repeated until a connected topology is generated. In the experi-
ments, D is given a reasonable value 50. Each topology is
represented by three arrays. One array uses 1 or 0 to represent
whether two links are connected or not. The other two arrays give
the corresponding cost and delay values of each link, respectively.

In both models, all the algorithms start from the initial
network topology. Every certain number (say, I) of generations
(i.e., the change interval), the network topology is changed in a
way corresponding to the dynamics model used. It can be seen
that I determines the change frequency. The larger the value of I,
the slower the problem changes. In the following experiments, we
set I to 5, 10 and 15 separately to see the impact of the change
frequency on the performance of dynamic GAs. In all the
experiments, the crossover probability was set to 0.95 and the
mutation probability was set to 0.05. For RIGA, iRIGA, EIGA, and
iEIGA, the ratios of the number of immigrants to the population
size, rri and rei, were set to 0.2. However, in HIGA and iHIGA, to
guarantee the comparison fairness, that is, the same number of
immigrants are introduced every generation, rri and rei were set to
0.1. In EIGA, iEIGA, HIGA, and iHIGA, the mutation probability pm

i

for generating new immigrants, was set to 0.8. Both the source
and destination nodes were randomly selected. The delay upper
bound D was set to be 2 times of the minimum end-to-end delay.

In order to have fair comparisons among GAs, the population
size and immigrants ratios were set such that each GA has 60
fitness evaluations per generation as follows:

ð1þriÞ � n¼ 60; ð4Þ

where n is the whole population size, which was set to 50 in
Section 6.2.1. Hence, we have n=60 for SGA and Restart GA, and
n=50 for RIGA, EIGA, HIGA, iRIGA, iEIGA, and iHIGA. At each
generation, for each algorithm, we select the best individual from
the current population and output the cost of the optimal tree
represented by it. For each experiment of an algorithm on a
dynamic problem, 10 independent runs were executed with the
same set of random seeds. For each run, 20 environmental
changes were allowed under both dynamics models, which are
equivalent to 105, 210, and 315 generations, including the initial
environment, for I=5, 10, and 15, respectively. For each run, the
best-of-generation fitness was recorded every generation. The
overall offline performance of a GA on a DOP is defined as

F BOG ¼
1

G

XG

i ¼ 1

1

N

XN

j ¼ 1

FBOGij

0
@

1
A; ð5Þ

where G is the total number of generations for a run, N=10 is the
total number of runs, and FBOGij

is the best-of-generation fitness of
generation i of run j. F BOG is the off-line performance, i.e., the best-
of-generation fitness averaged over the 10 runs and then over the
data gathering period.
6.1.2. Environmental changes under the general dynamics model

In the general dynamics model, every I generations, a certain
number (say, M) of nodes are scheduled to sleep or wake up
depending on their current status. It means that the selected
working nodes will be turned off to sleep and the selected
sleeping nodes will be turned on to work. Therefore, the network
topology is changed accordingly since some links are lost and
some other links appear again. The nodes are randomly selected
and thereby the affected links may belong to the present
multicast tree or not. The source and destination nodes are not
allowed to be scheduled in any change. By this means, we create a
series of network topologies corresponding to the continuous
environmental changes. Furthermore, these adjacent topologies
are highly related since each time the change affects only part of
the nodes.



ARTICLE IN PRESS

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819812
It can be seen that M determines the change severity. The
larger the value of M, the more severe the changes. We set M to 2
and 4, respectively. Thus, by the number of nodes changed per
time, we have two different series of topologies. When M is set to
2 and 4, we generate the topology series #2 and #4, respectively.
Each of these two series has 21 different topologies. All the
experiments under the general model are based on these two
topology series. We set up experiments to evaluate the population
size and the improvements over traditional GAs using RIGA, EIGA
and HIGA.

6.1.3. Environment changes under the worst dynamics model

In the worst dynamics model, every I generations, the present
best multicast tree is first identified. Then, a certain number (say,
U) of links on the tree are selected for removal. It means that the
selected links will be forced to be removed from the network
topology. Just before the next change occurs, the network
topology is recovered to its original state and ready for the
coming change. The population is severely affected by each
topology change since the optimal solution and possibly some
other good solutions become infeasible suddenly. To be fair, at
most one link is allowed to be removed on the tree path from the
source to each receiver. We let U range from 1 to 3 to see the
effect of the change severity.

