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Abstract. The static shortest path (SP) problem has been well addressed using
intelligent optimization techniques, e.g., artificial neural networks, genetic algo-
rithms (GAs), particle swarm optimization, etc. However, with the advancement
in wireless communications, more and more mobile wireless networks appear,
e.g., mobile ad hoc network (MANET), wireless mesh network, etc. One of the
most important characteristics in mobile wireless networks is the topology dy-
namics, that is, the network topology changes over time due to energy conser-
vation or node mobility. Therefore, the SP problem turns out to be a dynamic
optimization problem in mobile wireless networks. In this paper, we propose
to use multi-population GAs with immigrants scheme to solve the dynamic SP
problem in MANETS which is the representative of new generation wireless net-
works. The experimental results show that the proposed GAs can quickly adapt to
the environmental changes (i.e., the network topology change) and produce good
solutions after each change.

1 Introduction

A mobile ad hoc network (MANET) [I1] is a self-organizing and self-configuring
multi-hop wireless network, comprised of a set of mobile hosts (MHs) that can move
around freely and cooperate in relaying packets on behalf of each other. In this paper,
we investigate the shortest path (SP) routing, which concerns with finding the shortest
path from a specific source to a specific destination in a given network while mini-
mizing the total cost associated with the path. The SP problem has been investigated
extensively. It involves a classical combinatorial optimization problem arising in many
design and planning contexts [[112].

There are several search algorithms for the SP problem: the Dijkstra’s algorithm,
the breadth-first search algorithm and the Bellman-Ford algorithm, etc. All these al-
gorithms have polynomial time complexity. Therefore, they will be effective in fixed
infrastructure wireless or wired networks. But, they exhibit unacceptably high com-
putational complexity for real-time communications involving rapidly changing net-
work topologies [2/3]]. Since the algorithms with polynomial time complexity are not
suitable for the real-time computation of shortest paths, quite a few research work
have been conducted to solve SP problems using artificial intelligence techniques, e.g.,
artificial neural networks (ANNs) [2]], genetic algorithms (GAs) [3], and particle swarm
optimization (PSO) [[7]].
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However, so far all these algorithms mainly address the static SP problem. When the
network topology changes, they will regard it as a new network and restart the solving
process over the new topology. As is well known that the topology changes rapidly in
MANETs due to the characteristics of wireless networks, e.g., battery exhaustion and
node mobility. Therefore, for the dynamic SP problem in MANETS, these algorithms
are not good choices since they require frequent restart and cannot meet the real-time re-
quirement. Therefore, for the dynamic SP problem in a changing network environment,
we need to employ new appropriate approaches.

In recent years, studying EAs for DOPs has attracted a growing interest due to its
importance in EA’s real world applications [14]]. The simplest way of addressing DOPs
is to restart EAs from scratch whenever an environment change is detected. Although
the restart scheme really works for some cases [13]], for many DOPs it is more efficient
to develop other approaches that make use of knowledge gathered from old environ-
ments. One of the possible approaches is to maintain and reintroduce diversity during
the run of EAs, i.e., the immigrants schemes [15]]. Multi-population approach [4] is also
an effective technique for DOPs. In the multi-population GA (MPGA), some popula-
tions are responsible for exploiting and others for exploring. By both exploiting and
exploring the solution space, MPGA can well adapt to the environmental changes.

In this paper, the multi-population GA with immigrants scheme is implemented and
applied to solve the dynamic SP problem. The algorithm is denoted as iMPGA. A large
population is created, which will split into several small populations after evolving for
a certain time. These small populations continue the search by either exploiting or ex-
ploring the solution space. Once the topology is changed, all the small populations are
processed in an appropriate way and then merge together. At each generation, to en-
hance the diversity a small number of random immigrants are added into the single
population or the small populations which are responsible for exploring. This process
is repeated for each change interval. Since end-to-end delay [10] is a pretty important
quality-of-service (QoS) metric to guarantee the real-time data delivery, we also require
the routing path to satisfy the delay constraint. For comparison purposes, we also imple-
ment the Standard GA (SGA), the Restart GA, and the random immigrants GA (RIGA).
By simulation experiments, we evaluate their performance on the dynamic SP problem.
The results show that iMPGA significantly outperforms the other three GA methods.

