
On the Observable Behavior
of Graph Transformation Systems

Tamim Ahmed Khan1, Rodrigo Machado2, and Reiko Heckel1

1 Department of Computer Sciences, Leicester University, UK
{tak12, reiko}@mcs.le.ac.uk

2 Univ. Federal do Rio Grande do Sul, Porto Alegre, Brazil
rma@inf.ufrgs.br

Abstract. While modelling or testing component-based or service-oriented ap-
plications we often complement the external perspective, describing the system
in terms of its interactions, by the internal one specifying its implementation. To
formalise this view, a graph transformation system is seen as an encapsulated
component: The implementation, described by type graph and rules, is equipped
with an interface (a signature of rules with parameters) defining possible obser-
vations. We use this model to study the conditions under which observations of
interactions denote faithfully the internal concurrent processes in the system.
Software systems evolve to accommodate new requirements as well as to improve
the quality of the existing features. Based on the characterisation of observable
behaviour we establish a notion of morphism between systems that preserves ob-
servable behaviour without relating the internal structure (type graphs and rules)
of the two components.

1 Introduction

A software system may evolve either as a consequence to maintenance or in order to
cater for the addition, modification or deletion of functionality. Maintenance activities
consume a major portion of the total cost and start as soon as a software is delivered to
the production environment.

A system can be specified abstractly as a graph transformation system consisting of
a type graph modelling the data structures of the application and a set of rules represent-
ing its operations or methods. The concurrent behaviour of such a system is described
by equivalence classes of derivations, identifying derivations that are permutations of
each other obtained by swapping independent steps. To construct such a model we have
to be aware of the internal states of the system and the data dependencies between its
operations. For graph transformation systems, the evolution of the corresponding con-
current behaviour has been studied extensively (starting in [1–3]) for properties such as
preservation, refinement, and reflection of computations.

However, this view is not appropriate for the modelling and testing of service-
oriented or component-based systems which encapsulate and hide their internal state.
Instead, their behaviour is better expressed through sequences of messages or method
invocations, i.e., an observational rather than concurrent semantics. In this paper we
develop such a semantics for graph transformation systems based on the intuition that

2 Tamim Ahmed Khan et al.

a system is a component that interacts with the outside world through an abstract inter-
face made of operation signatures only. But even in this abstract view we would like to
be able to express the concurrent nature of the implementation, e.g., in order to regard
two test cases as equivalent if they invoke equivalent internal derivations. Therefore,
we use information about dependencies and conflicts extracted from the implementa-
tion in order to define an equivalence on these sequences matching that of the internal
concurrent semantics.

Our choice of working at the level of observable behaviour is motivated by the
prevalence of situations (e.g., in testing) where the system’s behaviour is visible only
via traces of messages exchanged. Then, in the case of evolution, we are interested in
checking if this observable behaviour is preserved. In order to represent this type of
evolution, we define a notion of morphism between typed attributed graph transforma-
tion systems such that labels are preserved and study the properties of such morphisms
by analysing its impact on dependencies. It turns out that morphisms which preserve or
reflect dependencies between labels enjoy certain preservation and / or reflection prop-
erties of traces. This allows us to add or replace freely types and rules as long as their
dependencies and conflicts are preserved.

The preservation of observable behaviour is a basic requirement of refactorings [4].
With respect to regression testing, where we rerun test cases generated for the old sys-
tem on the new version, an understanding of preservation or reflection of observable
traces is required to decide which test cases need to be rerun, which ones are redundant
or obsolete. The paper is organised as follows. After background on typed attributed
graph transformation, in Section 3 we introduce observations and traces. Section 4 deals
with behaviour-preserving evolution, before we review related work and conclude.

2 Typed Attributed Graph Transformation

This section provides the basic notions on typed attributed graph transformation, fol-
lowing the algebraic approach [5]. A graph is a tuple (V, E, src, tgt) where V is a set of
nodes (or vertices), E is a set of edges and src, tgt : E → V associate, respectively, a
source and target node for each edge in E. Given graphs G1 and G2, a graph morphism
is a pair (fV , fE) of total functions fV : V1 → V2 and fE : E1 → E2 such that source and
targets of edges are preserved.

