
Job-Shop Scheduling with an Adaptive Neural Network and Local
Search Hybrid Approach

Shengxiang Yang, Member, IEEE

Abstract— Job-shop scheduling is one of the most difficult
production scheduling problems in industry. This paper pro-
poses an adaptive neural network and local search hybrid
approach for the job-shop scheduling problem. The adaptive
neural network is constructed based on constraint satisfactions
of job-shop scheduling and can adapt its structure and neuron
connections during the solving process. The neural network
is used to solve feasible schedules for the job-shop scheduling
problem while the local search scheme aims to improve the
performance by searching the neighbourhood of a given feasible
schedule. The experimental study validates the proposed hybrid
approach for job-shop scheduling regarding the quality of
solutions and the computing speed.

I. INTRODUCTION

The job-shop scheduling problem (JSP) is one of the most
difficult production scheduling problems. It aims to allocate
a number of machines over time to perform a set of jobs
with certain constraint conditions in order to optimize certain
criterion, e.g., minimizing the makespan. Traditionally, there
are three kinds of approaches to solve the JSPs, priority rules,
combinatorial optimization and constraints analysis [5]. Due
to the hardness of solving JSPs researchers also investigated
intelligent methods for JSPs [8].

Foo and Takefuji [6], [7] first used a neural network to
solve JSPs. Thereafter, several neural networks have been
devised by researchers for JSPs. Willems [12] first proposed
a constraint satisfaction neural network for traditional JSPs.
Yu [16] extended Willems’s neural network by adding a
job constraint block to deal with free operations. Yang and
Wang in [13] devised a constraint satisfaction adaptive neural
network (CSANN) for generalized JSPs where there may
exist free sequence operation pairs or free operations of each
job. CSANN is constructed from the constraints of a JSP and
works by resolving constraint violations during its running.
CSANN can adapt the connection weights and biases of
neurons according to the actual constraint violations during
the running of CSANN.

Recently, Yang [15] further proposed an improved CSANN
model, called CSANN-II. In CSANN-II, the resource con-
straint block is constructed adaptively from actual resource
constraint satisfactions during the running, which is achieved
by quick sorting the jobs on each machine according to
their starting time and then orderly pair two neighbouring
jobs into resource constraint units. CSANN-II has reduced
number of resource constraint units in the resource constraint
block, which leads to reduced network complexity and hence

Shengxiang Yang is with the Department of Computer Science, University
of Leicester, University Road, Leicester LE1 7RH, United Kingdom (Tel:
0044-116-2515341; Fax: 0044-116-252 3915; Email: s.yang@mcs.le.ac.uk).

reduced computational complexity. Several heuristics have
been combined with CSANN-II to guarantee its convergence,
accelerate its solving speed, and improve the quality of
obtained solutions.

In this paper, a local search mechanism is further proposed
to be combined into CSANN-II for JSPs. In the local search
mechanism, given a feasible schedule obtained by CSANN-
II, we first relax the starting time of the operations to
obtain an relaxed schedule and then we perform local search
from the relaxed schedule iteratively as follows. We first
swap the starting times of the operation with the largest
completion time and a randomly selected different opera-
tion on each machine and then use CSANN-II to obtain
a feasible schedule from this resulting possibly infeasible
schedule. In order to test the efficiency of the proposed hybrid
approach, experiments are carried out to compare the hybrid
approach with CSANN-II only and two classical heuristics
on three benchmark JSPs by Muth and Thompson [11]. The
experimental results show that CSANN-II with the local
search scheme has good performance regarding the quality
of solutions and the computing speed.

The remaining of this paper is organized as follows.
Section II describes the mathematical formulation, the clas-
sification of feasible solutions, and Giffler and Thompson’s
classic heuristics [9] for JSPs. Section III presents in detail
the model of CSANN-II, including its neuron model and
its adaptive connections and architecture. In Section IV,
we describe the proposed local search scheme that can be
combined with CSANN-II for better performance. Section V
presents the experimental results of comparing the proposed
hybrid approach with CSANN-II and two classical heuristics
for JSPs. Finally, Section VI concludes this paper with some
discussions on the relevant future work.

II. JOB-SHOP SCHEDULING PROBLEM

A. Description of the Job-Shop Scheduling Problem

Traditionally, the JSP can be stated as follows [1]: given
n jobs to be processed on m machines in a prescribed
order. The objective is to optimally arrange the processing
order and the start times of operations to optimize certain
criteria. Usually, for JSPs there are two types of constraints:
sequence constraint and resource constraint. The first type
means that two operations of a job cannot be processed at
the same time. The second type states that no more than
one job can be handled on a machine at the same time.
JSP can be viewed as an optimization problem, bounded
by both sequence and resource constraints. In this paper we
consider traditional JSPs and assume each job pass through

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

2720

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:49 from IEEE Xplore. Restrictions apply.

all machines in certain sequencing order. The processing
time of each operation on a machine is known and fixed.
Operations can not be interrupted once started, i.e., non-
preemptive. The JSP is formally described as follows.

