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Abstract—In recent years, interest in studying evolutionary
algorithms (EAs) for dynamic optimization problems (DOPs) has
grown due to its importance in real-world applications. Several
approaches, such as the memory and multiple population schemes,
have been developed for EAs to address dynamic problems. This
paper investigates the application of the memory scheme for pop-
ulation-based incremental learning (PBIL) algorithms, a class of
EAs, for DOPs. A PBIL-specific associative memory scheme, which
stores best solutions as well as corresponding environmental infor-
mation in the memory, is investigated to improve its adaptability in
dynamic environments. In this paper, the interactions between the
memory scheme and random immigrants, multipopulation, and
restart schemes for PBILs in dynamic environments are investi-
gated. In order to better test the performance of memory schemes
for PBILs and other EAs in dynamic environments, this paper also
proposes a dynamic environment generator that can systematically
generate dynamic environments of different difficulty with respect
to memory schemes. Using this generator, a series of dynamic
environments are generated and experiments are carried out to
compare the performance of investigated algorithms. The experi-
mental results show that the proposed memory scheme is efficient
for PBILs in dynamic environments and also indicate that different
interactions exist between the memory scheme and random immi-
grants, multipopulation schemes for PBILs in different dynamic
environments.

Index Terms—Associative memory scheme, dynamic optimiza-
tion problems (DOPs), immune system-based genetic algorithm
(ISGA), memory-enhanced genetic algorithm, multipopulation
scheme, population-based incremental learning (PBIL), random
immigrants.

I. INTRODUCTION

E VOLUTIONARY algorithms (EAs) are a class of meta-
heuristic algorithms inspired by principles of natural evo-

lution, such as selection and population genetics. Traditionally,
research on EAs has been focused on stationary optimization
problems, where problems are precisely given in advance and
remain fixed during the evolutionary process. Due to their ease
of use and good performance, EAs have been widely applied for
solving many stationary optimization problems [1], [23], [48].
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However, the environments of many real-world problems are
often dynamic [8], [18], [19], [28]. For these dynamic optimiza-
tion problems (DOPs), the fitness function, design variables, and
environmental conditions may change over time due to such fac-
tors as the stochastic arrival of new tasks, machine faults and
degradation, climatic change, market fluctuation, and economic
and financial factors.

Usually, for stationary optimization problems, the aim is to
design EAs that can quickly and precisely locate the optimum
solution(s) in the search space. However, for DOPs, the sit-
uation is quite different. For DOPs, fast and precise EAs are
not sufficient and, in fact, in some cases perform worse than
their slower and less precise peer EAs due to the convergence
problem. For traditional (fast and precise) EAs when the
environment changes, the population may have converged to
some optimum solutions or areas and hence is trapped there
and cannot perform well in the new environment. Hence, for
DOPs what is more important is to develop algorithms that
can track and adapt to the changing environment. Though this
poses great challenges to traditional EAs, EAs with proper
enhancement can also be good solvers for DOPs due to their
intrinsic inspiration from natural evolution, which is itself
always subject to an ever-changing environment.

In recent years, studying EAs for DOPs has attracted a
growing interest due to its importance in EA’s real-world appli-
cations. The simplest way of addressing DOPs is to restart EAs
from scratch whenever an environmental change is detected.
Though the restart scheme really works for some cases [41], for
many DOPs, it is more efficient to develop other approaches
that make use of knowledge gathered from old environments.
Several approaches have been developed into EAs to address
DOPs. These approaches include maintaining and reintroducing
diversity during the run [9], [16], [27], [35], memory schemes
[6], memory and diversity hybrid schemes [33], [43], [46], and
multipopulation schemes [7].

Population-based incremental learning (PBIL) algorithms
were first proposed by Baluja [2] as an abstraction of genetic
algorithms (GAs), which explicitly maintain the statistics con-
tained in a GA’s population [3]. As a class of EAs, PBILs have
proved to be very successful on numerous stationary bench-
mark and real-world problems [21]. Recently, Yang and Yao
[41] have investigated PBILs for DOPs by introducing dualism
and a scheme similar to the random immigrants method [16]
to improve their performance in dynamic environments, and
in [42], a memory scheme has been introduced into PBILs for
DOPs with some preliminary results.

In this paper, the PBIL-specific explicit memory scheme in-
troduced in [42] is further investigated to improve its adapt-
ability in dynamic environments. With this memory scheme,
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the best sample created by the working probability vector to-
gether with the probability vector are stored in the memory in a
certain time and space pattern. When an environmental change
is detected, the probability vector associated with the memory
sample that is reevaluated to be the best in the new environ-
ment is retrieved to compete with the current working proba-
bility vector for further iterations. This paper also investigates
the interactions between the memory scheme and random im-
migrants, multipopulation, and restart schemes for PBILs in dy-
namic environments.

In order to test the investigated PBILs for DOPs, a DOP gen-
erator that aims to systematically construct dynamic environ-
ments for testing EAs, especially EAs with memory schemes,
is also proposed in this paper. Based on this generator, a se-
ries of DOPs are constructed from three stationary functions as
the dynamic test environments and experimental study is carried
out to compare the performance of investigated PBILs and two
state-of-the-art memory-enhanced GAs: the memory/search GA
by Branke [6] and an immune system based GA recently devel-
oped in [44].

The rest of this paper is organized as follows. Section II
reviews existing memory approaches for EAs in dynamic
environments. Section III details several EAs investigated in
this paper, including our memory-enhanced PBILs. Section IV
first briefly reviews existing DOP generators, then presents our
proposed dynamic environment generator for testing memory
schemes for EAs, and finally describes the dynamic test envi-
ronments constructed for the experimental study of this paper.
The basic experimental results and analysis regarding the
proposed memory scheme and random immigrants for PBILs
are presented in Section V. Section VI studies the effect of
multipopulation and restart schemes on the memory scheme for
PBILs in dynamic environments. Finally, Section VII concludes
this paper with discussions on future work.

II. MEMORY SCHEMES FOR EVOLUTIONARY ALGORITHMS

(EAS) IN DYNAMIC ENVIRONMENTS

The application of memory schemes has proved to be able to
enhance EA’s performance in dynamic environments, especially
when the environment changes cyclicly in the search space.1

The basic principle of memory schemes is to store information,
such as good solutions, from the current environment and reuse
it later in new environments. This useful information can be
stored in two ways: by implicit memory mechanisms and by
explicit memory mechanisms [6].

A. Implicit Memory Schemes

For implicit memory schemes, EAs use genotype represen-
tations that contain redundant information to store good (par-
tial) solutions to be reused later. Here, the redundant represen-
tation acts as memory, which is implicit for the EA to use ap-
propriately. Typical examples of implicit memory schemes are
GAs based on diploidy or multiploidy representations. Gold-
berg and Smith [14] first extended the simple haploid GA to a

1For the convenience of description, we differentiate the environmental
changing periodicality in time and space by wording periodical and cyclic,
respectively. The environment is said to be periodical if it changes in a fixed
time interval, e.g., every certain EA generations, and is said to be cyclic if it
visits several fixed states in the search space in a certain order repeatedly.

diploid GA with a tri-allelic dominance scheme. Thereafter, Ng
and Wong [30] proposed a dominance scheme with four alleles
for a diploidy-based GA. Lewis et al. [22] further investigated
an additive diploidy scheme where a gene becomes 1 if the ad-
dition of all alleles exceeds a certain threshold, or 0 otherwise.
Recently, Uyar and Harmanci [38] proposed an adaptive domi-
nance change mechanism for diploid GAs, where the dominance
characteristics for each locus is dynamically adapted through
feedback from the current population.