Under the worst dynamics model, the topology series cannot
be generated in advance because every change is correlated with
the algorithm running. However, similarly, we also allow 20
changes. We set up the experiments to evaluate the impact of the
0 10 20 30 40
650

700

750

800

850

900

950

1000

Gen

B
es

t−
of

−G
en

er
at

io
n 

Tr
ee

 C
os

t

100 110 120 130 140 1
600

800

1000

1200

1400

1600

1800

1900

Gen

B
es

t−
O

f−
G

en
er

at
io

n 
Tr

ee
 C

os
t

Fig. 4. Comparison results of the quality of solution for HIGA with different populati

100 to 199.
change interval and the change severity, and the improvements
over traditional GAs using iRIGA, iEIGA and iHIGA.
6.2. Experimental results and analysis

6.2.1. Under the general dynamics model

First, we investigate the effect of the population size on the
performance of GAs and determine a proper population size that
ensures a specified quality of solutions. We pick up HIGA as an
example and run it over topology series #2. Here, I was set to 10.
The population size was varied from 30 to 60 to see if an
appropriate population size can be determined for this problem.
Since there are 21 topologies in each series, HIGA evolves 21 � I

generations in total. We sample the first 200 generations to plot the
figures. Figs. 4(a) and (b) show the results over topology series #2.

Figs. 4(a) and (b) show that on the average HIGA achieves the
best performance at the population size of 50. When the
population size is increased to 60, the algorithm performance
degrades on most of the time. Other algorithms are checked and
similar results are found. Therefore, we conclude that 50 is the
best choice for the population size for our problem. From
Figs. 4(a) and (b), it can also be seen that many times when a
change occurs, the algorithms are not affected. The reason lies in
that the topology changes may not always affect the current
population, especially the optimal individual in the population.
For example, if the nodes that are scheduled to sleep or wake up
in one change are not on the tree represented by the optimal
50 60 70 80 90 100
eration

HIGA:30
HIGA:40
HIGA:50
HIGA:60

50 160 170 180 190 200
eration

HIGA:30
HIGA:40
HIGA:50
HIGA:60

on sizes over topology series #2 from: (a) generation 0 to 99 and (b) generation



ARTICLE IN PRESS

Table 1
The t-test results of comparing GAs on the general dynamics model with I=10.

t-Test result Topology series #2 Topology series #4

RIGA–SGA s+ s+

EIGA–SGA s+ s+

HIGA–SGA s+ s+

RIGA–Restart GA s+ s+

EIGA–Restart GA s+ s+

HIGA–Restart GA s+ s+

RIGA–HIGA + +

RIGA–EIGA s+ +

EIGA–HIGA s� �

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819 813
individual, the optimal individual has a very high probability to
stay in the population unaffected. This explains why the
algorithms rarely react to the change drastically. However, under
the worst dynamics model, we will see totally different results.

Since under the general dynamics model, the environment
changes do not have significant effects on the GAs, the investiga-
tion on both the change interval and the change severity are put
under the worst dynamics model. However, under this model, we
are still interested in the comparison between the dynamic GAs
with the traditional GAs over the dynamic multicast problem.
Since the dynamic GAs are designed for the dynamic environ-
ments, they should show a better performance than the
traditional GAs over our problem. We compared RIGA, EIGA, and
HIGA with SGA and Restart GA in the experiments using topology
series #2 and #4 as the two dynamic environments. The interval
of changes was set to 10 here.

Figs. 5(a) and (b) show the comparison results over topology
series #2 and #4, respectively. From Figs. 5(a) and (b), it can be
seen that SGA always exhibits the worst performance. When the
topology is changed and infeasible solutions occupy the
population, SGA cannot recover the population by generating
new feasible solutions through the standard evolutionary
operations. Therefore, simple penalty cannot make the popu-
lation adapt to the complicated environmental changes. On
average, the Restart GA is also worse than any of the three
immigrants based GAs. The reason is that the Restart GA does not
exploit any useful information in the old environment and that
the frequent restart sacrifices its evolving capability. Immigrants
bring more diversity to the populations in RIGA, EIGA and HIGA
100 110 120 130 140 1
600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Gen

B
es

t−
O

f−
G

en
er

at
io

n 
Tr

ee
 C

os
t

RIGA
EIGA
HIGA
SGA
Restart

100 110 120 130 140 1
500

1000

1500

2000

2500

3000

3500

4000

Gen

B
es

t−
O

f−
G

en
er

at
io

n 
Tr

ee
 C

os
t

RIGA
EIGA
HIGA
SGA
Restart

Fig. 5. Comparison results of the quality of solution for RIGA, EIGA, HIGA, SGA
and therefore enhance their search capabilities. Among the three
dynamic GAs, EIGA achieves the worst performance in most of the
time. The reason lies in that in EIGA, new immigrants are
generated from the mutation of the elitism. In our problem, the
mutation operation just changes a partial path on the tree. Thus,
the new immigrants share most of the tree components and bring
less diversity into the population than RIGA and HIGA.