An E-graph is a graph equipped with an additional set VD of data nodes (or values)
and special sets of edges EEA (edge attributes) and ENA (node attributes) connecting,
respectively, edges in E and nodes in V to values in VD. An attributed graph is a tuple
(EG,D) where EG is an E-graph and D is an algebra with signature Σ = (S ,OP) such
that
⊎

s∈S Ds = VD. Intuitively, an attributed graph is an E-graph where VD is the set
of all data values available for attribution. A morphisms f : (EG,D) → (EG′,D′) of
attributed graphs is a pair of an E-graph morphism fEG : EG → EG′ and a compatible
algebra homomorphism fD : D → D′. Fixing as type graph an attributed graph ATG
over a final Σ-algebra, we define the category AGraphATG of ATG-typed attributed
graphs [5]. Objects are pairs (G, t) of attributed graphs G with typing homomorphisms
t : G → ATG and morphisms f : G → H are attributed graph morphisms compatible
with the typing.

Lecture Notes in Computer Science 3

Let us denote by X = (Xs)s∈S a family of countable sets of variables, indexed by
sorts s ∈ S , and write x : s ∈ X for x ∈ Xs. An ATG-typed graph transformation rule

(or production) over X is a span L
l
←− K

r
−→ R where l, r are monomorphisms, the

algebra component of L,K,R is TΣ(X), the term algebra of Σ with variables in X, which
the rule morphisms preserve, i.e., lD = rD = idTΣ (X). That means, names of variables
are preserved across the rule. The class of all rules over ATG with variables in X is
denoted Rules(ATG, X). A typed attributed graph transformation system (TAGTS) is a
tuple (ATG, P, π) where ATG is an attributed type graph, P is a set of rule names and
π : P→ Rules(ATG, X) maps rule names to ATG-typed graph transformation rules.

In addition to describing conditions and computations on data we use attributes to
identify elements in the graph. In order to formalise the idea of a key constraint, we
require that every graph appropriately attributed has at most one homomorphic embed-
ding into every reachable graph.

Definition 1 (key attributes). An ATG-typed graph (G, t) is functionally attributed if
for every node or edge x ∈ VG ∪EG and attribute declaration d ∈ (ENA)ATG ∪ (EEA)ATG

with srcATG(d) = t(x), there exists exactly one attribute a ∈ (ENA)G ∪ (EEA)G such that
srcG(a) = x and t(a) = d. A graph H has keys if it is functionally attributed, and for
every functionally attributed graph G and morphisms f , g : G → H, fA = gA implies
f = g. A transformation G

p, m
=⇒ H has keys if both G,H do. A TAGTS preserves keys

if for all G
p, m
=⇒ H, if G has keys, so does H. We assume in what follows that graphs

occurring in transformations have keys and that they are preserved by TAGTS.

If we consider a graph G containing just one node and its attributes, the condition states
that the node is uniquely identified within H by its attributes. In database terms, the
nodes attributes jointly form a key.

Example 1. (hotel service) We consider a service for managing hotel guests. A regis-
tered guest can book a room subject to availability. There are no booking charges and
the bill starts to accumulate once the room is occupied. Since credit card details are
already with the hotel management, the bill is automatically deducted when the guest
announces their intention to check out. The guest can check out successfully only when
the bill is paid. The type graph and rules modelling this service are shown in Fig. 1
using AGG [6] notation.

A functionally attributed graph is one that has one value per node or edge for each of
the attributes declared for the corresponding type. If node types have enough attributes
to identify their instances, the node mapping fV of a graph morphism f is uniquely
determined by its algebra part fA. In graphs without parallel edges this extends to the
mapping of edges. In our example, rooms and bills have unique numbers, and we can
assume that guests are identified by a combination of name and credit card number.
Thus every graph providing enough values for these attributes would have a unique
embedding into any other graph.

The operational semantics of rules is defined by the double-pushout construction.