In addition to multiploidy GAs, Dasgupta and McGregor [11]
proposed a quite different implicit memory scheme in the so
called structured GA, which is haploid based but has a multi-
leveled structure. In this representation, high-level genes can
regulate the activation of a set of low-level genes. The set of
low-level genes can memorize good (partial) solutions in old
environments that can be reactivated by high-level genes in new
environments. Similar to diploid GAs, recently Yang and Yao
[41] proposed a dual PBIL for dynamic problems inspired by
the principle of dualism in nature.

B. Explicit Memory Schemes

While implicit memory schemes for EAs in dynamic envi-
ronments depend on redundant representations to store useful
information for EAs to exploit during the run, explicit memory
schemes make use of precise representations but split an extra
storage space where useful information from the current gener-
ation can be explicitly stored and reused in later generations or
environments. Explicit memory schemes mainly involve three
concerns: what to store in the memory, how to organize and up-
date the memory, and how to retrieve the memory.

For the first concern, a natural choice is to store good solu-
tions and reuse them when the environment change is detected.
This can be called direct memory scheme. For example, Louis
and Xu [24] studied the open shop rescheduling problem. They
used a memory to store best individuals during a run. When-
ever a change (in a known pattern) occurs, the GA is restarted
from a population with partial (5%–10%) individuals retrieved
from the memory corresponding to the previous run, while the
rest is initialized randomly. The authors reported significant im-
provements of their GA over the GA with totally random restart
scheme. Instead of storing good solutions only, information that
associates good solutions with their environments can also be
stored with good solutions. This information can be used for
similarity measure to associate a new environment with certain
stored good solutions and then reuse these associated solutions
more efficiently. This can be called indirect memory scheme or
associative memory scheme. For example, Ramsey and Grefen-
stette [31] studied a GA for a robot control problem, where good
candidate solutions are stored in a permanent memory together
with information about the robot’s current environment. When
the robot incurs a new environment that is similar to a stored
environment instance, the associated stored controller solution
is reactivated. This scheme was reported to yield significant im-
provements. Recently, an associative memory scheme has been
developed for PBILs for DOPs [42] with some promising pre-
liminary results, which will be further investigated in this paper
and will be described in details in Section III-B.

The memory space or size is usually limited (and fixed) for
computational and searching efficiency. This leads to the second
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concern of explicit memory schemes: memory organization and
updating mechanisms. As to the memory organization, there
exist two mechanisms: local mechanism, where the memory is
individual-oriented and global mechanism, where the memory
is population-oriented. Trojanowski and Michalewicz [36], [37]
introduced a local memory approach, where for each individual
the memory stores a number of its ancestors. When the envi-
ronment changes, the current individual and its ancestors are
reevaluated and compete together with the best becoming the
active individual while the others are stored in the memory. The
global memory mechanism is more natural and popular, see [6],
[25]. In these global memory mechanisms, the best individual
of the population is stored in the memory of certain genera-
tions, while deleting one individual from the memory according
to some measure.

As to the memory updating mechanism, a general principle is
to select one memory individual to be removed for or updated
by the best individual from the population in order to make the
stored individuals to be of above average fitness, not too old, and
distributed across several promising areas of the search space.
Branke [6] has discussed several memory replacement strate-
gies: 1) replacing the least important one with the importance
value of individuals being the linear combination of age, contri-
bution to diversity, and fitness; 2) replacing the one with the least
contribution to memory variance; 3) replacing the most similar
one if the new individual is better; and 4) replacing the less fit
of a pair of memory individuals that has the minimum distance
among all pairs. The third strategy seems the most practical one
and will be used in this paper. In addition to replacing memory
point, Bendtsen and Krink [5] proposed a different memory
updating scheme, where the memory individual closest to the
best population individual is, instead of being removed from the
memory, moved toward the best population individual.

For the third concern on explicit memory, i.e., how to retrieve
the memory, a natural idea is to retrieve the best memory in-
dividual(s) to replace the worst individual(s) in the population.
This can be done every generation or only when a change oc-
curs. The memory retrieval is sort of coupled with the above
two concerns. For example, for the direct memory scheme, the
whole memory individuals may enter the new population as in
[24] or compete with the population individuals for the new pop-
ulation as in [6], while for the associative memory scheme only
associated memory individual(s) may enter the new population
[31], and for the local memory organization scheme, the best an-
cestor of an active individual competes with it to become active
in the population [36], while for the global memory scheme, the
best memory individual(s) may compete with all individuals in
the main population.

The memory retrieval has also been combined with diversity
schemes to improve the performance of GAs for DOPs, which
shows promising results. For example, Simões and Costa [33],
[34] have proposed an immune system based GA for DOPs,
where new individuals are cloned from selected memory solu-
tions and replaced into the population. Recently, Yang has devel-
oped a memory-based immigrants scheme for GAs in dynamic
environments [43], [46], where the best memory solution is re-
trieved every generation as the base to create new individuals
via a normal bit flip mutation operation to replace worst indi-
viduals in the main population.

Fig. 1. Pseudocode of the standard PBIL without random immigrants (SPBIL)
and the PBIL with random immigrants (SPBILi).

III. DESCRIPTION OF ALGORITHMS INVESTIGATED

A. Standard Population-Based Incremental Learning (PBIL)

The PBIL algorithm is a combination of evolutionary opti-
mization and competitive learning [2]. PBIL aims to generate
a real-valued probability vector ( is the
binary-encoding length), which creates high-quality solutions
with high probabilities when sampled.2 The pseudocode for the
standard PBIL, denoted SPBIL, is shown in Fig. 1.

The standard PBIL starts from a probability vector that has
a value of 0.5 for each bit location. This probability vector is
called the central probability vector since it falls in the central
point of the search space. Sampling this initial probability vector
creates random solutions because the probability of generating a
1 or 0 on each locus is equal. At iteration , a set of solu-
tions are sampled from the probability vector . The samples
are evaluated using the problem-specific fitness function. Then,
the probability vector is learned towards the best solution
of the set as follows:

(1)

where is the learning rate, which determines the distance the
probability vector is pushed for each iteration.

After the probability vector is updated toward the best sample,
in order to keep the diversity of sampling, it may undergo a bit-
wise mutation process [4]. Mutation is applied to PBILs studied
in this paper and the mutation operation always changes the
probability vector toward the central probability vector, i.e., the
central point in the search space. The mutation operation is car-
ried out as follows. For each locus , if a random
number ( is the mutation proba-
bility), then mutate using the following formula:

(2)

2A solution is sampled from a probability vector �� as follows: for each locus
�, if a randomly created number � � ��������	 ���� 
 � , it is set to 1;
otherwise, it is set to 0.
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where is the mutation shift that controls the amount a mu-
tation operation alters the value in each bit position. After the
mutation operation, a new set of samples is generated by the
new probability vector and this cycle is repeated.

As the search progresses, the elements in the probability
vector move away from their initial settings of 0.5 towards
either 0.0 or 1.0, representing high evaluation solutions. The
search progress stops when some termination condition is
satisfied, e.g., the maximum allowable number of iterations

is reached or the probability vector is converged to either
0.0 or 1.0 for each bit position.

In this paper, we also investigate the effect of random immi-
grants on the performance of PBILs in dynamic environments.
In [41], a technique similar to random immigrants is used for
PBILs for DOPs by adding a subpopulation that is sampled by
the central probability vector. In this paper, we use an equivalent
but more direct random immigrants scheme for PBILs. With this
random immigrants scheme, for each iteration after the prob-
ability vector is sampled, a set of worst samples are selected
and replaced with randomly created samples. The pseudocode
for the PBIL with random immigrants, denoted SPBILi, is also
shown in Fig. 1, where is the ratio of random immigrants to
the total population size.