The corresponding statistical results of comparing these GAs
under the general dynamics model by a one-tailed t-test with 18
degrees of freedom at a 0.05 level of significance are given in
Table 1. In Table 1, the t-test result regarding Alg. 1�Alg. 2 is
shown as ‘‘+’’, ‘‘� ’’, ‘‘s+’’, or ‘‘s� ’’ when Alg. 1 is insignificantly
better than, insignificantly worse than, significantly better than,
or significantly worse than Alg. 2, respectively.
50 160 170 180 190 200
eration

50 160 170 180 190 200
eration

, and Restart GA over: (a) topology series #2 and (b) topology series #4.



ARTICLE IN PRESS

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819814
In addition to the overall best-of-generation solution quality,
we also want to compare different GAs in a statistical way. Since
each algorithm is repeated 10 times under the same experimental
setting and dynamic environment, each algorithm has 10 inde-
pendent evolution procedures. For each run, we calculate the
mean value of the best-of-generation solutions over the whole
evolution procedure. Therefore, we get 10 mean values for each
algorithm in the same experiment. Table 2 shows the comparison
results in terms of the mean value and the corresponding variance
of the best solutions at all the generations of each run over
topology series #2. The change interval was set to 10. Since the
best-of-generation value at each change point may be drastically
different from the values at other generations, we exclude them
from the calculation. The results in Table 2 approximately match
the results presented in Fig. 5(a).

All the above results reveal the algorithm performance by
the best-of-generation solution quality. However, not only the
statistical values of the best-of-generation are interesting, but also
the statistics of the total population can give some insights into
the operation of algorithms. For all the GAs, we compared the
results about the mean-of-generation solution quality over a
Table 2
The results of comparing GAs in terms of the mean value and variance of the best solu

Run # 1st 2nd

RIGA 854.958714653.9 842.668726164.6

EIGA 803.08975061.28 916.079717756.7

HIGA 874.226718733.9 974.621717046.4

SGA 1374.817704844 1521.0871.1076e+0

Restart GA 974.353717858.6 1008.47719107.9

Run # 5th 6th

RIGA 774.768732792.1 883.232722736.9

EIGA 867.463716180.3 829.632710744.3

HIGA 880.847714668.6 910.458 711298.4

SGA 1856.53 7751736 1978.07 71.3042e+0

Restart GA 979.258 716898.5 1002.62 723240.9

Run # 9th 10th

RIGA 933.263 715426.2 923.663 735886.6

EIGA 946.226 711460.3 910.416 713384.2

HIGA 902.321 76254.98 924.3 717311.6

SGA 2531.79 71.7547e+06 1393.49 71.3180e+0

Restart GA 976.579 715878.5 1027.37 714813.5

100 110 120 130 140 1
500

1500

2500

3500

4500

5500

6500

Gen

M
ea

n−
O

f−
G

en
er

at
io

n 
Tr

ee
 C

os
t

Fig. 6. Comparison results of the mean quality of solution of the whole population at e
typical run. Fig. 6 shows the comparison results for RIGA, EIGA,
HIGA, SGA, and Restart GA over topology series #2. We also
calculated the variance for the whole population at each
generation. However, due to the extremely large value interval
where these variance values fall into, the figures cannot be
plotted. We list the variance values of 10 generations in Table 3.
However, these results are just based on one run, they can only be
used to observe the whole population performance instead of
evaluating the algorithms.

6.2.2. Under the worst dynamics model

First, we investigate the impact of the change interval on the
performance of algorithms. Here, the number of links removed
per change was set to 2. When the change interval is 5, the
population evolves only five generations between two sequential
changes. Intuitively, a larger interval will give the population
more time to evolve and search better solutions than what a
smaller interval does. We take both iRIGA and iHIGA as examples
to compare the quality of solutions obtained under different
change intervals. However, one problem is that the total
generations are different for different change intervals. There
tions at each run under the general dynamics model.

3rd 4th

853.211714268.9 915.037719876.1

913.289720697.2 1008.25718001.8

858.337713116.1 934.453719548.7

6 1287.837731091 1595.9771.9045e+06

976.653716014.1 1023.45719454.1

7th 8th

833.8721138 741.105 712887.6

932.25374126.35 958.205 728485.4

935.242 78871.88 962.542 713073.9

6 2583.98 71.7888e+06 1854.11 7954893

976.116 715677.8 1036.11 716717.1

6

50 160 170 180 190 200
eration

RIGA
EIGA
HIGA
SGA
Restart

ach generation for RIGA, EIGA, HIGA, SGA, and Restart GA over topology series #2.