Let J = {J1, · · · , Jn} and M = {M1, · · · , Mm} denote
the job and machine set respectively, where n and m are the
number of jobs and machines. Each job has m operations.
Oikq represents operation k of job i to be processed on
machine q, Sikq and Pikq represent the start time and pro-
cessing time of Oikq respectively, Sieiq and Pieiq represent
the start time and process time of the last operation of job
i respectively. Denote ri and di as the release date (earliest
starting time) and due date (latest ending time) of job i. Let
SSi be the sequence set of operation pairs [Oikp, Oilq] of
job i, where operation Oikp must precede Oilq . Let RSq be
the set of operations Oikq to be processed on machine q.

Taking minimizing the makespan as the optimization cri-
terion, the JSP considered can be formulated as follows:

Minimize E = maxi∈J(Sieiq + Pieiq)
subject to

Silq − Sikp ≥ Pikp,

[Oikp, Oilq] ∈ SSi, k, l ∈ {1, · · · , m}, i ∈ J (1)

Sjlq − Sikq ≥ Pikq or Sikq − Sjlq ≥ Pjlq ,

Oikq , Ojlq ∈ RSq, i, j ∈ J, q ∈ M (2)

ri ≤ Sijq ≤ di−Pijq , i ∈ J, j ∈ {1, · · · , m}, q ∈ M (3)

In the above formulation, the cost function E is the
complete time of the latest operation. Minimizing the cost
function means minimizing the makespan. Eqn. (1) repre-
sents the sequence constraint between two operations of a
job. Eqn. (2) represents the resource constraints between two
jobs on a machine in a disjunctive format. Eqn. (3) represents
the release and due date constraints of jobs.

B. Classification of Feasible Solutions for JSPs

For a given JSP, there are in fact infinite feasible sched-
ules since arbitrary excess idle times can be inserted into
a feasible schedule to create new feasible ones. Given a
feasible schedule for JSPs, if an operation can be left-shifted
(started earlier) without altering the processing sequences,
such a left-shift is called a local left-shift. If a left-shift of an
operation alters the processing sequences but does not delay
any other operations, it is called a global left-shift. Based on
the concept of local and global left-shift, feasible schedules
for JSPs can be classified into four types: inadmissible, semi-
active, active and non-delay.

Inadmissible schedules are those that contain excess idle
time and can be improved by local and/or global left-shift(s).
obviously, these kind of schedules are not of practical useful-
ness. Semi-active schedules are those that allow no local left-
shift, but there may be allowable global left-shift(s). Active
schedules are those that allow neither local left-shift(s) nor
global left-shift(s). Non-delay schedules are active schedules
in which no machine is kept idle while some operation can

TABLE I

A LIST OF JOB-SHOP DISPATCH RULES.

Rule Description

SPT (Shortest Processing Time) Select an operation with the shortest
processing time

LPT (Longest Processing Time) Select an operation with the longest
processing time

MWR (Most Work Remaining) Select an operation for the job with the
most total remaining processing time

LWR (Least Work Remaining) Select an operation for the job with the
least total remaining processing time

MOR (Most Operations Remaining) Select an operation for the job with the
greatest number of operations remaining

LOR (Least Operations Remaining) Select an operation for the job with the
greatest number of operations remaining

be processed. An optimal schedule is guaranteed to be an
active one but not necessarily a non-delay one [1].

C. Giffler and Thompson Heuristics for JSPs

Giffler and Thompson [9] first proposed a systematic
method, denoted GT-Random in this paper, to generate any
active schedules for JSPs as described below. Let ES(O) and
EC(O) denote the earliest (possible) start time and earliest
(possible) completion time of an operation O respectively.
An active schedule is generated by repeating the algorithm
until all operations are scheduled as follows.

1). Let D be a set of all unscheduled operations. Find
an operation O∗ (with ties broken randomly) that has
the minimum earliest (possible) completion time in D.
That is, O∗ := arg min{EC(O)|O ∈ D}. Let M∗

denote the machine that processes O∗.
2). Construct the conflict set C which contains unsched-

uled operations in D that are processed on M ∗ and
whose processing will overlap with O∗. That is, C :=
{O ∈ D | O on M∗, ES(O) < EC(O∗)}.

3). Select an operation O ∈ C randomly and schedule it
on M∗ with its completion time equal to EC(O).

In Step 3 of the above GT-Random algorithm, if all
possible choices are considered, all active (non-delay) sched-
ules will be generated respectively, but the total number of
schedules will be very large. Researchers have developed
a large number of heuristic priority rules to be used in
the Giffler and Thompson algorithm to select an operation
from the schedulable set to be dispatched next. An extensive
summary and discussion can be found in [3], [10]. Table I
lists some priority rules commonly used in practice.

It is also quite common that the priority rules can be
combined into the Giffler and Thompson algorithm: when
dispatching an operation, one priority rule is first randomly
selected from a pre-defined set of priority rules and then
applied to select an operation. This hybrid method is denoted
GT-Rule in this paper.

Both the GT-Random and GT-Rule algorithms have be-
come the basis for many priority-rule based heuristics and
hybrid scheduling systems for JSPs. They will be used as

2721

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:49 from IEEE Xplore. Restrictions apply.

��
��

-

6

-

������*

HHHHHHj
-

Ni Ai∑

+1

Bi

A1

Aj

An

ppppp
ppppp

Wi1

Wij

Win

f(Ni)

Fig. 1. General neural unit model.

peer algorithms in this paper1 for comparing the performance
of CSANNs, to be described next, for JSPs.