2 Model

In this section, we first present our network model and then formulate the problem of
dynamic SP routing. We consider a MONET operating within a fixed geographical re-
gion. We model it by a undirected and connected topology graph Gy(Vy, Ep), where
Vo represents the set of wireless nodes (i.e., routers) and Ej represents the set of com-
munication links connecting two neighboring routers falling into the radio transmission
range. A communication link (7, j) can not be used for packet transmission until both
node i and node j have a radio interface each with a common channel. However, the
channel assignment is beyond the scope of this paper. In addition, message transmis-
sion on a wireless communication link will incur remarkable delay and cost.
Here, we summarize some notations that we use throughout this paper.

- Go(Vy, Ep), the initial MANET topology graph.
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G;(V;, E;), the MANET topology graph after the ith change.
s, the source node.

r, the destination node.

P;(s, r), a path from s to r on the graph G;.

d;, the transmission delay on the communication link /.

1, the cost on the communication link /.

A(P;), the total transmission delay on the path P;.

C(P;), the total cost of the path P;.

The problem of the dynamic SP routing can be informally described as follows. Initially,
given a network of wireless routers, a delay upper bound, a source node and a destina-
tion node, we wish to find a delay-bounded least cost loop-free path on the topology
graph. Then periodically or stochastically, due to energy conservation or some other is-
sues, some nodes are scheduled to sleep or some sleeping nodes are scheduled to wake
up. Therefore, the network topology changes from time to time. The objective of our
problem is to quickly find the new optimal delay-constrained least cost acyclic path
after each topology change.

More formally, consider a mobile ad hoc network G(V, E) and a unicast communi-
cation request from the source node s to the destination node r with the delay upper
bound A. The dynamic delay-constrained shortest path problem is to find a series of
paths {P;|i € {0,1,...}} over a series of graphs {G;|i € {0,1,...}}, which satisfy the
delay constraint as shown in (1) and have the least path cost as shown in (2).

AP)= Y d<A. (1
leP;(s,r)

C(P) = min Y oayp. 2)
! leP(s,r)

3 Design of GA for SP Problem

This section describes the design of the GA for the SP problem. The GA operations
consist of several key components: genetic representation, population initialization, fit-
ness function, selection scheme, crossover and mutation. A routing path consists of a
sequence of adjacent nodes in the network. Hence, it is a natural choice to adopt the
path-oriented encoding method. For the routing problems, the path-oriented encoding
and the path-based crossover and mutation are also very popular [3]]. For the selection
scheme, the pair-wise tournament selection without replacement [6] is employed and
the tournament size is 2.

3.1 Genetic Representation

A routing path is encoded by a string of positive integers that represent the IDs of
nodes through which the path passes. Each locus of the string represents an order of a
node (indicated by the gene of the locus). The gene of the first locus is for the source
node and the one of the last locus is for the destination node. The length of a routing
path should not exceed the maximum length |Vj|, where V) is the set of nodes in the
MANET. Chromosomes are encoded under the delay constraint. In case it is violated,
the encoding process is usually repeated so as to satisfy the delay constraint.
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3.2 Population Initialization

In GA, each chromosome corresponds to a potential solution. The initial population
Q is composed of a certain number, denoted as n, of chromosomes. To explore the
genetic diversity, in our algorithm, for each chromosome, the corresponding routing
path is randomly generated. We start to search a random path from s to r by randomly
selecting a node v; from N(s), the neighborhood of 5. Then we randomly select a node
vy from N(v1). This process is repeated until r is reached. Thus, we get a random path
P(s, r)={s, v1, va, ..., r}. Since the path should be loop-free, the nodes that are already
included in the current path are excluded, thereby avoiding reentry of the same node.
The initial population is generated as follows.

Step 1: Start(j=0).

Step 2: Generate chromosome Ch;: search a random loop-free path P(s, r);

Step 3: j=j+1.1If j < n, go to Step 2, otherwise, stop.
Thus, the initial population Q = {Chg, Chy, ..., Ch,,_1 } is obtained.

3.3 Fitness Function

Given a solution, we should accurately evaluate its quality (i.e., fitness value), which is
determined by the fitness function. In our algorithm, we aim to find the least cost path
between the source and the destination. Our primary criterion of solution quality is the
path cost. Therefore, among a set of candidate solutions (i.e., unicast paths), we choose
the one with the least path cost. The fitness value of chromosome Ch; (representing the
path P), denoted as F(Ch;), is given by:

F(Chj)=[ Y a] . 3)

leP(s,r)

The proposed fitness function only involves the total path cost. As mentioned above,
The delay constraint is checked for each chromosome in the course of the run.