ARTICLE IN PRESS

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819 815
are 100, 200, and 300 generations corresponding to the change
interval 5, 10, and 15, respectively, when there are 20 different
topologies. Since the number of change points (i.e., the generation
at which a new topology is applied) is the same for all the
Table 3
The results of comparing GAs in terms of the variance of the solutions in the whole

population at each generation under the general dynamics model.

Generation # RIGA EIGA HIGA SGA Restart GA

100th 26400.4 0 4673.6 5123.79 122592

101st 0 0 282.24 1166.53 101541

102nd 0 0 0 2046.66 59445.8

103rd 75433.6 148.352 1789.93 880.902 7869.4

104th 21526.8 3601.16 138.298 3556.93 308.616

105th 6212.59 3156.67 2032.21 3529.47 1132.71

106th 2934.61 0.0784 0 1304.65 350.982

107th 0 2180.35 0 285.446 1295.89

108th 26674.3 527.162 162.308 5771.29 1183.33

109th 42225.1 1009.97 0 2140.63 3922.33

110th 112474 0 325.018 0 134707

111th 3082.47 1397.26 0 2321.4 63631.7

112th 20378.1 0 0 0 26409

113th 18893.3 685.392 1847.28 0 17445

114th 0 566.44 7533.23 331.24 7611.3

115th 38018.4 0 6234.68 2314.45 6357.6

116th 5127.45 0 1546.18 1172.74 4150.54

117th 49666.6 4150.95 0 7100.54 4069.32

118th 2387.3 3073.59 0 521.424 861.626

119th 18028.1 0 2672.45 2428.52 2324.28

0 5 10 15 20 25 30 35 40 45
900

1100

1300

1500

1700

1900

2100

2300

2500

2700

2900
3000

Pseudo

B
es

t−
O

f−
G

en
er

at
io

n 
Tr

ee
 C

os
t

0 5 10 15 20 25 30 35 40 45
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Pseudo

B
es

t−
O

f−
G

en
er

at
io

n 
Tr

ee
 C

os
t

Fig. 7. Comparison results of the quality of solution under
intervals, we take the data at each change point and its previous
two and next two generations. Thus, the three data sets can be
aligned over the three intervals.

Figs. 7(a) and (b) show the results regarding iRIGA and iHIGA,
respectively. Since the generation number does not correspond to
the actual generation number when the interval is 10 or 15, we
rename it as pseudo generation. In Fig. 7(a), over the 20
topologies, the iRIGA with change interval 15 achieves 11 best
solutions while the iRIGA with change intervals 10 and 5 achieve
6 and 3, respectively. In Fig. 7(b), over the 20 topologies, the iRIGA
with change interval 15 achieves 16 best solutions while the
iRIGA with change interval 10 achieves 4. It can be concluded that
the solution quality becomes better when the change interval
becomes larger. Therefore, in a relatively slowly changing
environment, the improved immigrants based GAs can achieve a
good performance.

Second, we investigate the impact of the change severity on
the performance of algorithms. Under the worst dynamics model,
the change severity is reflected by the number of links removed
from the present optimal tree per change. Therefore, we generate
two topology series by removing different number of links each
change. One is to remove only one link each change and the other
is to remove three links each change. These two topology series
act as the two environments with different change severities. This
time, we pick up iRIGA, iEIGA, and iHIGA together as the example
algorithms and we set the change interval to 10. Figs. 8(a)
and (b) show the results in the two different environments,
respectively.
50 55 60 65 70 75 80 85 90 95 100
 Generation

iRIGA:5
iRIGA:10
iRIGA:15

50 55 60 65 70 75 80 85 90 95 100
 Generation

iHIGA:5
iHIGA:10
iHIGA:15

different change intervals for: (a) iRIGA and (b) iHIGA.



ARTICLE IN PRESS

0 10 20 30 40 50 60 70 80 90 100

800

1000

1200

1400

1600

1800

2000

Generation

B
es

t−
O

f−
G

en
er

at
io

n 
Tr

ee
 C

os
t

iRIGA
iEIGA
iHIGA

100 110 120 130 140 150 160 170 180 190 200
800

1200

1600

2000

2400

2800

3200

3600
3800

Generation

B
es

t−
O

f−
G

en
er

at
io

n 
Tr

ee
 C

os
t

iRIGA
iEIGA
iHIGA

Fig. 8. Comparison results of the response speed to changes for iRIGA, iEIGA, and iHIGA over two different topology series where: (a) each change removes one link and (b)

each change removes three links from the present optimal tree.