III. IMPROVED CONSTRAINT SATISFACTION ADAPTIVE

NEURAL NETWORK — CSANN-II

A. Neurons of CSANN-II

Usually a neural unit i consists of a linear summator and
a nonlinear activation function f(·), which are serialized as
follows:

Ai = f(Ni) = f(

n
∑

j=1

(Wij × Aj) + Bi), (4)

where the summator sums a bias Bi and received activations
Aj(j = 1, · · · , n) from connected units with connection
weight Wij from unit j to unit i. The output of summator
is the net input Ni to neuron i, which is then passed to the
activation function f(·) to obtain the activation Ai. Fig. 1
shows the model of a general neural unit.

Based on the general neuron model, CSANN-II contains
three kinds of neurons: ST-units, SC-units and RC-units. ST-
units represent operations with the activation of each ST-
unit representing the start time of an operation. SC-units
and RC-units represent whether the sequence constraints and
resource constraints are satisfied respectively. The net input
and activation functions of an ST-unit, STi, are defined as:

NSTi
(t) =

∑

j

(Wij×ASCj
(t)) +

∑

k

(Wik×ARCk
(t))

+ASTi
(t − 1) (5)

ASTi
(t) =







ri, NSTi
(t) < ri

NSTi
(t), ri ≤ NSTi

(t) ≤ di−PSTi

di − PSTi
, NSTi

(t) > di − PSTi

(6)

where in Eqn. (5) the net input of STi is summed from
three parts. The first and second parts come from the
weighted activations of SC-units and RC-units related to STi,
which implement feedback adjustments due to sequence and
resource violations respectively. The third part comes from
previous activation of unit STi itself. The activation function
in Eqn. (6) is a linear-segmented function, where ri and di

are the release and due date of job i to which the operation,
corresponding to STi, belongs. PSTi

is the processing time of

1The GT-Rule algorithm studied in this paper uses exactly the six rules
in Table I as the set of priority rules

the operation. This activation function implements the release
and due date constraints described by Eqn. (3).

The net input and activation functions of an SC-unit SCi

or RC-unit RCi have the same definition as shown below:

NCi
(t) = W1 × AST1

(t) + W2 × AST2
(t) + BCi

(7)

ACi
(t) =

{

0, NCi
(t) ≥ 0

−NCi
(t), NCi

(t) < 0
(8)

where Ci represents SCi or RCi and BCi
is the bias, which

equals the processing time of a relative operation. The ST-
units, ST1 and ST2, represent two operations of the same job
for an SC-unit, or two operations sharing the same machine
for a RC-unit. The activation function is linear-segmented.
When the activation of an SC- or RC-unit is greater than
0, it means the relevant sequence or resource constraint is
violated and there will be feedback adjustments from SCi

or RCi to connected ST1 and ST2 with adaptive weights.

B. Adaptive Connection Weights and Biases

Usually for a neural network for constraint satisfac-
tory problems, the connection weights between neurons are
problem-specific and set in advance before it is run. In
CSANN-II, the connection weights and biases are adaptive
in accordance with the actual activations of ST-units while
CSANN is running, together with the sequence and resource
constraints of the specific JSP.

All neurons of CSANN-II are structured into two problem-
specific constraint blocks: sequence constraint block (SC-
block) and resource constraint block (RC-block). Each SC-
block unit consists of two ST-units that represent two op-
erations of a job and one SC-unit that represents whether
relevant sequence constraint is satisfied, see Fig. 2. Similarly,
each RC-block unit has two ST-units that represent two op-
erations on a machine and one RC-unit representing whether
relevant resource constraint is satisfied, see Fig. 3.

��
��

��
��

��
��

�

-

J
J
J

JĴ

��� @@I

�
�

�

�
��

@@I J
J

J
JJ]

�

@@I ���

+1

W1 W2

W3 W4

BSCikl

+1+1 STikp STilq

ASTikp
ASTilq

ISTikp
ISTilq

SCikl

Fig. 2. A SC-block unit SCBikl.

Fig. 2 shows an example SC-block unit SCBikl. ST-units
STikp and STilq represent two operations Oikp and Oilq

of job i. Their activations ASTikp
and ASTilq

represent the
start times Sikp and Silq . The SC-unit SCikl represents the
sequence constraint of Eqn. (1) between Oikp and Oilq , with
BSCikl

being its bias. In Fig. 2, ISTikp
(ISTilq

) represents

2722

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:49 from IEEE Xplore. Restrictions apply.