3.4 Crossover and Mutation

GA relies on two basic genetic operators - crossover and mutation. Crossover processes
the current solutions so as to find better ones. Mutation helps GA keep away from local
optima [3]]. The performance of GA depends on them greatly. The type and implemen-
tation of operators depend on problem-specific encoding.

In our algorithm, since chromosomes are expressed by the path structure, we adopt
single point crossover to exchange partial chromosomes (subpath) at positionally inde-
pendent crossing sites between two chromosomes [3]]. With the crossover probability,
each time we select two chromosomes Ch; and Ch; for crossover. Ch; and Ch; should
possess at least one common node. Among all the common nodes, one node, denoted

. . . Ch;
as v, is randomly selected. In Ch;, there is a path consisting of two parts: (s —> v) and
Ch; . . Ch; Ch;
(v —= r). In Chj, there is a path consisting of two parts: (s —% v)and (v =% r). The
. Ch; Ch;
crossover operation exchanges the subpaths (v —% r) and (v —> r).

The population will undergo the mutation operation after the crossover operation is
performed. With the mutation probability, each time we select one chromosome Ch; on
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which one gene is randomly selected as the mutation point (i.e., mutation node), denoted

as v. The mutation will replace the subpath (v L, r) by a new random subpath.

Both crossover and mutation may produce new chromosomes which are infeasible
solutions. Therefore, we check if the paths represented by the new chromosomes are
acyclic. If not, repair functions [§]] will be applied to eliminate the loops. Here the detail
is omitted due to the space limit. All the new chromosomes produced by crossover or
mutation satisfy the delay constraint since it has already been considered.

4 iMPGA: Multi-population GAs with Immigrants Scheme

The random immigrants approach was proposed by Grefenstette [5] with the inspira-
tion from the flux of immigrants that wander in and out of a population between two
generations in nature. It maintains the population diversity level by replacing some in-
dividuals of the current population with random individuals, called random immigrants,
every generation. As to which individuals in the population should be replaced, usually
there are two strategies: replacing random individuals or replacing the worst ones. In
order to avoid that random immigrants disrupt the ongoing search progress too much,
especially during the static period between two environmental changes, the ratio of the
number of random immigrants to the population size, r;, is usually set to a small value.

The traditional genetic algorithm has a single population searching through the en-
tire search space. Multi-population approach tries to divide the search space into several
parts and then uses a number of small populations to search them separately. Normally,
one of the small populations acts as the parent population or the core population. In the
Forking genetic algorithms (FGAs) [[12], the parent population continuously searches
for new optimum, while a number of child populations try to exploit previously detected
promising areas. In the Shifting Balance GA [9]], the core population is used to exploit
the best solution found, while the colony populations are responsible for exploring dif-
ferent areas in the solution space.

In this paper, we generally follow the idea of the FGAs. However, to address the
dynamic SP problem, we still need to make specific design in our algorithm. To measure
the similarity degree between two individuals, we define the distance between any two
individuals by counting the same links shared by them. The more same links they share,
the closer they are. For the parent population which is responsible for exploring, we
expect that the individuals in it are kept far away from each other in the distance. Thus,
the population can search a wide area. For a child population which is responsible for
exploiting, we expect that the individuals in it stay close to an optimum and perform
lots of local search.

In iMPGA, initially we randomly generate a large single population. For each given
change interval /, the whole population will evolve together for | I /2] generations. Then
the single population is split into three small populations. Of them, one small population
will act as the parent population for exploring and the other two will act as the child pop-
ulations for exploiting. To achieve this goal, we develop the following splitting method.
First, we identify the present optimal individual Pop!,,; in the whole population. Then
we find its closest neighbor Popl;, 2nd closest neighbor Popls, 3rd closest neighbor
Pop13, till the (m-1)th closest neighbor Pop1,,_;. All these m individuals form the first
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child population {Pop1 o, Popl1, Popls, Popls, ..., Popl,,_1}. Among all the remain-
ing individuals of the whole population, the optimal one is identified again, denoted as
Pop2,,;. Similarly, among the remaining individuals, we determine its closest neigh-
bor Pop2;, 2nd closest neighbor Pop2s, 3rd closest neighbor Pop2s3, till the (m-1)th
closest neighbor Pop2,,,—1. All these m individuals form the second child population
{Pop2,pi, Pop21, Pop2s, Pop2s, ..., Pop2,,_1}. All the remaining individuals form the
third population, i.e., the parent population.