B. Memory-Enhanced PBILs

As reviewed in Section II, several memory schemes have been
developed for EAs to deal with DOPs. In [41], Yang and Yao
proposed a dualism-based PBIL for dynamic problems where a
dual probability vector, which is symmetric to the main proba-
bility vector with respect to the central point in the search space,
is associated and competes with the main probability vector to
generate samples. The dual PBIL has proved successful in dy-
namic environments where significant changes exist in the geno-
typic space.

In this paper, we investigate a new explicit associative
memory scheme for PBILs in dynamic environments. The key
idea is to store good solutions, as well as associated environ-
mental information in the memory for PBIL to reuse. Since
PBILs aim to evolve a probability vector toward the intrinsic
allele distribution of the current environment, the evolved
probability vector can be taken as the natural representation
of the current environmental information and can be stored
together with the best sample generated from it in the memory.

The pseudocode for the memory-enhanced PBILs without
and with random immigrants, denoted MPBIL and MPBILi, re-
spectively, is shown in Fig. 2, where is the total number of
samples per iteration including the memory samples and
denotes the fitness of individual . Within MPBIL and MP-
BILi, a memory of size is used to store samples
and probability vectors. Each memory point consists of a pair:
a sample and its associated probability vector. The most similar
measure, as discussed in [6], is used as the memory replace-
ment strategy. That is, when the memory is due to update, we
first find the memory point with its sample closest to
the best population sample in terms of the Hamming dis-
tance. If the best population sample has a higher fitness than this
memory sample, it is replaced by the best population sample;
otherwise, the memory remains unchanged. When a best popu-
lation sample is stored in the memory, the current working

Fig. 2. Pseudocode of the memory-enhanced PBILs: without random immi-
grants (MPBIL) and with random immigrants (MPBILi).

probability vector that generates is also stored in the
memory and is associated with . Similarly, when replacing
a memory point, both the sample and the associated probability
vector within the memory point are replaced by the best popu-
lation sample and the working probability vector, respectively.

Instead of updating the memory in a fixed time interval as
in other memory-enhanced EAs in the literature, the memory
in MPBIL and MPBILi and other memory-enhanced EAs
studied in this paper is updated using a stochastic time pattern
as follows. After each memory updating, a random integer

is generated to determine the next memory up-
dating time . For example, suppose a memory updating
happens at generation , then the next memory updating time
is . This stochastic time
pattern has two advantages over a fixed time pattern in terms
of fairly comparing EAs with memory schemes. First, different
memory-enhanced EAs may favor different fixed memory up-
dating intervals. The stochastic time pattern can smooth away
this potential effect. Second, the environmental change period
is unknown before an EA is running or may be faulty to detect.
Different fixed updating intervals will have a different effect
even for the same memory-enhanced EA. It would be ideal that
the environmental change period coincides with the memory
updating period, e.g., the memory is updated just before the
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environment changes. However, for a fair comparison among
EAs with and without memory, this potential effect should
be smoothed away, which can be achieved by the stochastic
memory updating time pattern.

The memory in the memory-enhanced PBILs is reevaluated
every iteration. If any memory sample has its fitness changed,
the environment is detected to be changed. Then, the memory
probability vector associated with the best reevaluated memory
sample will replace the current working probability vector if the
best memory sample is fitter than the best sample created by the
current working probability vector. If no environmental change
is detected, MPBIL and MPBILi progress just as the standard
PBIL does.

From the above description, it can be seen that the proposed
memory scheme for PBILs uses similar ideas as the memory
scheme devised by Ramsey and Grefenstette [31] for GAs, i.e.,
storing environmental information in the memory. However, the
stored environmental information is reused in a different way.
For MPBIL and MPBILi, the stored environmental information,
the probability vector, is used to directly reactivate an old en-
vironment it represents for MPBIL and MPBILi, which may
be similar to the newly changed problem environment, and the
stored solutions, besides their role as environmental change de-
tectors and memory replacement locators, are used to indicate
which associated environment should be reactivated.

C. Immune System-Based Genetic Algorithm (GA)

The human immune system protects our body against poten-
tially harmful pathogens, called antigens. Our body maintains a
large number of immune cells. Some belong to the adaptive im-
mune system, called lymphocytes, which circulate through the
body. There are two types of lymphocytes, namely, T-cells and
B-cells, which cooperate in the immune response with different
roles [20].

When a pathogen invades the body for the first time, a few
B-cells can recognize its peptides and will be activated to re-
spond as follows. When a B-cell is activated, it proliferates and
produces many short-lived clones through cell division. B-cell
cloning is subject to a form of mutation termed somatic hyper-
mutation. The mutated B-cell clones will undergo a differentia-
tion process. Those clones that have a low affinity to the antigen
will die, while those with a high affinity will survive and dif-
ferentiate into plasma or memory B-cells. Plasma B-cells se-
crete antibodies that can bind to the antigen and destroy or neu-
tralize it. This process is called the primary response. Mean-
while, memory B-cells will retain in the circulation. If the same
pathogen attacks the body again, the memory B-cells can re-
spond immediately. This is called the second response, which is
much faster and more efficient than the primary response. The
immune system can recognize a large number of antigens be-
cause it has a gene library that aggregates modular chunks of
genes or gene segments. These gene segments can be recom-
bined to build up diverse antibodies.

The mechanisms of memory and diversity in the human im-
mune system have been applied into GAs for DOPs, see [12]
and [13]. Simões and Costa [33], [34] proposed an immune
system-based GA for DOPs. The basic idea is to view the en-
vironment as the antigen and environmental changes as the ap-
pearance of different antigens. Their GA maintains two popula-

tions: the first one consists of plasma B-cell individuals, while
the second consists of memory B-cell individuals. The first pop-
ulation is the main one and evolves as follows: the individuals
with the best matches to the optimum (antigen) are selected and
cloned into the next generation. At times, the best plasma B-cell
individual is stored in the second population (and hence be-
comes a memory B-cell individual) and is attached a value of
the average fitness of the first population, which is used as the
affinity measurement to match memory B-cells to a new envi-
ronment. The degradation of the population average fitness is
taken as the environmental change detection mechanism. When
a change is detected, the most proximal memory B-cell3 is then
activated, cloned, and reintroduced into the first population, re-
placing the worst individuals.

Simões and Costa used a set of gene libraries, each containing
a set of fixed length gene segments. The libraries are randomly
initialized and then kept constant during the running of the GA.
They are used in the cloning process. During the cloning, every
individual, be it a plasma or memory B-cell, is subject to a trans-
formation modification with a probability . Transformation,
proposed by Simões and Costa in [32], is similar to the so-
matic hypermutation of B-cells. An individual is transformed
as below. First, one gene segment is randomly selected from
one randomly chosen gene library. Then, a random transforma-
tion locus is chosen in the individual. Finally, the chosen gene
segment is incorporated into the individual, replacing the genes
after the transformation locus.

In [44], a variant of Simões and Costa’s immune system-
based GA was proposed, which is studied as a peer GA in
this paper and denoted ISGA. ISGA significantly outperforms
Simões and Costa’s GA according to the experiments [44]. The
pseudocode of ISGA is shown in Fig. 3. ISGA differs from
Simões and Costa’s GA in four aspects.

First, ISGA uses a gene pool (instead of gene libraries) to
hold a set of fixed length gene segments. The gene segments
in the gene pool are divided into two groups: random and non-
random. Both groups are randomly initialized and then updated
every generation. The gene segments in the random group are
just randomly reinitialized, while those in the nonrandom group
are updated according to the current plasma B-cell population
using a binary tournament selection as follows. For each gene
segment in the nonrandom group, we first randomly select two
individuals from the plasma B-cell population, and then from
the fitter individual we select a contiguous segment of genes of
fixed length from a random locus as the new gene segment and
the starting locus is recorded and associated with the new gene
segment.