��
��

��
��

��
��

�

-

J
J
J
JĴ

��� @@I

�
�

�

+1

W5 W6

W7 W8

BRCqikjl

+1+1 STikq STjlq

ASTikq ASTjlq

ISTikq
ISTjlq

RCqikjl

�
��

@@I J
J

J
JJ]

�

@@I ���

Fig. 3. A RC-block unit RCBqikjl .

the initial value for Sikp (Silq) that is taken as the initial net
input to STikp (STilq). The weights and bias are valued as:

W1 = −1, W2 = 1, W3 = −W, W4 = W, BSCikl
= −Pikp

(9)
where W , henceforth, is positive feedback adjustment factor.
At time t during the run of CSANN-II, if the sequence
constraint between Oikp and Oilq is satisfied, the activation
ASCikl

(t) of SCikl equals zero; otherwise, the activation of
SCikl will be greater than zero and can be calculated by

ASCikl
(t) = −NSCikl

(t) = ASTikp
(t) + Pikp − ASTilq

(t)

= Sikp(t) + Pikp − Silq(t) (10)

The feedback adjustments from SCikl to STikp and STilq

are shown as follows:

ASTikp
(t+1) = Sikp(t+1) = Sikp(t)−W×ASCikl

(t) (11)

ASTilq
(t+1) = Silq(t+1) = Silq(t)+W ×ASCikl

(t) (12)

where the feedback adjustments put backward Sikp of Oikp

and put forward Silq of Oilq . Hence, the sequence constraint
violation between Oikp and Oilq may be solved.

Fig. 3 shows an example RC-block unit, RCBqikjl , which
represents the resource constraint of Eqn. (2) between Oikq

and Ojlq on machine q. At time t during the run of CSANN-
II, the weights and bias are adaptively valued according to
the following two cases.

Case 1: If ASTikq
(t) ≤ ASTjlq

(t), i.e., Sikq(t) ≤ Sjlq(t),
Eqn. (13) holds

W5 = −1, W6 = 1, W7 = −W, W8 = W, BRCqikjl
= −Pikq

(13)
In this case RCBqikjl represents a sequence constraint

described by the first disjunctive equation of Eqn. (2). If
violation exists, the activation of RCqikjl and feedback
adjustments from RCqikjl to STikq and STjlq are calculated
by

ARCqikjl
(t) = ASTikq

(t) + Pikq − ASTjlq
(t)

= Sikq(t) + Pikq − Sjlq(t) (14)

ASTikq
(t+1)=Sikq(t+1)=ASTikq

(t)+W7×ARCqikjl
(t)

= Sikq(t) − W × ARCqikjl
(t) (15)

ASTjlq
(t+1)=Sjlq(t +1)=ASTjlq

(t)+W8×ARCqikjl
(t)

= Sjlq(t) + W × ARCqikjl
(t) (16)

Case 2: If ASTikq
(t) ≥ ASTjlq

(t), that is, Sikq(t) ≥
Sjlq(t), Eqn. (17) holds

W5 = 1, W6 = −1, W7 = W, W8 = −W, BRCqikjl
= −Pjlq

(17)
In this case RCBqikjl represents a sequence constraint

described by the second disjunctive equation of Eqn. (2).
If there exists violation, the activation of RCqikjl and the
feedback adjustments are calculated by

ARCqikjl
(t) = ASTjlq

(t) + Pjlq − ASTikq
(t)

= Sjlq(t) + Pjlq − Sikq(t) (18)

ASTikq
(t+1)=Sikq(t+1)=ASTikq

(t)+W7×ARCqikjl
(t)

= Sikq(t) + W × ARCqikjl
(t) (19)

ASTjlq
(t+1)=Sjlq(t+1)=ASTjlq

(t)+W8×ARCqikjl
(t)

= Sjlq(t) − W × ARCqikjl
(t) (20)

The architecture of CSANN-II consists of two layers. The
bottom layer consists of only ST-units. The top layer consists
of SC-units and RC-units that are connected to ST-units at
the bottom layer according to a specific JSP.

C. Adaptive RC-Block Scheme

CSANN-II uses an adaptive scheme to construct the RC-
block when it is running, as described below:

1). Before each iteration of the RC-block, sort the ST-units
related to each machine according to their activations,
i.e., present start times of relevant operations to be
processed on the machine, in a non-decreasing order;

2). From the first to the last in the ordered ST-unit list,
construct one RC-block unit for two adjacent ST-units.
This results in n−1 RC-block units for each machine.

With the above adaptive scheme, for a traditional JSP with
m machines and n jobs where each job passes trough all
machines in certain order, the number of RC-block units is
reduced to n − 1 for each machine instead of n(n − 1)/2
in the original CSANN. Totally, CSANN-II requires mn ST-
units, n(m − 1) SC-units, and m(n − 1) RC-units, which
gives a total number of 3mn − m − n neurons in the order
of O(mn), while CSANN consists of n(0.5mn+1.5m− 1)
neurons in the order of O(mn2). Hence, CSANN-II achieves
a deduction of magnitude n with respect to the network
complexity.

Given a problem-specific CSANN-II, it is run iteratively:
first run SC-block units and then RC-block units in a fixed
order until the activations of all SC-units and RC-units
equal zero. The final activations of ST-units form a feasible
schedule. For each iteration, CSANN-II needs to sort the
ST-units for each machine, which can be done in O(n log n)
time by the quick sort algorithm. It also needs calculating
n(m − 1) SC-unit and m(n − 1) RC-units, resulting in a
computational complexity of O(mn log n) for each iteration.

2723

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:49 from IEEE Xplore. Restrictions apply.

In contrast, CSANN requires n(m−1) SC-unit and mn(n−
1)/2 RC-unit calculations, totally in the order of O(mn2).
Hence, computationally CSANN-II achieves a deduction of
O(n/ log n) over CSANN for each iteration.