These three small populations keep evolving independently till the change interval
ends. When a new change is detected, i.e., the topology is modified, all of them need
to be processed appropriately and then merged together in order to form a single pop-
ulation again. We develop the following processing method for these small populations
to adapt to the environmental changes. For each of them, if the optimal individual in
it becomes infeasible, the whole population will be replaced by random immigrants.
Otherwise, if the optimal individual in it is feasible, only the infeasible individuals in
the population will be replaced by random immigrants. The reason to do so is that if
the optimal individual becomes infeasible, all the other individuals are also infeasible
and therefore the whole population should be abandoned. However, if the optimal in-
dividual is suitable for the new environment, we also want to keep other individuals
which are also suitable for the new environment. Thus, the useful information in the old
environment can be reused to guide the search in the new environment.

In our algorithm, at each generation, a small number of random immigrants are added
into the population. Before the splitting of the population, all the random immigrants are
imported into the single population to replace the worst ones. After the splitting, all the
random immigrants are only imported into the parent population since it is responsible
for exploring.

5 [Experimental Study

We implement iMPGA, RIGA, SGA, and Restart GA for the dynamic SP problem
by simulation. For RIGA and SGA, if the change makes one individual in the current
population become infeasible (e.g., one link in the corresponding path is lost after the
change), we add penalty value to that individual. By simulation experiments, we evalu-
ate their performance in a continuously changing mobile ad hoc network.

5.1 Experimental Design

All the algorithms start from the initial network topology of 100 nodes. Then every 1
generations, the present best path is identified and a certain number (say, U) of links
on the path are selected for removal. It means that the selected links will be forced to
be removed from the network topology. However, just before the next change occurs,
the network topology will be recovered to its original state and ready for the oncoming
change. The population is severely affected by each topology change since the optimal
solution and possibly some other good solutions become infeasible suddenly. Consid-
ering that the optimal path length could not be a large number, we let U range from 1
to 3 to see the effect of the change severity. Under this network dynamics model, the
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topology series cannot be generated in advance because every change is correlated with
the running of the algorithm. We allow 10 changes in each run of the algorithms. We set
up experiments to evaluate the impact of the change interval and the change severity,
and the improvements over traditional GAs and RIGA.

In all the experiments, the whole population size 7 is set to 100, the child population
size m is set to 20, and the mutation probability is set to 0.1. For the random immigrants
scheme, r; is set to 0.2. In addition, we set the number of changes to 19 and therefore
the algorithms will work over 20 different but highly-correlated network topologies (the
initial topology plus the 19 changed topologies). Both the source and destination nodes
are randomly selected and they are not allowed to be scheduled in any change. The
delay upper bound A is set to be 2 times of the minimum end-to-end delay.

5.2 Experimental Results and Analysis

At each generation, for each algorithm, we select the best individual from the current
population and output the cost of the shortest path represented by it. We repeat each
experiment 10 times and get the average values of the best solutions at each generation.
First, we investigate the impact of the change interval on the algorithm performance.
We set [ to 5, 10, and 15 separately to see the impact of change interval (i.e., change
frequency) on the algorithm performance. Here the number of links removed per change
is fixed to 2.

When the change interval is 5, the population evolves only 5 generations between
two sequential changes. Intuitively, a larger interval will give the population more time
to evolve and search better solutions than what a smaller interval does. We compare the
quality of solutions obtained by iMPGA at different intervals. However, one problem is
that the total generations are different for different intervals, i.e., 100, 200 and 300 ver-
sus the interval 5, 10, and 15 when there are 20 different topologies. Since the number
of change points (i.e., the generation at which a new topology is applied) is the same
for all the intervals, we take the data at each change point and its left two and right two
generations. Thus, the three different data sets can be aligned over the three different
intervals. Fig. [Il shows the comparison results in terms of the change intervals.