Second, ISGA uses an aligned transformation scheme. When
cloning an individual, we first randomly select a gene segment
from the gene pool. If it is from the random group, it will be
replaced into the individual from a random locus; otherwise, it
will be replaced into the individual from the recorded starting
locus.

Third, in the ISGA, the memory is updated similarly as in
MPBIL and is reevaluated every generation to detect environ-
mental changes. If an change is detected, the memory individual
with the highest reevaluated fitness is retrieved to clone (

3The proximity is measured by the average fitness of the first population and
the value attached to each memory B-cell.
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Fig. 3. Pseudocode of the investigated ISGA with aligned transformation.

is the clone immigrants ratio) individuals and replace the worst
ones in the plasma B-cell population.

Fourth, in Simões and Costa’s GA, mutation was not used. In
ISGA, mutation is switched on, which gives better performance
according to our preliminary experiments.

IV. CONSTRUCTING DYNAMIC TEST ENVIRONMENTS

A. General Dynamic Environment Generators

Over the years in parallel with developing approaches into
EAs for dynamic problems, researchers have also developed
a number of dynamic problem generator to create dynamic
test environments to compare the performance of developed
approaches. Generally speaking, existing generators can be
roughly divided into three types.

The first type of dynamic environment generators is quite
simple and just switches between two or more stationary prob-
lems (or states of a problem). For example, the dynamic knap-
sack problem where the weight capacity of the knapsack os-
cillates between two or more fixed values has been frequently
used in the literature [11], [22], [25], [30]. Cobb and Grefen-
stette [10] used a dynamic environment that oscillates between
two different fitness landscapes. For this type of generator, the
environmental dynamics is mainly characterized by the speed
of change measured in EA generations.

The second type of generators construct dynamic environ-
ments by reshaping a predefined fitness landscape. Usually, this

base landscape is defined in -dimensional real space and con-
sists of a number of component landscapes (e.g., cones), see
[6], [17], and [36]. Each of the components can change its own
morphology independently with such parameters as peak height,
peak slope, and peak location, and the center of the peak with
the highest height is taken as the optimum solution of the land-
scape. For example, Morrison and De Jong [26] defined the base
landscape in the -dimensional real space as

(3)

where is a point in the landscape, spec-
ifies the number of cones, and each cone is independently
specified by its height , its slope , and its center

. These cones are blended together by the
function. Based on this stationary landscape, dynamic prob-
lems can be created through changing the parameters of each
component.

Recently, Yang [40] proposed a dynamic environment gen-
erator based on the concept of problem difficulty justified by
Goldberg [15], claiming that the problem difficulty can be
decomposed along the lines of building block processing into
three core elements: deception, scaling, and exogenous noise. A
framework of binary decomposable trap function was proposed
as the base to construct dynamic environments by changing
the three core difficulty elements. From this framework, it is
possible to systematically construct dynamic environments of
changing but bounded difficulty.

For this type of generator, the environmental dynamics is
characterized by the magnitude or step size of parameter change
and the speed of changes in EA time.

The third type of generator was proposed in [39] and [41],
which can generate dynamic environments from any binary-en-
coded stationary problem based on a bitwise exclusive-or
(XOR) operator. Given a stationary problem ( ,
where is the length of binary representation), dynamic envi-
ronments can be constructed from it as follows. Suppose the
environment is periodically changed every generations.4 For
each environmental period , an XORing mask is first
incrementally generated as follows:

(4)

where “ ” is the XOR operator (i.e., , ,
) and is an intermediate binary template ran-

domly created with ones inside it for envi-
ronmental period . Initially, is set to a zero vector. Then,
the individuals at generation are evaluated using the following
formula:

(5)

where is the environmental period index.
With this generator, the environmental dynamics can be easily

tuned by two parameters: controls the change speed, while
controls the severity each time the environment changes. A

4The generator can be easily modified to construct nonperiodical dynamic
environments, where � varies with time instead of being a fixed value.
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bigger value of means more severe environmental changes
and, hence, a greater challenge to EAs.

This XOR operator-based generator can be combined with
other ones to create complex dynamic environments, as seen in
[40]. It can also be modified to construct dynamic environments
for testing specific approaches developed for EAs in dynamic
environments, e.g., the generator described below for testing
memory schemes.

B. An Extended DOP Generator for Testing Memory Schemes

Generally speaking, the above reviewed dynamic environ-
ment generators are usually used to construct general dynamic
environments for testing all approaches for EAs. However, in
order to better understand a certain approach, it would be better
to construct dynamic environments that pay special attention to
the exact approach. For example, for memory schemes, it would
be interesting to construct dynamic environments with tunable
cyclicity5 since the effect of memory schemes on EAs depends
heavily on whether the environment changes cyclicly or not.
In this paper, based on the XOR operator-based generator de-
scribed above, an extended dynamic environment generator is
proposed for testing memory schemes for EAs. The generator
is described as follows.

Given a binary-encoded stationary problem (
where is the length of binary representation), three types of dy-
namic environments, noncyclic, cyclic, and partially cyclic, can
be constructed from it using the XOR operator. The first type
of dynamic environment is exactly what the above described
XOR operator generator constructs. This type of dynamic en-
vironment is also called random dynamic environment in this
paper since with respect to cyclicity the environment moves ran-
domly in the search space, even though each time it may move
with a fixed Hamming distance away from the current envi-
ronment. This is illustrated in Fig. 4(a), where a noncyclic dy-
namic environment is constructed from a 10-bit function with

and the XORing mask is used to represent the envi-
ronmental state. Each time the environment changes, it moves

bits away randomly from the current state
and will not guarantee to return to the initial state represented
by .

Next, we describe how to construct cyclic dynamic en-
vironments. The idea is quite simple: first construct a fixed
number of states (environments), called base states, in the
search space randomly or in certain pattern, and then move the
environment among these base states in a fixed order cyclicly.
Suppose there are base states, then the environment will
return to its initial state when it changes every times.
With the XOR operator, we can generate XORing masks

as the base states. These XORing
masks form a logical ring representing the cyclicly changing
environment. Suppose the environment is periodically changed
every generations, then the individuals at generation are
evaluated using the following formula:

(6)

5In the real-world, there are many DOPs that are subject to cyclic or approx-
imately cyclic environments, which motivates the study of cyclic DOPs in this
paper. For example, the climate may change cyclically over a year and the con-
ditions in the traffic system may change cyclically over a day.

Fig. 4. Illustration of three kinds of dynamic environments constructed from
a 10-bit encoded function with � � ���. (a) Noncyclic. (b) Cyclic. (c) Cyclic
with noise.

where is the index of the current environmental pe-
riod and is the index of the base state the envi-
ronment is in at generation .x

The XORing masks can be generated in the following
way. First, we construct binary templates

that form a random partition of the search space with each
template containing bits of ones.6 Let

denote the initial state. Then, the other XORing masks are
generated iteratively as follows:

(7)

With the above formula, the templates
are first used to create masks till , and then
orderly reused to construct another XORing masks till

. The constructed XORing masks have

6In the partition each template �� ��� �� � �� � � � � � � �� has randomly but
exclusively selected ��� � �	� bits set to 1 while other bits to 0. For example,
�� ��� � ���� and �� ��� � ���� form a partition of the 4-bit search space.
Here, � (and � � �	�) is determined such that �	� is an integer.
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equal Hamming distance between two neighbors. That is, if we
denote the Hamming distance between
and , we have

(8)

where is the distance factor, which determines
the number of base states. For example, Fig. 4(b) shows a cyclic
dynamic environment constructed from a 10-bit function with

and two templates and
[not shown in Fig. 4(b)].