Given an ATG-typed graph G and graph production L
l
← K

r
→ R together with a match

(i.e. a ATG-typed graph morphism) m : L→ G, a direct derivation G
p,m
=⇒ H exists if

4 Tamim Ahmed Khan et al.

Rule: checkout Rule: viewData

Type Graph
Rule: updateBill

Rule: occupyRoom

Rule: clearBill

Rule: bookRoom

Fig. 1: Type graph and rules for the hotel service

and only if the diagram below can be constructed, where both squares are pushouts in
AGraphATG such that G, C, H share the same algebra D and the algebra components
l∗D, r

∗
D of morphisms l∗, r∗ are identities on D. This ensures that data elements are pre-

served across derivation sequences, which is relevant for their use as actual parameters.

We also write G
p,d

=⇒ H for d = (m = dL,DK ,m∗ = dR) if we want to refer to the
entire DPO diagram. A derivation is a sequence G0

p1, m1
=⇒ G1

p2, m2
=⇒ . . .

pn, mn
=⇒ Gn of direct

derivations. The class of all derivations for a given T AGTS G is denoted Der(G).

L
(1)m=dL ��

K
loo r //

dK�� (2)

R

m∗=dR��
G C

l∗
oo

r∗
// H

The standard model of concurrency for graph transformation systems is based on
equivalence classes of derivations with respect the so called shift-equivalence. The no-
tion abstracts from the order in which independent steps are applied within a derivation,
identifying all derivations that represent serialisations of the same concurrent process.
Two direct derivations G

p1, m1
=⇒ H and H

p2, m2
=⇒ I are sequentially independent if they can

be swapped. That means, the first cannot create anything used or deleted by the second,
and the second cannot delete anything used by the first.

Definition 2 (independence and shift-equivalence). Derivation ρ = G0
p1,m1
=⇒ G1

p2,m2
=⇒

G2 in the lower diagram of Fig. 3 is sequentially independent iff there exist morphisms

Lecture Notes in Computer Science 5

i : R1 → D2 and j : L2 → D1 such that r′1 ◦ j = m2 and l′2 ◦ i = m′1. Using the
local Church-Rosser theorem ([5], theorem 3.20) it is possible to construct a derivation

ρ = G0
p2,m′2
=⇒ G′1

p1,m′1
=⇒ G2. We use ρ ∼sh ρ

′ to denote this relation.
Shift-equivalence ≡sh⊆ Der(G) × Der(G) over derivations of G is defined as the

transitive and “context” closure of ∼sh, i.e., the least equivalence relation containing
∼sh and such that if ρ ≡sh ρ′ then ρ1ρρ2 ≡sh ρ1ρ

′ρ2, with sequential composition as
juxtaposition. The quotient set Der(G)/≡sh defines the set of concurrent derivations of
the system.

Example 2 (shift equivalence). Referring to the TAGTS in Fig. 1, consider the se-
quences in Fig. 2(a) and Fig. 2(b). They are shift equivalent since applications of
viewData and clearBill are independent and can be swapped. The graphs shown repre-
sent sample states of a hotel with only one room and one registered guest.

(a)

(b)

b
o

o
k

R
o
o

m

o
cc

u
p

y
R

o
o

m

u
p

d
a
te

B
il

l

v
ie

w
D

a
ta

cl
ea

rB
il

l

ch
ec

k
o

u
t

b
o

o
k

R
o
o

m

o
cc

u
p

y
R

o
o

m

v
ie

w
D

a
ta

u
p

d
a
te

B
il

l

cl
ea

rB
il

l

ch
ec

k
o

u
t

Fig. 2: Two shift equivalent derivations

3 Observational Semantics

Based on rule signatures equipping rule names with parameter declarations, in this sec-
tion we introduce a notion of observation on transformation steps. Sequences of such
observations will be the basis for the definition of equivalence classes (traces) as obser-
vational semantics of a graph transformation system.

Definition 3 (TAGTS with rule signatures). A typed attributed graph transformation
system with rule signatures is a tuple G = (ATG, P, X, π) where

6 Tamim Ahmed Khan et al.

– ATG is an attributed type graph,
– P is a countable set of rule names,
– X is an S -indexed family (Xs)s∈S of sets of variables,
– π : P −→ Rules(ATG, X) × X∗ assigns each rule name a span sp and a list of

formal parameter declarations (x1 : s1, . . . , xn : sn) were xi ∈ Xsi for 1 ≤ i ≤ n.