Since the generation number does not correspond to the actual number when the
interval is 10 or 15, we rename it as pseudo generation. From the two subfigures, it can
be seen that the solution quality becomes better when the change interval is increased
from 5 to 10. However, when the change interval is increased from 10 to 15, the results
in both subfigures are slightly different. In Fig. [[a), the iMPGA shows competing
performance for both intervals. For five times, the performance at interval 10 is better
and for the other five times, the performance at interval 15 is better. In Fig. [[(b), the
performance at interval 15 is better than the performance at interval 10 for all the times.
The reason is that in Fig.[I(b), the generations that the whole population has evolved at
interval 15 are much larger than the generations that the whole population has evolved
at interval 10. Longer evolution brings better solutions. Therefore, the capability of
the multi-population genetic algorithm in searching the optimum has been significantly
enhanced. In traditional GA, the population may converge after evolving for a while.
However, in iMPGA, due to the introduction of random immigrants, the population can
keep evolving and get out of the trap in the local optimum.
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Fig. 1. Comparison of the solution quality of iMPGA with different change intervals from (a)
generation 0-49 and (b) generation 50-99

To evaluate the effect of the change severity on the algorithm performance, we vary
the number of links removed per change from 1 to 3. Meanwhile, the change interval is
fixed to 10 since it is a reasonably good change frequency as shown in the above experi-
ments. With more links removed from the network, the environmental changes become
more severe. Furthermore, since all the removed links come from the present best path,
some individuals including the optimal one in the population become infeasible. It is
also possible that the whole population becomes infeasible if each individual contains
at least one removed link. The more the links removed, the higher the probability of an
individual being infeasible.

Fig. [2l shows the comparison results in terms of the change severities. It can be seen
that the quality of solution is the best when the number of links removed per change is
1 and the worst when the number is 3. However, the difference between iMPGA:1 and
iMPGA:2 is less significant than the difference between iMPGA:2 and iMPGA:3. The
reason is that the increase in the number of links removed per change is not proportional
to the increase in the change severity. To remove one more link will bring a much
higher change severity to the network and therefore affect much more individuals in the
population. Another interesting point is that in Fig. PIb), the performance differences
between the algorithms with different change severities become less than the differences
in Fig. 2la). It is also due to the enhanced search capability of the multi-population
algorithm after long time evolution as explained above.

The quality of solution is the most important metric to evaluate the algorithm per-
formance. We compare iMPGA with both traditional GAs and random immigrants GA.
The two traditional GAs are Standard GA and Restart GA. We set the change interval
to 10 and the number of links removed per change to 2, respectively. Since iMPGA is
a dynamic GA which is specifically designed for the dynamic environment, it should
show better performance than the traditional GAs over our dynamic shortest-path prob-
lem. Fig. Bla) shows the comparison results between iMPGA and traditional GAs. It
can be seen that iMPGA achieves better solutions than both of the traditional GAs.
Restart GA shows the worst performance due to frequent restart which does not give the
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Fig. 3. Comparison of the solution quality of iMPGA against (a) traditional GAs and (b) RIGA

population enough time to evolve. Although RIGA is also a dynamic GA, it does not
utilize the approach of multiple populations to help search. Fig. Bl(b) shows the com-
parison results between iMPGA and RIGA. It shows that iMPGA performs better than
RIGA. This verifies that the multi-population approach helps improve the capability of
GA in handling dynamic environment.

6 Conclusions

The static SP problem considers the static network topology only. Intuitively, it is a
much more challenging task to deal with the dynamic SP problem in a rapidly chang-
ing network environment such as MANETS than to solve the static one in a fixed in-
frastructure. Recently, there has been a growing interest in studying GAs for dynamic
optimization problems. Among approaches developed for GAs to deal with DOPs, the



Multi-population Genetic Algorithms with Immigrants Scheme 571

multi-population GA aims at handling the problem dynamics by using multiple small
populations to perform both exploration and exploitation. Random immigrants scheme
is another approach which maintains the diversity of the population throughout the run
via introducing new individuals into the current population. In this paper, we propose
iMPGA which combines both the multi-population approach and immigrants. We well
design the GA components for the SP problem and the multi-population GA with im-
migrants scheme. Simulation experiments are conducted in a large scale MANET. The
results show that iMPGA is a powerful technique for solving the dynamic SP problem
and has potential to be applied to the real-world telecommunication network. In the
future work, we will further investigate the robustness of the solutions provided by us.
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