From the above cyclic dynamic environment generator, we
can construct partially cyclic dynamic environments, also called
cyclic dynamic environments with noise, by introducing noise
to the base states.7 There are two mechanisms, called determin-
istic and probabilistic, of adding noise in terms of the number
of bits to be changed in the base states. For the deterministic
mechanism, each time the environment is about to move to a
next base state , a noise template with a small portion
of ones is randomly created and integrated (XOR-ed) into
as follows:

(9)

where is the new base state. The number of ones in
can be set to be linear with the Hamming distance between base
states, i.e., . For example, Fig. 4(c) il-
lustrates a noisily cyclic dynamic environment constructed from
a 10-bit function with and , where each base
state has one bit changed by noise. For the probabilistic noise
mechanism, each time the environment is about to move to a
next base state , is bitwise flipped with a small prob-
ability, denoted in this paper.

With the above generator for cyclic dynamic environments,
noisy or not, there are two run mechanisms with respect to the
base states for different runs of an algorithm on a test problem.
For the first one, a set of base states is first created and then
used as the common base states for all runs of an algorithm.
That is, all runs of an algorithm undergo the same cyclic dy-
namic environment. For the second mechanism, for each run of
an algorithm a set of base states is first created and then used
for only this run. That is, different runs of an algorithm undergo
different cyclic dynamic environments. The second mechanism
will be used in the experimental study of this paper.

One thing to note is that for the proposed generator there exist
certain relationships between the three kinds of dynamic en-
vironments. For example, when noisy cyclic dynamic
environments become cyclic and when noisy cyclic
dynamic environments are comparable (though not equivalent)
to noncyclic ones with , and cyclic environments
with are equivalent to noncyclic ones with .
By tuning the values of and (or ), we can easily tune the
cyclicity of dynamic environments and hence the level of diffi-
culty for memory-enhanced EAs.

7This is analogous to many dynamic environments in nature. For example, in
the natural climate environment, spring (a base state) is spring but every spring
is different.

Fig. 5. The building blocks used for the three stationary DUFs.

C. Dynamic Test Environments for This Study

1) General Decomposable Unitation-Based Functions: De-
composable unitation-based functions (DUFs), such as trap and
deceptive functions, have been widely studied in EA’s commu-
nity in the attempt to understand what constructs difficulty prob-
lems for EAs, especially for GAs [15]. A unitation function of
a binary string returns the number of ones in the string. In this
paper, in order to compare the performance of investigated algo-
rithms in dynamic environments, three DUFs, denoted DUF1,
DUF2 and DUF3, are selected as stationary base functions to
construct dynamic test environments.

All three DUFs consist of 25 copies of 4-bit building blocks.
Each building block of the three DUFs is a unitation-based func-
tion and contributes a maximum value of 4 to the total fitness, as
shown in Fig. 5. The fitness of a bit string is the sum of contri-
butions from all building blocks, which gives an optimal fitness
of 100 for all three DUFs.

DUF1 is, in fact, an function, which aims to max-
imize the number of ones in a chromosome. OneMax functions
are usually taken as easy functions for EAs since low-order
building blocks inside the functions clearly lead to high-order
building blocks. For DUF2, in the search space of the 4-bit
building block, the unique optimal solution is surrounded by
only four suboptimal solutions, while all the other 11 solutions
form a wide plateau with zero fitness. The existence of this wide
gap makes EA’s searching on DUF2 much harder than on DUF1.
For DUF3, it is a fully deceptive function [15]. Fully deceptive
functions are usually considered hard problems for EAs because
the low-order building blocks inside the functions do not com-
bine to form the higher order optimal building block: instead
they combine into deceptive suboptimal building block [47].

Generally speaking, the three DUFs form an increasing diffi-
culty for EAs in the order from DUF1 to DUF2 to DUF3.

2) Constructing Dynamic DUFs (DDUFs): Dynamic test en-
vironments for this study are constructed from the three sta-
tionary DUFs, denoted DDUF1, DDUF2 and DDUF3, respec-
tively. From each DUF, three kinds of dynamic DUFs, cyclic,
cyclic with noise, and random, are constructed by the aforemen-
tioned dynamic problem generator.

For each constructed dynamic problem, the fitness landscape
is periodically changed every generations during the run of
algorithms. In order to test the effect of environmental change
speed on the performance of algorithms, is set to 10 and 25,
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respectively. The environmental change severity parameter is
set to 0.1, 0.2, 0.5, and 1.0 for all DDUFs. With this setting of ,
for cyclic dynamic problems, with and without noise, the envi-
ronment cycles among 2, 4, 10, and 20 bases states, respectively.
For cyclic dynamic problems with noise, the probabilistic mech-
anism of adding noise is used with the probability of flipping the
base states .

Totally, a series of 24 dynamic problems, 2 values of com-
bined with 4 values of under 3 types of environments, are con-
structed from each stationary DUF.

V. EXPERIMENTAL STUDY ON PBILS WITH MEMORY AND

RANDOM IMMIGRANTS SCHEMES

A. Experimental Design and Results

Experiments were carried out to compare the performance of
algorithms on the dynamic test environments constructed above.
All algorithms have the following common parameters: total
population size is set to , which includes the memory
size if memory is used, and for
algorithms with random immigrants, including ISGA. For all
PBILs, the parameters are set to typical values without tuning
as follows: the learning rate for all working prob-
ability vectors and the mutation probability with
the mutation shift . For ISGA, parameters are set as
follows: the transformation probability (according to
our preliminary experiments), the bit flip mutation probability

, and elitism of size 1 without reevaluating the elite.
The gene pool contains 200 gene segments of fixed length 5, of
which the random group contains 60 gene segments, while the
nonrandom group contains 140.

For each experiment of an algorithm on a DDUF, 50 inde-
pendent runs were executed with the same set of random seeds.
For each run, 5000 generations were allowed, which are equiv-
alent to 500 and 200 environmental changes for and
25, respectively. For each run, the best-of-generation fitness was
recorded every generation. The overall performance of an algo-
rithm on a DOP is defined as

(10)

where is the total number of generations for a run,
is the total number of runs, and is the best-of-

generation fitness of generation of run . is the offline
performance, i.e., the best-of-generation fitness averaged across
the 50 runs, and then over the data gathering period.

In order to understand the effect of memory and random im-
migrants scheme on the population diversity during the running
of an algorithm, we also recorded the diversity of the population
every generation. The diversity of the population at time in the

th run of an EA on a DOP is defined as

(11)

where is the encoding length, is the population size, and
is the Hamming distance between the th and th indi-

viduals in the population. The mean population diversity of an
EA on a DOP at time over 50 runs is calculated as below

(12)

The experimental results of algorithms on DDUFs with
and are given in Figs. 6 and 7, respectively. The sta-

tistical results of comparing algorithms by one-tailed -test with
98 degrees of freedom at a 0.05 level of significance are given
in Table I. In Table I, the -test result regarding Alg. 1–Alg. 2 is
shown as “ ”, “ ”, “ ”, and “ ” when Alg. 1 is insignifi-
cantly better than, insignificantly worse than, significantly better
than, and significantly worse than Alg. 2, respectively.

In order to better understand the behavior of algorithms in dy-
namic environments, their dynamic performance regarding the
best-of-generation fitness against generations on DDUFs with

and is plotted in Fig. 8. In Fig. 8, the last
ten environmental changes (i.e., 250 generations) are shown,
which corresponds to one cycle of environmental changes for
cyclic DDUFs, and the data were averaged over 50 runs. The
dynamic population diversity of algorithms against generations
on DDUF2 and DDUF3 with and is plotted in
Fig. 9 for the last ten environ- mental changes, where the data
were averaged over 50 runs.