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819816
From Fig. 8(a), in can be seen that iRIGA takes almost nine
generations to get its best solution after one change occurs. iEIGA
takes about five generations to get its best solution. However,
iHIGA can quickly adapt to the environmental changes and get the
best solution among these three GAs in 90% of the time. Therefore,
in the environment with a low change severity, iHIGA performs
the best since it takes the advantages of both iRIGA and iEIGA.
From Fig. 8(b), it can be seen that for both iRIGA and iHIGA,
they need almost nine generations to get their best solutions after
one change occurs and iHIGA achieves a better solution quality
than iRIGA. However, in this environment with a high change
severity, iEIGA performs very well which takes two to
five generations to get the overall best solution. The reason is
that in the highly dynamic environment, after a change occurs,
the proposed repair method can reserve the useful components of
the elitism and repair the broken part with the least added cost.
The new immigrants generated by repairing the elitisms can
quickly adapt to the severe changes. However, as we have
discussed under the general dynamics model, iEIGA brings a less
diversity to the population compared to both iRIGA and iHIGA.
Therefore, we can conclude that these dynamic GAs respond
to the environmental changes in a reasonable speed and perform
well.

Third, we compare the dynamic GAs with the traditional GAs
under the worst dynamics model. Here, the number of links
removed per change is set to 2 and the change interval is 10.
Figs. 9(a) and (b) show the results. Similar as under the general
model, SGA performs the worst since it does not explicitly handle
the environmental changes. Most of the time, Restart GA performs
worse than all the improved immigrants based GAs. However,
occasionally, iRIGA is worse than it. Overall, iEIGA is better than
iHIGA as it has shown in the environment with a high change
severity. It can be concluded that these three improved
immigrants based GAs greatly outperform those two standard
GAs under the worst dynamics model.

The corresponding statistical results of comparing these GAs
under the worst dynamics model by a one-tailed t-test with 18
degrees of freedom at a 0.05 level of significance are given in
Table 4.

Similarly, as in the experiments under the general dynamics
model, we also want to compare different GAs in a statistical
way under the worst dynamics model. For each of the 10 runs,
we calculated the mean value of the best-of-generation
solutions over the whole evolution procedure. Table 5 shows
the comparison results in terms of the mean value and the
corresponding variance of the best solutions at all the generations
of each run. The change interval was set to 10 and the number of
links removed per change was set to 2. Similarly, we also excluded
the best-of-generation value at each change point from the
calculation. The results in Table 5 approximately match the
results presented in Fig. 9.

Similarly, we are also interested in the statistical values of the
total population under the worst dynamics model since they can
give insights on the operation of GAs. For all the improved GAs
and traditional GAs, we compare the results regarding the mean-
of-generation solution quality over a typical run. Fig. 10 shows the



ARTICLE IN PRESS

0 10 20 30 40 50 60 70 80 90 100
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Generation

B
es

t−
O

f−
G

en
er

at
io

n 
Tr

ee
 C

os
t

iRIGA
iEIGA
iHIGA
SGA
Restart

100 110 120 130 140 150 160 170 180 190 200
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Generation

B
es

t−
O

f−
G

en
er

at
io

n 
Tr

ee
 C

os
t

iRIGA
iEIGA
iHIGA
SGA
Restart

Fig. 9. Comparison results of the quality of solution for iRIGA, iEIGA, iHIGA, SGA, and Restart GA from: (a) generation 1 to 99 and (b) generation 100 to 199.

Table 4
The t-test results of comparing GAs under the worst dynamics model with I=10

and the number of links removed per change U=2.