For π(p) = 〈sp, (x1 : s1, . . . , xn : sn)〉 we also write p(x1 : s1, x2 : s2, . . . , xn : sn) ∈ G.
The set of all these rule signatures S ig(G) is called the signature of G.

As sp is attributed over TΣ(X), rule parameters xi ∈ Xsi are taken from the set of vari-
ables used in attribute expressions. Hence, actual parameters will not refer to nodes
or edges, but only to attribute values in the graph. Since the algebra part of attributed
graphs is preserved, actual parameters have a global name space across transformations.

Example 3 (rule signatures). For the system in Fig. 1, the rule signatures shown below
are based on data sorts S = {int, boolean, string}.

– bookRoom(room_no:int, guest_name:string)
– occupyRoom(room_no:int, guest_name:string, bill_no:int)
– clearBill(bill_no:int)
– checkout(room_no:int, guest_name:string, bill_no:int)
– updateBill(bill_no:int)
– viewData(room_no:int)

The signatures’ purpose is to provide labels of transformations as observations. Below
we define the label alphabet, then the observations associated with direct derivations.

Definition 4 (labels). Given a rule p : L ← K → R with signature p(x1 : s1, . . . , xn :
sn) and a Σ-algebra D, we denote by p(D) the set of all rule labels p(a1, . . . , an) where
ai ∈ Dsi . The label alphabet LS ig(G),D for a system G is defined as the union over all rule
labels

⋃
p∈P p(D). If D is understood from the context, we just write LS ig(G).

The (usually infinite) alphabet of labels LS ig(G) consists of all possible instances of rule
signatures, replacing their formal parameters by values from the algebra D. Labels in
LS ig(G) may be interpreted as observations of direct derivations, where the instantiation
is given by the algebra component of the matches. Let L∗S ig(G) denote the Kleene closure
over the label alphabet, providing the set of all finite sequences of labels.

Definition 5 (observations from derivations). Let G
p, m
=⇒ H be a direct derivation of a

T AGTS G with algebra component D. The observation function δ : Der(G) → L∗S ig(G)

is defined on direct derivations by δ(G
p, m
=⇒ H) = 〈p(a1, a2, . . . , an)〉 if p’s signature is

p(x1 : s1, . . . , xn : sn) with ai = m(xi). Here 〈p(a1, a2, . . . , an)〉 denotes the one-element
sequence. The observation function freely extends to derivations of arbitrary lengths,
yielding sequences of labels.

This definition describes the observational semantics of TAGTS via sequences of labels
produced by its derivations. We have to ensure that labels carry enough information to
determine matches and co-matches of transformations up to additional context. This is
expressed as a property of the observation map δ.

Lecture Notes in Computer Science 7

Definition 6 (faithfulness). For a DPO diagram d = (dL, dK , dR), its attribute-
preserving image factorisation i ◦ e is given by triples of morphisms e = (eL : L →
G′, eK : K → D′, eR : R → H′) and i = (iG : G′ → G, iD : D′ → D, iH : H′ → H)
such that, G′ is the smallest subgraph of G with functional attributes containing dL(L),
with iG : G′ → G the corresponding inclusion and eL the composition of the canonical
epimorphism from L to dL(L) with the inclusion of dL(L) into G′. Morphisms eK , iD and
eR, iH are defined analogously.

The observation function δ is faithful if for all direct derivations ρ1 = G1
p,d1
=⇒ H1

and ρ2 = G2
p,d2
=⇒ H2, δ(ρ1) = δ(ρ2) implies that the image factorisations of d1 and d2

are isomorphic, that is, there are isomorphisms kG : G′1 → G′2, kD : D′1 → D′2, kH :
H′1 → H′2 such that all resulting diagrams commute. In the following we will assume
observation function δ to be faithful.