From Figs. 6–9 and Table I, several results and phenomena
can be observed and are analyzed below from two aspects: re-
garding the comparison between investigated algorithms and
regarding the effect of environmental dynamics on the perfor-
mance of algorithms in general.

B. Experimental Analysis Regarding Algorithm Comparisons

Comparing the performance of algorithms on the DDUFs,
several results can be observed and are analyzed as follows.

First, a prominent result is that both the memory-enhanced
PBILs (i.e., MPBIL and MPBILi) perform significantly better
than SPBIL, on most dynamic test problems. This validates the
efficiency of introducing the memory scheme into PBILs. The
effect of the memory scheme can be clearly seen in the dy-
namic performance of MPBIL and MPBILi shown in Fig. 8. For
cyclic DDUFs, when the environment changes, the performance
of MPBIL and MPBILi drops, and then the memory scheme
rapidly brings the performance back to a high fitness level. For
example, on DDUF2 with and , when a change
occurs at generation 4800, the performance of MPBIL drops
from 95.9 to 77.5 at generation 4801, and then jumps up back
to 80.7 at generation 4802. This performance jumping is due to
the newly reactivated memory probability vector.

Both MPBIL and MPBILi achieve a better performance
improvement over SPBIL on cyclic environments than on
cyclic environments with noise and noncyclic environments.
For example, when and ,

for cyclic DDUF1,

for cyclic DDUF1 with noise, and
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Fig. 6. Experimental results of ISGA, SPBIL, SPBILi, MPBIL, and MPBILi on DDUFs with � � ��.

for random DDUF1. This
result means that the effect of the memory scheme depends on
the cyclicity of environments.

Second, the addition of the random immigrants scheme im-
proves the performance of SPBIL and MPBIL on almost all
DDUFs, see the -test results regarding SPBILi – SPBIL and
MPBILi – MPBIL. Random immigrants improve the popula-
tion diversity, see Fig. 9 for the population diversity dynamics.
Meanwhile, by replacing worst individuals in the population,
random immigrants help improve the average fitness level of the
population.

Comparing memory against random immigrants, it can be
seen that the effect of the memory scheme is significantly
greater (better) than the random immigrants scheme for all
cyclic DDUFs, see the -test results regarding MPBIL – SPBILi
in Table I. However, for cyclic with noise and random DDUFs,
the random immigrants scheme outperforms the memory
scheme on most DDUFs. This happens because for these
DDUFs, the environment is less likely to return precisely to
those memorized environments, and hence random immigrants
may track the new environment more efficient than memory
samples.

When examining the effect of the memory scheme on PBIL
with random immigrants, it can be seen that MPBILi outper-
forms SPBILi on most cyclic DDUFs, with or without noise.
However, MPBILi is beaten by SPBILi for many random
DDUFs. That is, when the random immigrants scheme is used,
the addition of the memory scheme may have a negative effect
in random dynamic environments.

Third, comparing the performance of ISGA with PBILs, it
can be seen that ISGA outperforms SPBIL on most DDUFs
and outperforms MPBIL on most random DDUFs and cyclic
DDUFs with noise, see the -test results regarding SPBIL –
ISGA and MPBIL – ISGA, respectively. The memory and
diversity hybrid scheme (i.e., memory-based cloning) inside
ISGA gives it an advantage over SPBIL totally and over MPBIL
on random and cyclic with noise environments. In fact, Fig. 9
shows that ISGA maintains the highest level of population
diversity.

However, ISGA is significantly beaten by MPBIL on cyclic
DDUFs and by MPBILi on almost all DDUFs, see the relevant
-test results. This happens due to two factors. First, PBILs have

better search capacity than ISGA and this factor contributes to
the fact that even SPBIL outperforms ISGA on several slightly
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Fig. 7. Experimental results of ISGA, SPBIL, SPBILi, MPBIL, and MPBILi on DDUFs with � � ��.

changing DDUFs. This point can be seen from Fig. 8. On al-
most all DDUFs, PBILs achieve a higher fitness improvement
than ISGA does during each environmental period. The second
factor is because the memory scheme in MPBIL and MPBILi
has a stronger effect than that in ISGA. This can be clearly seen
in the dynamic performance of algorithms in Fig. 8. On cyclic
DDUFs, MPBIL and MPBILi are able to maintain a higher fit-
ness level than ISGA does. In order to better understand this
point, the dynamic performance of algorithms on cyclic DDUF2
and DDUF3 with and over the first two cycles
of environmental changes, i.e., 500 generations, is also shown
in Fig. 10, where the data were averaged over 50 runs. From
Fig. 10, it can be seen that after several early environmental
changes the memory scheme in MPBIL and MPBILi clearly
starts to take effect. For example, just after the first cycle of
ten environmental changes, at generation 250 when the environ-
ment changes the memorized probability vector brings MPBIL
and MPBILi directly to a high fitness level. On the contrast, the
effect of the memory scheme in ISGA is much less visible from
Fig. 10.

Stronger search capacity of PBIL, stronger memory scheme,
and random immigrants together lead to MPBILi’s better per-
formance over the ISGA on almost all DDUFs.

C. Experimental Analysis Regarding Dynamic Environments

When examining the effect of dynamic environments on the
performance of algorithms investigated, the following results
can be observed.

First, comparing Fig. 6 with Fig. 7 shows that for each DDUF
with a fixed , the performance of algorithms rises when the
value of increases from 10 to 25. This is easy to understand.
When the environment changes slower, i.e., is larger, the al-
gorithms have more time to reach higher fitness level before the
environment changes.

Second, with each fixed , when the value of increases from
0.1 to 0.2 to 0.5, the performance of algorithms generally de-
creases. This is natural since a bigger means more severe en-
vironmental changes. However, on many DDUFs when
the algorithms perform better than when . This is be-
cause when the environment switches between two
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TABLE I
THE �-TEST RESULTS OF COMPARING ISGA, SPBIL, SPBILI, MPBIL, AND MPBILI ON DDUFS

landscapes and the algorithms may wait during one environ-
ment for the return of the other environment to which they con-
verged well. For example, Fig. 11 shows the dynamic perfor-
mance of algorithms on cyclic DDUF2, with and without noise,
with and . From Fig. 11(a), it can be seen that
SPBIL clearly shows the waiting phenomenon during even en-
vironment periods.

An interesting result is that on cyclic DDUFs, the perfor-
mance of MPBIL and MPBILi increases with the value of ,
see the top row in Figs. 6 and 7. This happens because when
the value of increases, the number of base states decreases
and hence the memory probability vectors in MPBIL and MP-
BILi represent the environments more precisely when they are
stored and updated. This leads to the better effect of the memory
scheme and hence the better overall performance of MPBIL and
MPBILi when increases. When the cyclicity of environments
decreases, the effect of memory decreases due to the less precise
matching between memorized environments and new environ-
ments, and bigger brings in more severe changes and, hence,
leads to the worse performance for MPBIL and MPBILi.

Third, viewing from top to down in Figs. 6 and 7, it can be
seen that given the same values for and , when the cyclicity
of dynamic environments decreases from cyclic to cyclic with
noise, the performance of algorithms degrades. That is, cyclic
environments with noise are relatively harder than cyclic envi-
ronments. The existence of noise reduces the effect of memory

or the waiting behavior of SPBIL, see Fig. 11(b), and it seems
that algorithms perform a little better on random environments
than on cyclic environments with noise. This means noise may
overweigh randomness with respect to the difficulty of dynamic
environments.