Compared algorithms t-Test result

iRIGA–SGA s+

iEIGA–SGA s+

iHIGA–SGA s+

iRIGA–Restart GA +

iEIGA–Restart GA s+

iHIGA–Restart GA s+

iRIGA–iHIGA s�

iRIGA–iEIGA s�

iEIGA–iHIGA +

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819 817
comparison results for iRIGA, iEIGA, iHIGA, SGA, and Restart GA.
We also calculated the variance for the whole population at each
generation of each algorithm. However, also due to the extremely
large value interval where these variance values fall into, the
figures cannot be plotted. We list the variance values of 20
generations in Table 6. It can be seen that iRIGA and Restart GA
bring much higher variance values than other GAs.
7. Conclusions

Mobile ad hoc networks (MANETs) have seen various colla-
borative multimedia applications which require an efficient
information delivery service from a designated source to multiple
receivers. An QoS multicast tree is preferred to support this
service. However, the optimal QoS multicast routing problem is
proved to be NP-hard. Quite some works have been done to
address the static multicast problem by genetic algorithms.
However, in MANETs, the topology dynamics makes this problem
much harder to solve. So far, little work has been done on the
dynamic multicast problem in mobile networks. By observing that
immigrants based GAs (i.e., RIGA, EIGA, HIGA) perform very well
over many dynamic benchmark problems, we apply them to the
dynamic QoS multicast problem in MANETs in this paper. Based
on the problem characteristics, we also propose three improved
versions of immigrants based GAs, i.e., iRIGA, iEIGA, and iHIGA, to
handle highly dynamic environments.

Extensive simulation experiments have been conducted to
compare the proposed algorithms with traditional GAs. We
highlight the investigation on the best-of-generation solu-
tion quality since it represents the performance of algorithms.
Meanwhile, we also investigate the mean value and variance
of the best solutions over all the generations of each run.
Furthermore, we also look inside the population by investi-
gating the mean value and variance of all the individuals in the
same population at each generation. All these experiments help
reveal the performance of GAs in various aspects. Experimental
results demonstrate that our algorithms can adapt to the
environmental changes well and achieve better solutions after
each change than the traditional GAs. Therefore, they are
promising techniques for dealing with dynamic telecommunica-
tion problems.



ARTICLE IN PRESS

Table 5
The results of comparing GAs in terms of the mean value and variance of the best solutions at each run under the worst dynamics model.

Run # 1st 2nd 3rd 4th

iRIGA 310.295 73025.99 308.411 73472.15 291.184 73137.23 291.632 73003.89

iEIGA 243.216 71694.03 303.253 72100.26 237.837 72496.82 248.342 71132.37

iHIGA 290.584 73088.98 296.7 73588.48 270.111 72014.81 260.384 72137.82

SGA 936.511 7122170 980.895 765683.4 925.611 780954.8 1100.78 745708.3

Restart GA 301.342 72448.95 305.247 74651.78 292.474 73076.83 296.047 72772.08

Run # 5th 6th 7th 8th

iRIGA 292.037 73429.24 285.032 74582.25 314.468 73602.13 303.837 73255.5

iEIGA 244.037 71378.82 251.316 71692.03 249.974 71731.54 243.847 72360.47

iHIGA 293.511 72290.93 262.284 71670.74 278.811 71447.87 280.016 72174.41

SGA 1027.09 780585.3 1026.32 780714.9 1036.07 766072.6 955.2 782530.5

Restart GA 281.595 76145.27 310.047 72850.66 297.979 75658.09 297.342 74878.44

Run # 9th 10th

iRIGA 302.742 72607.67 309.289 73298.96

iEIGA 207.958 71285.54 245.753 71138.94

iHIGA 270.153 73478.76 299.642 71715.35

SGA 1015.56 763934.3 975.963 795070.8

Restart GA 297.484 74395.76 317.926 73983.98

100 110 120 130 140 150 160 170 180 190 200
150

350

550

750

950

1150

1350

Generation

M
ea

n−
O

f−
G

en
er

at
io

n 
Tr

ee
 C

os
t

iRIGA
iEIGA
iHIGA
SGA
Restart

Fig. 10. Comparison results of the mean quality of solution of the whole population at each generation for iRIGA, iEIGA, iHIGA, SGA, and Restart GA.

Table 6
The results of comparing GAs in terms of the variance of the solutions in the whole

population at each generation under the worst dynamics model.

Generation # iRIGA iEIGA iHIGA SGA Restart GA

100th 2764.29 0 0 0 34727.9

101st 14139.8 976.356 40303.8 184.416 13203.1

102nd 6986.85 208.322 14709.1 228.614 9626.7

103rd 315.496 0 1270.68 663.578 7876.52

104th 2997.16 0 1376.41 1466.82 3326.92

105th 849.658 0 0 0 2744.98

106th 1282.99 24.01 0 0 338.064

107th 1733.2 0 1982.03 511.488 207.36

108th 900.294 1176.49 11.2896 165.894 57.1536

109th 1557.05 0 0 0 2.3716

110th 50.9796 0 2484.03 0 45966.7

111th 16027.6 3590.62 40036.6 0 18138.3

112th 3741.12 354.92 3053.13 0 7569.53

113th 2945.37 423.054 4366.7 1176.49 4022.57

114th 1770.13 104.68 757.364 0 1410.83

115th 1005.16 0 2772.33 6.3504 34.5744

116th 456.574 0 0 296.528 0

117th 2016.34 0 0 843.534 98.8036

118th 0.49 1147.85 0 0 0

119th 0 0 16.4836 0 0

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819818
Acknowledgments

The authors are grateful to the anonymous reviewers for their
thoughtful suggestions and constructive comments. This work
was supported by the Engineering and Physical Sciences Research
Council (EPSRC) of UK under Grant EP/E060722/1.