D. Combined Heuristic Algorithms for CSANN-II

Several heuristics have been devised and combined into
CSANN-II to guarantee its convergence, accelerate its solv-
ing speed, and improve the quality of solutions. They are
described as follows.

1) Swapping the order of adjacent operations: This
heuristics has two aspects: to accelerate the solving process
and to guarantee obtaining feasible solution [13], [14]. The
former, called Heuristic Alg. 1(a), is for two adjacent op-
erations of the same job, while the latter, called Heuristic
Alg. 1(b), is for two adjacent operations on the same ma-
chine.

For Heuristic Alg. 1(a), assuming [Oikp, Oilq] ∈ SSi, at
time t during the running of neural networks, if ASTikp

(t) ≥
ASTilq

(t) (i. e., Sikp(t) ≥ Silq(t)), exchange the order of
Oikp and Oilq by exchanging their start times as follows:

ASTikp
(t + 1) = Sikp(t + 1) = Silq(t) (21)

ASTilq
(t + 1) = Silq(t + 1) = Sikp(t) (22)

In fact, Eqns. (21) and (22) form a more direct method of
removing sequence constraint violations than the feedback
adjustment scheme in CSANN-II. Thus, the adjustment time
for removing sequence constraint violations is shortened and
the solving process is speeded up.

During the running of CSANNs, due to conflicts resulting
from sequence constraint and resource constraint violation
feedback adjustments, the phenomenon of dead lock may
happen2. Dead lock will stop CSANNs from obtaining a
feasible solution. Heuristic Alg. 1(b) was proposed to break
dead lock (and hence guarantee obtaining feasible schedules)
by exchanging the order of two adjacent operations on the
same machine via exchanging their start times. Heuristic
Alg. 1(b) works as follows.

For each RC-block unit RCBqikjl , a variable Tqikjl(t) is
defined to count the number of continuous and similar feed-
back adjustments, accumulated over iterations, from RCqikjl

to STikq and STjlq due to the resource constraint viola-
tion between Oikq and Ojlq on machine q. Two feedback
adjustments are called similar if they have the same effect
on STikq and STjlq , e.g., both pushing Sikq forward and
Sjlq backward. Whenever the resource constraint between
Oikq and Ojlq is satisfied or a different feedback adjustment
occurs within RCBqikjl , Tqikjl(t) will be reset to zero.
However, during the running of CSANNs, if dead lock
happens Tqikjl(t) will keep increasing over iterations of
CSANNs. And when Tqikjl(t) reaches a threshold parameter
T , the equations below will swap the order of Oikq and Ojlq

by swapping their start times.

ASTikq
(t + 1) = Sikq(t + 1) = Sjlq(t) (23)

2See [13] for more detailed explanation on the reason to dead lock.

ASTjlq
(t + 1) = Sjlq(t + 1) = Sikq(t) (24)

2) Obtaining a proper expected makespan adaptively: For
a JSP without due date constraints, before running CSANN-
II, an expected makespan is prescribed, which is what the
scheduler wants to achieve and can be used as the common
due date of all jobs. The value of expected makespan affects
the performance of CSANN-II greatly: if set too loose, the
quality of obtained schedules will be low, while set too
tight, it will take CSANN-II too long to obtain a schedule.
This qualifies the importance of selecting a proper expected
makespan for CSANN-II to run.

In [15], an adaptive scheme was proposed to obtain a
proper expected makespan by adding a preprocessing stage,
which is denoted Heuristic Alg. 2 in this paper. Let

∑

P
denote the total processing time of all operations and

∑

O
total number of operations (e.g.,

∑

O = mn). Heuristic
Alg. 2 is shown as follows:

1) Set the initial expected makespan EM(0) = 0.5 ×
∑

P ;
2) Run CSANN-II for τ times and compute the mean

iterations Ī =
∑

I/τ that CSANN-II uses to obtain a
schedule;

3) If Ī < ρ×
∑

O, EM(k +1) = EM(k)−0.01×
∑

P
and go to step 2; Otherwise, stop the preprocess-
ing stage and return EM(k) as the final expected
makespan.

where in step 3, τ and ρ are parameters for the preprocessing
stage. The aim of Heuristic Alg. 2 is to obtain a proper ex-
pected makespan that makes the average iterations CSANNs
require for a schedule to be linear with respect to

∑

O.
3) Improving the quality of schedules: The feasible sched-

ules obtained by CSANNs are usually inadmissible, which
can be improved by deleting machine idle times. In [15],
an algorithm, henceforth called Heuristic Alg. 3, is used to
obtain an active schedule from the one obtained by CSANNs
as follows:

1) Given a feasible schedule obtained by CSANN-II, sort
all operations in the non-decreasing order of their start
times.

2) From the first to the last in the ordered operation
list, each operation is moved forward to its earliest
possible start time by first carrying out global left-shift
(if possible) and then local left-shift.