Finally, viewing from left to right in Figs. 6 and 7, it can be
seen the algorithms perform worse on DDUF2 problems than on
corresponding DDUF1 problems with the same environmental
dynamics. This shows the difficulty of dynamic problems for
EAs not only depends on the environmental dynamics but also
depends on the difficulty of relevant stationary problems, and
the difficulty of stationary problems seems to be inherited to
dynamic environments. This is natural since the problem during
each environment period can be taken as a stationary problem.
However, when deception exists inside the problem, the situ-
ation is quite different. For DDUF3 problems, when the envi-
ronment changes the deceptive building blocks inside DUF3
will draw the population in the new environment toward them
faster than the optimal building blocks in DUF2 can do. Though
deceptive attractors are not globally optimal they are subop-
timal with relatively high fitness. This leads to the result that
algorithms perform better on most DDUF3 problems than on
corresponding DDUF2 problems with the same environmental
dynamics.

This result can be clearly seen from the dynamic behavior of
algorithms in Fig. 8. The performance of algorithms stays at a
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Fig. 8. Dynamic performance of algorithms for the last ten environmental changes on DDUFs with � � �� and � � ���.

higher fitness level on DDUF1 and DDUF3 problems than on
DDUF2 problems with the same environmental dynamics, and
the existence of deception in DDUF3 problems makes the fitness
fluctuation of algorithms less significantly over time on DDUF3
problems than on corresponding DDUF2 problems.

VI. EXPERIMENTAL STUDY ON PBILS WITH MEMORY AND

MULTIPOPULATION SCHEMES

Other than memory schemes, multipopulation schemes are
another kind of approaches that has been integrated into EAs to
deal with dynamic environments. As discussed in [6] and [7], the
multipopulation scheme has two advantages. On the one hand,
using multiple but independently evolving populations can in-
crease the diversity in the overall population. On the other hand,

through assigning different responsibilities to different popula-
tions the available number of individuals in the overall popula-
tion can be used more efficiently.

In this paper, in order to study the effect of multipopulation
on the memory scheme for PBILs in dynamic environments,
PBILs with two probability vectors are further investigated, and
a memory-enhanced GA with two populations is also investi-
gated as a peer EA for performance comparisons.

A. The Memory/Search GA

In [6] and [8], Branke proposed a memory/search GA that
aims to combine the advantages of multipopulation and memory
schemes together. In this study, a similar memory-enhanced GA
with two populations, denoted MEGA2r, is also studied as a peer
EA. MEGA2r differs from Branke’s memory/search GA in two
aspects: first, the memory in MEGA2r is updated in a stochastic
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Fig. 9. Dynamic population diversity of algorithms for the last ten environmental changes on DDUF2 qnd DDUF3 with � � �� and � � ���.

Fig. 10. Dynamic performance of algorithms for the first 20 environmental changes on (a) cyclic DDUF2 and (b) cyclic DDUF3 with � � �� and � � ���.

time pattern; second, the population sizes in MEGA2r are adap-
tively adjusted, which was applied in [41]. Fig. 12 shows the
pseudocode of MEGA2r.

In MEGA2r, the two populations and evolve inde-
pendently and each has the following configuration: genera-
tional, uniform crossover, bit flip mutation, and fitness propor-
tionate selection with the elitist scheme. The population sizes

and for and , respectively, are equally initialized to
, where is the total number of individuals, including the

memory. In order to give the better performed population more
chance to search, the population sizes and are slightly ad-
justed every generation within the range of ac-
cording to their performance. The winner population gets

for its size from the loser; if the two populations tie,
their sizes do not change.

As in ISGA, the memory in MEGA2r has a size ,
is randomly initialized, and updated in a stochastic time pattern
with the most similar updating strategy. When the memory is
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Fig. 11. Dynamic performance of algorithms for the first 20 environmental changes on (a) cyclic and (b) cyclic with noise DDUF2 with � � �� and � � ���.

Fig. 12. Pseudocode for the memory-enhanced GA with two populations and
restart scheme (MEGA2r).

due to update, the best individual over and will replace
the closest memory solution if it is fitter than the memory so-
lution. The memory is reevaluated every generation. When an
environmental change is detected, the memory is merged with
the old population and the best individuals are selected as a

new interim population with the memory unchanged. That is,
only retrieves the memory and hence called the memory pop-
ulation. The second population is restarted (reinitialized) in
order to search new areas in the search space and is hence called
the search population.

B. PBILs With Multipopulation and Memory Schemes

For PBILs, the multipopulation scheme can be realized
by maintaining and evolving multiple probability vectors in
parallel. Fig. 13 shows the pseudocode of three variants of
PBILs with two probability vectors that are investigated in
this paper. The first variant, denoted SPBIL2, has no memory,
while the other two are memory-enhanced, denoted MPBIL2
and MPBIL2r respectively.

In SPBIL2, MPBIL2, and MPBIL2r, the two probability vec-
tors work in parallel. Each one is sampled independently and
is learnt toward the best sample generated by itself. The prob-
ability vector is initialized to the central probability vector,
while is randomly initialized. The sample sizes for and

are equally initialized to for PBIL2 and for
MPBIL2 and MPBIL2r, where is the total evaluations per it-
eration. For MPBIL2 and MPBIL2r, the memory size is fixed
to . As in MEGA2r, the sample sizes for and are
slightly adjusted within the range of for SPBIL2
and for MPBIL2 and MPBIL2r according to their
performance. The winner probability vector gets
for its sample size from the loser for the next iteration.

For MPBIL2 and MPBIL2r, both populations can store
data into the memory in a similar time and space pattern as in
MPBIL1. When it is time to update the memory, the working
probability vector that creates the best overall sample, i.e.,
the winner of and , will be stored together with the best
sample in the memory if it is fitter than the closest memory
sample. The memory is reevaluated every iteration. When an
environmental change is detected, in order to avoid that
and converge into one, only will be replaced by the best
memory probability vector if the associated memory sample is
fitter than the best sample generated by .
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Fig. 13. Pseudocode for PBILs with two probability vectors: without memory
(SPBIL2), with memory (MPBIL2), and with memory and restart (MPBIL2r).

MPBIL2 and MPBIL2r differ in that MPBIL2r uses the restart
scheme. Whenever an environmental change is detected, in
MPBIL2r is reset to the central probability vector, while nothing
happens for in MPBIL2. It can be seen that MPBIL2r uses
the idea similar to the above memory/search GA. The first prob-
ability vector is devoted to make use of the memory, while
the second probability vector aims to search through the so-
lution space for new promising areas in new environments.

C. Experimental Results and Analysis

Experiments are carried out to investigate the performance of
MEGA2r, SPBIL2, MPBIL2, and MPBIL2r on the same DDUF
problems as used in Section V. The experimental settings and
the parameter settings for algorithms are also the same as used in

Section V. MEGA2r uses uniform crossover with , the
bit flip mutation with , and elitism of size 1 without
reevaluating the elite. The experimental results of algorithms on
the DDUFs with are presented in Fig. 14. The statis-
tical results of comparing algorithms by one-tailed -test with
98 degrees of freedom at a 0.05 level of significance are given in
Table II. The dynamic performance of algorithms on the last ten
environmental changes with respect to best-of-generation fit-
ness against generations on DDUF2 with and is
plotted in Fig. 15 and the corresponding dynamic population di-
versity of algorithms is also plotted in Fig. 16. From Figs. 14–16
and Table II, several results can be observed and are analyzed
as follows.