References

Adelstein, F., Richard, G., Schwiebert, L., 2003. Distributed multicast tree
generation with dynamic group membership. Comput. Commun. 26 (10),
1105–1128.

Aharoni, E., Cohen, R., 1998. Restricted dynamic Steiner trees for scalable multicast
in datagram networks. IEEE/ACM Trans. Networking 6 (3), 286–297.

Ahn, C., Ramakrishna, R., 2002. A genetic algorithm for shortest path routing
problem and the sizing of populations. IEEE Trans. Evol. Comput. 6 (6), 566–
579.

Ahn, C., Ramakrishna, R., Kang, C., Choi, I., 2001. Shortest path routing algorithm
using Hopfield neural network. Electron. Lett. 37 (19), 1176–1178.

Branke, J., 2002. Evolutionary Optimization in Dynamic Environments. Kluwer
Academic Publishers, Dordrecht.

Cordeiro, C., Gossain, H., Agrawal, D., 2003. Multicast over wireless mobile ad hoc
networks: present and future directions. IEEE Network 17 (1), 52–59.

Din, D., 2005. Anycast routing and wavelength assignment problem on WDM
network. IEICE Trans. Commun. E88-B (10), 3941–3951.



ARTICLE IN PRESS

H. Cheng, S. Yang / Engineering Applications of Artificial Intelligence 23 (2010) 806–819 819
Gen, M., Cheng, R., 2000. Genetic Algorithms and Engineering Optimization. Wiley,
New York.

Goldberg, D., 1989. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA, USA.

Grefenstette, J., 1992. Genetic algorithms for changing environments. In:
Proceedings of the Second International Conference on Parallel Problem
Solving from Nature, pp. 137–144.

Helvig, C., Robins, G., Zelikovsky, A., 2000. An improved approximation scheme for
the group Steiner problem. Networks 37 (1), 8–20.

Holland, J., 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor.

Hwang, F., Richards, D., 1992. Steiner tree problems. Networks 22 (1), 55–89.
Jia, X., 1998. A distributed algorithm of delay-bounded multicast routing for

multimedia applications in wide area networks. IEEE/ACM Trans. Networking
6 (6), 828–837.

Jia, X., Pissinou, N., Makki, K., 1997. A real-time multicast routing algorithm for
multimedia applications. Comput. Commun. 20 (12), 1098–1106.

Khuller, S., Raghavachari, B., Young, N., 1995. Balancing minimum spanning and
shortest path trees. Algorithmica 14 (4), 305–321.

Kuipers, F., Mieghem, P.V., 2002. MAMCRA: a constrained-based multicast routing
algorithm. Comput. Commun. 25 (8), 802–811.

Law, L., Krishnamurthy, S.V., Faloutsos, M., 2005. Fireworks: an adaptive group
communications protocol for mobile ad hoc networks. In: Proceedings of the
Fourth IFIP Networking, pp. 853–868.

Lee, S., Soak, S., Kim, K., Park, H., Jeon, M., 2008. Statistical properties analysis of
real world tournament selection in genetic algorithms. Appl. Intell. 28 (2),
195–2205.

Morrison, R.W., 2004. Designing Evolutionary Algorithms for Dynamic Environ-
ments. Springer, Berlin.

Narvaez, P., Siu, K.-Y., Tzeng, H.-Y., 2000. New dynamic algorithms for shortest
path tree computation. IEEE/ACM Trans. Networking 8 (6), 734–746.

Oh, S., Ahn, C., Ramakrishna, R., 2006. A genetic-inspired multicast routing
optimization algorithm with bandwidth and end-to-end delay constraints. In:
Proceedings of the 13th International Conference on Neural Information
Processing (ICONIP 2006), October, Lecture Notes in Computer Science, vol.
4234. Springer, Berlin, pp. 807–816.

Oliveira, C., Pardalos, P., 2005. A survey of combinatorial optimization problems in
multicast routing. Comput. Oper. Res. 32 (8), 1953–1981.