IV. CSANN-II AND LOCAL SEARCH HYBRID APPROACH

A. Local Search Mechanism

Local search mechanisms have proved helpful for improv-
ing the performance of many optimization algorithms. The
basic principle of local search mechanisms is as follows:
pick a (possibly bad) feasible solution, change it a little bit
(usually according to a defined neighbourhood), and check
whether a better solution is obtained. If so, the algorithm
moves to this new solution; otherwise, just make another
change to the old solution. The procedure continues until
some termination condition becomes true, e.g., the maximum
number of changes without improvement has reached.

2724

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:49 from IEEE Xplore. Restrictions apply.

The local search mechanism can be integrated into
CSANNs for better performance. The idea is described as fol-
lows. From a feasible schedule obtained by CSANN-II, find
the last job on each machine and swap it with one randomly
selected different job on the machine by exchanging their
start times. Then, run CSANN-II from the resulting (possibly
infeasible) schedule to obtain a new feasible schedule. If the
new schedule is better, the local search moves to this new
schedule; otherwise, the local search continues from the old
solution. This progress continues until a pre-set maximum
number of local searches have been done.

Here, one problem lies in that if we use the schedule
obtained by CSANN-II directly as the base for local search,
it may take a long time to run CSANN-II for a new
schedule because the original schedule is quite tight. To solve
this problem, we propose a schedule relaxing technique to
obtain a quite relaxed schedule from a schedule obtained
by CSANN-II. Then, local search is carried out from the
relaxed schedule instead. The schedule relaxing technique is
described below.

B. Schedule Relaxing Technique

Given a feasible schedule obtained by CSANN-II, a re-
laxed schedule can be obtained in the follow steps:

1) Calculate the distance between the expected makespan
and the makespan of the given schedule. Let ∆ denote
the distance.

2) Find a critical path in the schedule and let n denote
the number of critical operations in the critical path
and d = ∆/(n − 1) denote the relax distance.

3) Sort all operations in the schedule in the non-
decreasing order of their start times.

4) Transverse from the first to the last in the ordered
operation list and postpone the start time of operations
as follows: when we meet an operation with its start
time larger than the start time of the ith critical
operation but smaller than the start time of the i + 1th
critical operation in the critical path, its start time is
right shifted by i ∗ d units of time.

Fig. 4 shows an example schedule relaxing on a JSP with
three machine and three jobs. The original schedule is a tight
active schedule with the unique critical path consisting of
four critical operations. In the relaxed schedule, the critical
path is lengthened by ∆ with a gap of d inserted between
two original critical operations Other non-critical operations
are also postponed accordingly.

C. Framework of the Hybrid Approach for JSPs

The hybrid approach consists of CSANN-II and the pro-
posed local search mechanism, denoted CSANN-LS in this
paper. In practice, the hybrid approach is executed a number
of times to obtain schedules and the best schedule will be
used as the final schedule. The running strategy is shown as
follows:

1). Construct a CSANN-II for a specific JSP, set values for
W , T , τ , ρ, and the maximum number of schedules
MaxSched to be calculated;

Makespan

M3

M2

M1

0

Makespan

Critical Path with Four Critical Operations

Expected

(a)

Makespan

M3

M2

M1

0 Expected
Makespan

Relax Distance, d

(b)

Fig. 4. Illustrating a relaxing operation: (a) before and (b) after.

2). Perform the pre-processing stage with Heuristic Alg. 2
to obtain a proper expected makespan;

3). Run CSANN-II for one schedule with the above ob-
tained expected makespan;

4). Create a relaxed schedule from the schedule obtained
by CSANN-II;

5). Perform a local search from the relaxed schedule;
6). If the maximum number of schedules, MaxSched, is

reached, stop; otherwise, go to step 4.
The procedure of running CSANN-II for one feasible

schedule is shown as follows:
1). Randomly initialize Sikp(0) or set Sikp(0) according

to a given schedule for each operation Oikp, and take
it as the initial input ISTikp

to ST-unit STikp;
2). Run each SC-unit SCikl of the SC-block: calculate its

activation with Eqn. (10). If ASCikl
(t) 6= 0, it means

the violation of related sequence constraint, then adjust
activations of related ST-units with Eqns. (11) and
(12) or Eqns. (21) and (22) if Heuristic Alg. 1(a) is
triggered;

3). Construct the RC-block adaptively;
4). Run each RC-unit RCqikjl of the RC-block, calculate

its activation with Eqn. (14) or Eqn. (18). ARCqikjl
(t) 6=

0 means the violation of resource constraint corre-
sponding to Eqn. (2). Then adjust ASTikq

(t+1) and
ASTjlq

(t+1) with Eqns. (15) and (16) or Eqns. (19) and
(20), or with Eqns. (23) and (24) if Heuristic Alg. 1(b)
is triggered;

5). Repeat step 2 to 4 until all neurons become stable with-
out changes, i.e., all sequence and resource constraints
are satisfied and an feasible schedule is obtained;

6). Use Heuristic Alg. 3 to obtain an active schedule from
the feasible schedule obtained by CSANN-II.

2725

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:49 from IEEE Xplore. Restrictions apply.

V. EXPERIMENTAL STUDY

A. Experimental Setting

The experimental study was finished on a 2.8GHz Intel
Pentium 4 PC under GNU C++ programming environment.
The benchmark problems, Muth and Thompson’s FT06,
FT10 and FT20 JSPs [11], were taken as the test problems
to compare the performance of CSANN-LS, CSANN-II, GT-
Random and GT-Rule. The parameters for CSANNs are set
as: W = 0.5, T = 5, τ = 10 and ρ = 2.