Lemma 1 (attribute-preserving image factorisation). The triples e = (eL : L →
G′, eK : K → D′, eR : R→ H′) and i = (iG : G′ → G, iD : D′ → D, iH : H′ → H) form
double pushout diagrams.

Proof. Follows by pushout decomposition properties and preservation of epis by
pushouts (both true in all categories) and preservation of monos by pushouts (true in
graph-like, adhesive categories such as ours).

The faithfulness condition is satisfied, for example, if each rule signature lists all the
elements of its left-and right-hand side as parameters, thus specifying completely the
embedding of the rule into graphs G and H. In most practical cases, however, parameters
will only need to identify some anchor elements, which will then determine the other
elements in the match and co-match. For example, a Bill will always point to a unique
client, so by identifying the bill we implicitly know the client as well.

To derive an observational concurrent semantics, the following definition lifts weak
dependency and conflict relations to the level of labels. The relations are essentially
those of asymmetric event structures [7]. The asymmetry arises from the interplay of
deletion and preservation, which is specific to rewriting approaches with explicit read
access to resources, such as graph transformation or contextual Petri nets.

R1

m∗1 ��

K1
r1oo l1 //

k1 ��

L1

m1
??

��?
? k

&&

L2

m2
��
����

K2
l2oo r2 //

k2��

R2

m∗2��
H1 D1

l∗1

oo
r∗1

// G D2
l∗2

oo
r∗2

// H2

L1

m1
��

K1
ool1oo // r1 //

k1
��

R1

m∗1

AA

 AA

L2

m2
}}

~~}}
j

ww

K2
ool2oo // r2 //

k2
��

R2

m∗2��
G0 D1

l∗1

oo
r∗1

// G1 D2
l∗2

oo
r∗2

// G2

Fig. 3: Asymmetric conflicts and dependencies

8 Tamim Ahmed Khan et al.

Definition 7 (asymmetric dependencies and conflicts). Two labels l1 and l2 are in
(asymmetric) conflict, written l1 ↗ l2, iff there exist transformations ρ1 = (G

p1,m1
=⇒ H1)

and ρ2 = (G
p2,m2
=⇒ H2) such that li = δ(ρi) and ρ2 disables ρ1, i.e., in the upper diagram

in Fig. 3 there exist no k : L1 → D2 such that m1 = l∗2 ◦ k. Two labels l1 and l2 are in

(asymmetric) dependency, l1 ≺ l2, iff there exist transformations ρ1 = (G0
p1,m1
=⇒ G1) and

ρ2 = (G1
p2,m2
=⇒ G2) such that li = δ(ρi) and ρ2 requires ρ1, i.e., in the lower diagram in

Fig. 3 there exist no j : L2 → D1 such that m2 = r∗1 ◦ j. Labels l1 and l2 are independent,
l1 | l2, iff they are unrelated by↗ and ≺.

Due to faithfulness, dependencies and conflicts of transformations are captured pre-
cisely by the corresponding relations on labels. That means, we can replace a statement
such as l1 ↗ l2, iff there exist transformations ρ1, ρ2 . . . (as in Def. 7) by one of the
form l1 ↗ l2, iff for all transformations ρ1, ρ2 . . . as below.

Lemma 2. (invariance of dependency) For suitable transformations ρ1 and ρ2, l1 ≺ l2
(l1 ↗ l2) iff for all ρ1 and ρ2 with δ(ρi) = li, ρ2 requires ρ1 (ρ2 disables ρ1).

Proof. Recall from Def. 1 that all our graphs have keys preserved by transformations.
We show for all ρ1 and ρ2, σ1 and σ2 that, if δ(ρi) = li = δ(σi) for i = 1, 2, then ρ2
requires ρ1 if and only if σ2 requires σ1. By definition, l1 ≺ l2 iff one such depen-
dent pair exists. The proof for ρ2 disables ρ1 is analogous. Consider transformations

ρ1ρ2 = G0
p1,d1
=⇒ G1

p2,d2
=⇒ G2 and σ1σ2 = H0

p1,e1
=⇒ H1

p2,e2
=⇒ H2 in Fig. 4, where DPO

diagrams d1, d2 and e1, e2 are decomposed by attribute-preserving image factorisation.