Papadimitriou, C., Steiglitz, K., 1998. Combinatorial Optimization: Algorithms and
Complexity. Dover Publications Inc, New York.

Parsa, M., Zhu, Q., Garcia-Luna-Aceves, J., 1998. An iterative algorithm for delay-
constrained minimum-cost multicasting. IEEE/ACM Trans. Networking 6 (4),
461–474.

Perkins, C.E., 2001. Ad Hoc Networking. Addison-Wesley, London.
Robins, G., Zelikovsky, A., 2000. Improved Steiner tree approximation in graphs. In:
Proceedings of the ACM/SIAM Symposium on Discrete Algorithms.

Siva Ram Murthy, C., Manoj, B.S., 2004. Ad Hoc Wireless Networks: Architectures
and Protocols. Prentice-Hall PTR, Englewood Cliffs, NJ.

Tinos, R., Yang, S., 2007. A self-organizing random immigrants genetic algorithm
for dynamic optimization problems. Genet. Program. Evol. Mach. 8 (3),
255–286.

Toh, C.-K., 2002. Ad Hoc Mobile Wireless Networks: Protocols and Systems.
Prentice-Hall PTR, Englewood Cliffs, NJ.

Tyan, H.-Y., Hou, J.C., Wang, B., 2003. Many-to-many multicast routing with
temporal quality of service guarantees. IEEE Trans. Comput. 52 (6), 826–832.

Vavak, F., Fogarty, T., 1996. A comparative study of steady state and generational
genetic algorithms for use in nonstationary environments. In: Proceedings of
the AISB Workshop on Evolutionary Computing, pp. 297–304.

Wang, B., Hou, J., 2000. A survey on multicast routing and its QoS extensions:
problems, algorithms, and protocols. IEEE Network 14 (1), 22–36.

Wang, X., Cao, J., Cheng, H., Huang, M., 2006. QoS multicast routing for multimedia
group communications using intelligent computational methods. Comput.
Commun. 29 (12), 2217–2229.

Weicker, K., 2003. Evolutionary Algorithms and Dynamic Optimization Problems.
Der andere Verlag, Osnabrück, Germany.

Xiao, X., Ni, L., 1999. Internet QoS: a big picture. IEEE Network 13 (2), 8–18.
Xue, G., 2003. Minimum-cost QoS multicast and unicast routing in communication

networks. IEEE Trans. Commun. 51 (5), 817–824.
Yang, S., 2007. Genetic algorithms with elitism-based immigrants for

changing optimization problems. In: Evoworkshops 2007: Applications of
Evolutionary Computing. Lecture Notes in Computer Science, vol. 4448,
pp. 627–636.

Yang, S., Tinos, R., 2007. A hybrid immigrants scheme for genetic algorithms in
dynamic environments. Int. J. Automat. Comput. 4 (3), 243–254.

Yang, S., Yao, X., 2005. Experimental study on population-based incremental
learning algorithms for dynamic optimization problems. Soft Comput. 9 (11),
815–834.

Yang, S., Yao, X., 2008. Population-based incremental learning with associative
memory for dynamic environments. IEEE Trans. Evol. Comput. 12 (5),
542–561.

Yong, K., Poo, G., Cheng, T., 2008. Proactive rearrangement in delay constrained
dynamic membership multicast. Comput. Commun. 31 (10), 2566–2580.

Yu, X., Tang, K., Yao, X., 2008. An immigrants scheme based on environmental
information for genetic algorithms in changing environments. In: Proceedings
of the 2008 Congress on Evolutionary Computing, pp. 1141–1147.

Yu, X., Tang, K., Chen, T., Yao, X., 2009. Empirical analysis of evolutionary
algorithms with immigrants schemes for dynamic optimization. Memetic
Comput. 1 (1), 3–24.


	Genetic algorithms with immigrants schemes for dynamic multicast problems in mobile ad hoc networks
	Introduction
	Related work
	Network and problem model
	Design of the GA for the dynamic QoS multicast problem
	Genetic representation
	Population initialization
	Fitness function
	Selection scheme
	Crossover and mutation

	Investigated GAs for the dynamic multicast problem
	Traditional GAs
	GAs with immigrants schemes
	Improved GAs with immigrants schemes

	Performance evaluation
	Dynamic test environments
	Common issues
	Environmental changes under the general dynamics model
	Environment changes under the worst dynamics model

	Experimental results and analysis
	Under the general dynamics model
	Under the worst dynamics model


	Conclusions
	Acknowledgments
	References