For each run of an algorithm on a test JSP, 105 schedules3

were calculated with the intermediate best-so-far schedule
recorded every 100 schedule. And for each run the final best
schedule and time used were also recorded. In order to avoid
the effect a random seed may have, 50 runs with different
random seeds were carried out for each algorithm on each
test problem and the mean results over 50 runs are reported.

B. Experimental Results and Analysis

The experimental results regarding makespan of final best
schedule and time used in second are given in Table II,
where Min/Ave/Std means minimum, average and standard
deviation over 50 runs of algorithms respectively. Statistical
comparison of algorithms by one-tailed t-test is also given in
Table II, where the t-test values shown in bold font are signif-
icant with 98 degrees of freedom at a 0.05 significance level.
The experimental results regarding best-so-far makespan of
algorithms against schedules are plotted in Fig. 5, where the
data was averaged over 50 runs.

TABLE II

EXPERIMENTAL RESULTS OF COMPARING METHODS.

Measure Algorithm FT06 FT10 FT20

Makespan CSANN-LS 55/55/0.0 971/999/16.1 1221/1269/25.8
(Min/Ave/Std) CSANN-II 55/55/0.0 982/1009/9.9 1292/1334/12.7

GT-Random 55/56.2/0.8 1048/1102/17.9 1336/1383/16.7
GT-Rule 55/56.8/0.8 1073/1116/15.7 1333/1379/17.4

Time Used CSANN-LS 16/78.3/105.5 68/675/916.2 49/100/61.5
in Seconds CSANN-II 31/129/166.5 222/753/607.1 820/941/168.6

(Min/Ave/Std) GT-Random 4/4.3/0.46 16/16.9/0.56 33/34.2/1.0
GT-Rule 4/4.6/0.49 17/18.0/0.45 35/38.9/3.9

t-Test Results Regarding Markspan

CSANN-LS – CSANN-II 0.0 -3.82 -15.89
CSANN-LS – GT-Random -10.43 -30.35 -26.07

CSANN-LS – GT-Rule -15.92 -36.78 -24.95

t-Test Results Regarding Time Used

CSANN-LS – CSANN-II -1.83 -0.5 -33.14
CSANN-LS – GT-Random 4.96 5.08 7.59

CSANN-LS – GT-Rule 4.94 5.07 7.03

From Table II and Fig. 5, it can be seen that CSANN-
LS significantly outperforms CSANN-II regarding both the
quality of obtained schedules on FT10 and FT20 and the
solving speed on all test JSPs. CSANN-LS also significantly
outperforms GT-Random and GT-Rule with respect to the

3For CSANNs the schedules calculated during the preprocessing stage
were also counted into the total 10

5 schedules.

 54

 56

 58

 60

 62

 64

10008006004002000

M
ea

n
B

es
t-

So
-F

ar
 M

ak
es

pa
n

No. of Schedules (x 100)

CSANN-LS
CSANN-II

GT-Random
GT-Rule

(a)

 950

 1000

 1050

 1100

 1150

 1200

 1250

10008006004002000

M
ea

n
B

es
t-

So
-F

ar
 M

ak
es

pa
n

No. of Schedules (x 100)

CSANN-LS
CSANN-II

GT-Random
GT-Rule

(b)

 1250

 1300

 1350

 1400

 1450

 1500

 1550

10008006004002000

M
ea

n
B

es
t-

So
-F

ar
 M

ak
es

pa
n

No. of Schedules (x 100)

CSANN-LS
CSANN-II

GT-Random
GT-Rule

(c)

Fig. 5. Test results on (a) FT06, (b) FT10 and (c) FT20.

quality of obtained schedules on all test JSPs but spends
significantly more computational time.

From Fig. 5, it can be seen that on FT06 both CSANN-
II and CSANN-LS reach the optimum makespan 55 very
quickly while both GT-Random and GT-Rule fail to achieve
the optimum within 105 schedules. On FT10, CSANN-LS
perform better than CSANN-II and on FT20, CSANN-LS
clears wins over CSANN-II. On all the three problems,
CSANN-II and CSANN-LS outperform GT-Random and GT-
Rule clearly with respect to the best-so-far makespan against
schedules tried.

In order to carry out a fairer comparison between the
algorithms in terms of the computational time, further ex-
periments were carried out to run the algorithms on the test
JSPs for certain fixed time. For each run, the algorithms are
given a maximum of 60, 300, and 600 seconds on FT06,
FT10, and FT20 respectively. The results regarding the final

2726

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:49 from IEEE Xplore. Restrictions apply.

TABLE III

EXPERIMENTAL RESULTS OF COMPARING ALGORITHMS WITH THE

MAXIMUM ALLOWABLE RUN TIME SET TO 60, 300, AND 600 SECONDS

FOR FT06, FT10, AND FT20 RESPECTIVELY.