By Lemma 1 these yield transformations ρ′1 = G′0
p1,d′1
=⇒ G′1, ρ

∗
2 = G∗1

p2,d∗2
=⇒ G∗2 and

σ′1 = H′0
p1,e′1
=⇒ H′1, σ

∗
2 = H∗1

p2,e∗2
=⇒ H∗2. By faithfulness there exist isomorphisms iX for

X ∈ {G′0,D
′
1,G

′
1,G

∗
1,D

∗
2,G

∗
2} such that all resulting diagrams commute. These isomor-

phisms are unique because, e.g., G′0 → G0 and H′0 → H0 are inclusion and thus iden-
tities on the algebra part, which means that in order to commute with these inclusions
iG′0 : G′0 → H′0 has to be an identity on the data algebra, too. Since all graphs have
functional attributes, the graphical part of the morphism is determined by the algebra
part, i.e., there is only one such morphism between G′0 and H′0.

Forming G′1 ← G0
1 → G∗1 as pullback of G′1 → G1 ← G∗1 and then G′1 → Ḡ1 ← G∗1

as pushout of G′1 ← G0
1 → G∗1, we obtain Ḡ1 → G1 by the pushout property of Ḡ1.

Similarly, H̄1 is constructed on the right-hand side with induced morphism H̄1 → H1.

By the pushout property of Ḡ1, if G0
1 → G′1

iG′1
−→ H′1 → H̄1 = G0

1 → G∗1
iG∗1
−→ H∗1 → H̄1,

it follows that there is a unique iḠ1
: Ḡ1 → H̄1 commuting the resulting diagrams. The

equation holds because all graphs involved use the same data algebra and all morphisms
preserve it, so there is only one morphism from G0

1 to H̄1 commuting the diagram. From
iG′1 , iG∗1 isos it follows that iḠ1

is an isomorphism, too.
We proceed to decompose the DPOs in the four corners of the diagrams, obtaining,

e.g., D̄1 and Ḡ0 in the top left by decomposition of the DPO between G′1,D
′
1,G

′
0 and

G1,D1,G0 along G′1 → Ḡ1 → G1. This results in isomorphic transformations Ḡ0
p1,d̄1
=⇒

Ḡ1
p2,d̄2
=⇒ Ḡ2 and H̄0

p1,ē1
=⇒ H̄1

p2,ē2
=⇒ H̄2.

Lecture Notes in Computer Science 9

Now, ρ2 requires ρ1 iff σ2 requires σ1 because given j : L2 → D1 such that L2
j
−→

D1 → G1 = L2 → G1, we construct k : L2 → E1 and vice versa using the fact that, as a
pushout with injective morphisms, D̄1,D1, Ḡ1,G1 is also a pullback. Using the universal

property, j factorises as L2
j′
−→ D̄1

j̄
−→. We define k as L2

j′
−→ D̄1

iD̄1
−→ Ē1 → E1 and

commutativity L2
k
−→ E1 → H1 = L2 → H1 follows by diagram chasing.

G0 G′0
tt

~~~~
~~

~

iG′0
,,L1

oo // H′0

  A
AA

AA
** H0

D1

OO

��

Ḡ0 11

``@@@@@
D′1

tt