First, SPBIL2 significantly outperforms SPBIL1 on almost
all dynamic problems, see the -test results regarding SPBIL2
– SPBIL1. This validates the efficiency of the multipopulation
scheme on the performance of PBILs in dynamic environments.
In SPBIL2, introducing an extra probability vector increases the
diversity, and hence improves its adaptability in dynamic envi-
ronments. This effect can be seen by comparing the dynamic
population diversity of SPBIL2 and SPBIL1 in Figs. 9 and 16,
respectively.

Second, SPBIL2 is still outperformed by all the memory-en-
hanced PBILs including MPBIL and MPBIL2 on most dynamic
problems, especially under cyclic environments with or without
noise (the -test results with respect to MPBIL – SPBIL2 and
MPBIL2 – SPBIL2 are not shown). This indicates that the
memory scheme has a stronger effect than the multipopulation
scheme on PBIL’s performance in dynamic environments.

Third, an interesting result is that MPBIL2 is beaten by
MPBIL on most DDUFs, see the -test results with respect
to MPBIL2 – MPBIL. This means when the memory scheme
is used, introducing an extra probability vector may be
negative on PBIL’s performance. This happens because in
MPBIL the reactivated memory probability vector uses the
sample size resource to its full (i.e., ), which outweighs
the diversity introduced by in MPBIL2, comparing the dy-
namic population diversity of MPBIL2 and MPBIL1 in Figs. 9
and 16, respectively. In other words, the reactivated memory
probability vector in MPBIL is better than in MPBIL2
for most cases. However, when the restart scheme is used for

in MPBIL2r, the situation is totally different. MPBIL2r
significantly outperforms both MPBIL and MPBIL2 on most
DDUFs. The benefit of the restart scheme can be clearly seen
from the dynamic performance of MPBIL2r shown in Fig. 15,
especially on cyclic with noise DDUFs and random DDUFs.

Fourth, examining the performance of MEGA2r, it can be
seen that ISGA significantly outperforms MEGA2r on all cyclic
DDUFs. This happens because the memory scheme inside ISGA
is stronger. However, on random and cyclic with noise DDUF1
and DDUF2 problems, MEGA2r beats ISGA due to the higher
diversity brought in by the restart scheme, comparing the dy-
namic population diversity of ISGA and MEGA2r in Figs. 9 and
16, respectively. On all DDUF3 problems, higher diversity (not
shown) may be negative due to its property of strong deception,
which leads to ISGA’s better performance over MEGA2r.

Comparing MEGA2r with memory-enhanced PBILs, it can
be seen that MEGA2r outperforms MPBIL2 on approximately
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Fig. 14. Experimental results of MEGAr, SPBIL2, MPBIL2, and MPBIL2r on DDUFs with � � ��.

Fig. 15. Dynamic behavior of algorithms with two populations for the last ten environmental changes on DDUF2 with � � �� and � � ���.

half of the DDUFs under cyclic with noise and random envi-
ronments but is outperformed by MPBIL2 on almost all cyclic
DDUFs. This happens because under cyclic with noise and
random dynamic environments the restart scheme in MEGA2r
contributes to its advantage over MPBIL2. But under cyclic
environments the stronger memory scheme in MPBIL2 makes
it win over MEGA2r significantly. When the restart scheme is

combined with the memory scheme in MPBIL2r, MEGA2r is
significantly outperformed by MPBIL2r on almost all DDUFs.

The great effect of combining memory and restart schemes
in MPBIL2r can be clearly seen in the dynamic performance
of MPBIL2r in Fig. 15. Under cyclic dynamic environments,
the memory scheme enables MPBIL2r to maintain a quite high
fitness level across changing environments; while in cyclic
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Fig. 16. Dynamic population diversity of algorithms with two populations for the last ten environmental changes on DDUF2 with � � �� and � � ���.

TABLE II
THE �-TEST RESULTS OF COMPARING MEGA2R, SPBIL2, MPBIL2, AND MPBIL2R ON DDUFS

with noise and random dynamic environments, each time when
change occurs, the restart scheme brings in a high population
diversity and enables MPBIL2r to climb back to a relatively
high fitness level during each environmental period.

VII. CONCLUSION AND FUTURE WORK

In this paper, an associative memory scheme is extensively
investigated for PBIL algorithms in dynamic environments.
Within this memory scheme, the working probability vector is
taken as the environmental information and is stored together
with the best sample it creates in the memory in a dynamic

time pattern. When the environment changes, the stored proba-
bility vector associated with the memory sample with the best
reevaluated fitness in the new environment is reactivated and
directly brings PBILs into an associated old environment. This
reactivated old environment may be very close to the newly
changed environment. Hence, PBILs may reach a high fitness
level quickly when the environment changes. In this paper,
we also investigated the interactions between the memory
scheme and several other approaches, e.g., random immigrants,
multipopulation, and restart schemes, for PBILs in dynamic
environments.
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In order to test the performance of EAs, as another key contri-
bution, this paper also proposes a DOP generator that can con-
struct dynamic environments with tunable difficulty. With this
generator, it is easy to construct cyclic, cyclic with noise, and
random dynamic environments from any binary-encoded sta-
tionary problem. Hence, we can more thoroughly test and an-
alyze memory schemes, in particular, and other approaches, in
general, for EAs in dynamic environments.

Using the proposed DOP generator, a series of dynamic test
problems are systematically constructed and experiments were
carried out to compare the performance of investigated algo-
rithms. From the experimental results, several conclusions can
be drawn on the dynamic test environments.

First, the investigated memory scheme is efficient for im-
proving PBIL’s performance for DOPs, especially in cyclic dy-
namic environments.

Second, the interaction between memory and random immi-
grants depends on the dynamic environments. The addition of
random immigrants improves the performance of memory-en-
hanced PBILs on most dynamic problems. However, when the
random immigrants scheme is used, the effect of adding the
memory scheme may be positive on PBIL’s performance on
cyclic DOPs and negative in random dynamic environments.

Third, there exist different interactions between memory and
multipopulation schemes for PBILs. When memory is used,
simply introducing an extra probability vector may be negative
to PBIL’s performance. However, when restart is combined with
the multipopulation scheme, PBIL’s performance can be signif-
icantly improved in different kinds of dynamic environments.

Fourth, the studied memory scheme for PBILs has a stronger
effect than the memory scheme for GAs. This is because when
a change occurs the reactivated probability vector in memory-
enhanced PBILs can trigger an old environment more directly
than the solutions in the memory in memory-enhanced GAs can
do.

Fifth, the difficulty of DOPs depends on the environmental
dynamics, including the cyclicity, severity and speed of changes,
and the difficulty of the base stationary problems. As to the dif-
ficulty of environmental dynamics, the existence of noise on the
cyclicity may overweigh randomness. The existence of decep-
tion in the base stationary problem may be beneficial to EA’s
performance in dynamic environments.

Generally speaking, the experimental results indicate that
PBIL with the hybrid scheme of memory and multipopulation
with restart can be a good EA optimizer for dynamic problems.

There are several future works relevant to this paper. A
straightforward work is to extend the idea of associative
memory scheme to other EAs. For example, extending the idea
to the GA has shown some promising result [45]. We believe
the proposed memory scheme should also improve the perfor-
mance of those EAs based on probabilistic models in dynamic
environments, such as the estimation of distribution algorithms
[21], [29], of which PBILs are a subclass of EAs. Devising
other memory management and retrieval mechanisms and hy-
brid memory schemes would be another interesting future work
for PBILs and other EAs in dynamic environments. The third
future work would be formally analyzing the behavior of PBILs
and other EAs, with or without memory, under dynamic envi-

ronments systematically constructed by the generator proposed
in this paper. Finally, a comprehensive comparison of memory-
enhanced EAs, including associative memory, direct memory,
implicit memory [30], [38], and hybrid memory schemes [43],
[46], is now under investigation.
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