Makespan (Min/Ave/Std)

Algorithm FT06 FT10 FT20

CSANN-LS 55/55.04/0.3 971/999/12.8 1201/1250/19.6

CSANN-II 55/55/0.0 982/1012/11.3 1292/1337/13.1

GT-Random 55/55.1/0.3 1017/1075/13.5 1325/1351/11.8

GT-Rule 55/55.4/0.6 1060/1087/11.2 1325/1350/12.8

t-Test Result

CSANN-LS – CSANN-II 1.0 -5.43 -26.26

CSANN-LS – GT-Random -1.02 -29.06 -31.23

CSANN-LS – GT-Rule -7.89 -36.87 -30.31

makespan, also averaged over 50 runs, are shown in Table III.
From Table III it can been seen CSANN-LS still significantly
outperforms CSANN-II, GT-Random and GT-Rule on nearly
all test JSPs.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a local search scheme for the im-
proved adaptive neural network, CSANN-II. In the hybrid
approach CSANN-LS, CSANN-II together with some heuris-
tics is used to obtain feasible schedules for JSPs while the
local search scheme is used to iterate the obtained schedules
for better schedules. The schedule relaxing technique helps
shorten the run time for CSANN-II to obtain a new sched-
ule from a possibly infeasible schedule that has just been
changed by the local search scheme.

For JSPs on the selected benchmark problems, experi-
mental study shows that CSANN-LS yields higher quality
solutions than CSANN-II and the two classical Giffler and
Thompson’s heuristic algorithms. CSANN-II is also much
faster in computing speed than CSANN-II, roughly by a
factor of 2 to 15, but CSANN-LS is 2 to 4 times slower
than the two classical approaches to find a fixed number of
solutions for the benchmark JSPs. When the solving time
is fixed, both CSANN-II and CSANN-LS can find higher
quality solutions than the two classical approaches.

CSANN-II can act as a good base for constructing further
hybrid systems for JSPs and other production scheduling
problems. It is noticeable that many other advanced intelli-
gent methods for JSPs, e.g., hybrid genetic algorithms [4], are
in fact based on the Giffler and Thompson’s heuristics. We
believe integrating CSANN-II into those advanced intelligent
methods to replace the Giffler and Thompson’s heuristics will
further improve the performance for JSPs. This work is now
under investigation.

REFERENCES

[1] K. R. Baker, Introduction to Sequence and Scheduling, New York: John
Wiley & Sons, 1974.

[2] C. Bierwirth and D. Mattfeld, “Production scheduling and rescheduling
with genetic algorithms,” Evolutionary Computation, Vol. 7, No. 1,
pp. 1–17, 1999.

[3] J. Blackstone, D. Phillips, and G. Hogg, “A state-of-the-art survey of
dispatching rules for manufacturing job shop operations,” International
Journal of Production Researches, Vol. 20, pp. 27–45, 1982.

[4] R. Cheng, M. Gen and Y. Tsujimura, “A tutorial survey of job-shop
scheduling problems using genetic algorithms, Part II: Hybrid genetic
search strategies,” Computers and Industrial Engineering, Vol. 36,
pp. 343–364, 1999.

[5] D. Dubois, H. Fargier and H. Prade, “Fuzzy constraints in job-shop
scheduling,” Journal of Intelligent Manufacturing, Vol. 6, pp. 215–234,
1995.

[6] S. Y. Foo and Y. Takefuji, “Neural networks for solving job-shop
scheduling: Part 1. Problem representation,” Proc. IEEE IJCNN, Vol. II,
pp. 275–282, 1988.

[7] S. Y. Foo and Y. Takefuji, “Stochastic neural networks for solving
job-shop scheduling: Part 2. Architecture and simulations,” Proc. IEEE
IJCNN, Vol. II, pp. 283–290, 1988.

[8] M. S. Fox and M. Zweben, Knowledge-based Scheduling, San Manteo,
CA: Morgan Kaufmann Publishers, 1993.

[9] B. Giffler and G. Thompson, “Algorithms for solving production
scheduling problems,” Operations Research, Vol. 8, pp. 487–503, 1960.

[10] R. Haupt, “A survey of priority-rule based scheduling problem,” OR
Spektrum, Vol. 11, pp. 3–16, 1989.

[11] J. F. Muth and G. L. Thompson, Industrial Scheduling, Prentice Hall,
Englewood Cliffs, NJ, 1963.

[12] T. M. Willems, “Neural networks for job-shop scheduling,” Control
Engineering Practice, Vol. 2, No. 1, pp. 31–39, 1994.

[13] S. Yang and D. Wang, “Constraint satisfaction adaptive neural network
and heuristics combined approaches for generalized job-shop schedul-
ing,” IEEE Trans. on Neural Networks, Vol. 11, No. 2, pp. 474–486,
2000.

[14] S. Yang and D. Wang, “A new adaptive neural network and heuristics
hybrid approach for job-shop scheduling,” Compters & Operations
Research, Vol. 28, No. 11, pp. 955–971, 2001.

[15] S. Yang, “An improved adaptive neural network for job-shop schedul-
ing,” Proc. of IEEE 2005 Int. Conf. on Systems, Man and Cybernetics,
Vol. 2, pp. 1200–1205, 2005.

[16] H.-B. Yu, Research of intelligent production scheduling methods and
their applications, PhD Thesis, Northeastern University, China, 1997.

2727

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:49 from IEEE Xplore. Restrictions apply.