~~~~
~~

~

iD′1
,,

OO

��

K1
oo

OO

��

// E′1

 A
AA

AA

OO

��

**
H̄0

>>~~~~~
E1

OO

��

D̄1 11

``@@@@@
OO

��

G′1

wwooooooooooo

iG′1
,,

��~~
~~

~
R1

oo // H′1

''OOOOOOOOOOO

��@
@@

@@
Ē1

>>~~~~~

OO

��
G1 Ḡ1
oo iḠ1 11G0

1

__@@@@@

��~~
~~

~
H0

1

>>~~~~~

 @
@@

@@
H̄1

// H1

D̄2 11

~~}}
}}

}

OO

��

G∗1

ggOOOOOOOOOOO
iG∗1

,,

__@@@@@
L2

oo // H∗1

77oooooooooo

??~~~~~
Ē2

 A
AA

AA

OO

��
D2

OO

��

Ḡ2 11

~~}}
}}

}
D∗2jj

``AAAAA iD∗2
,,

OO

��

K2
oo

OO

��

// E∗2

>>}}}}}

OO

��

44H̄2

 A
AA

AA
E2

OO

��
G2 G∗2jj

``AAAAA
iG∗2 22R2

oo // H∗2

>>}}}}}
44 H2

Fig. 4: Invariance of dependencies between transformations with identical labels

Asymmetric conflict l1 ↗ l2 ensures that, if l1, l2 occur in the same sequence, then
l1 must precede l2. Asymmetric dependency means that if l2 is in a sequence and l1 ≺ l2,
then l1 occurs in the sequence before l2. These considerations can be used to define the
legal traces over an alphabet equipped with these two relations.

Definition 8 (traces of a TAGTS). We define L◦S ig(G) ⊆ L∗S ig(G) as the set of all se-
quences s ∈ L∗S ig(G) respecting dependencies and conflicts, i.e., for s = l1 . . . ln and
i, j, k ∈ {1...n}

– if i , j and li ↗ l j then i < j
– if there exists l ∈ LS ig(G) with l ≺ li then l = lk for some k < i.

The relation $ ⊆ L◦S ig(G) × L◦S ig(G) is the least equivalence relation such that li | l j

implies sx li l j sy $ sx l j li sy for all li, l j ∈ LS ig(G) and sx, sy ∈ L◦S ig(G). The set Traces(G)
is the quotient of L◦S ig(G) under this equivalence.

Example 4 (traces of G). Using the rule signatures in Example 3 we obtain labels by
instantiating formal parameters by possible data values. As the set of all labels is usually
infinite due to infinite data types, in this example we limit ourselves to a small subset
sufficient to label the transformations in Fig. 2. For example, clearBill(bill_no : int) is
instantiated by clearBill(1023), replacing the variable bill_no : int by the value 1023.

10 Tamim Ahmed Khan et al.

Let us analyse more closely the weak conflicts and dependencies in the derivations
of Fig. 2. We have represented conflicts and dependencies between these labels in Ta-
ble 1. For example we find a dependency

bookRoom(1, ”Tim”) ≺ occupyRoom(1, ”Tim”, 1023).

Notice the relation between the parameters for room number and client name, which
determines the overlap of the transformations denoted by these labels. Similarly, there
exists a conflict

updateBill(1023)↗ checkout(1, ”Tim”, 1023),

i.e., updateBill changes the unpaid amount in the BillData object while
checkout deletes the object. If we only consider sequences that respect

First/Second bookRoom occupyRoom clearBill checkout updateBill viewData
(↓) / (→) (1, ”Tim”) (1, ”Tim”, 1023) (1023) (1, ”Tim”, 1023) (1023) (1)

bookRoom(1, ”Tim”) ↗ ≺ ≺ ≺

occupyRoom(1, ”Tim”, 1023) ↗ ≺ ≺ ≺ ≺

clearBill(1023) ≺ | |

checkout(1, ”Tim”, 1023) ≺ ↗ ↗ ↗ ↗

updateBill(1023) | ↗ ≺ | |

viewData(1) | ≺ | |

Table 1: Conflicts↗ and dependencies ≺ between labels

conflicts and dependencies, we arrive at the filtered set L◦S ig(G) ⊆ L∗S ig(G).
We partition this set into traces by building equivalence classes. Con-
sider sample sequence s = bookRoom(1, ”Tim”); occupyRoom(1, ”Tim”,
1023); updateBill(1023); viewData(1); clearBill(1023); checkout(1, ”Tim”, 1023).
Labels viewData(1) and clear Bill(1023) are unrelated, so they can occur in any order.
Therefore, the sequence obtained from the above by swapping these two steps is
$-equivalent to s and therefore falls in the same trace.

As shown in the example we are able to lift information about dependencies and con-
flicts to the level of labels and use this to derive concurrent traces as an observational
semantics for TAGTS with rule signatures. As a consequence of faithfulness, the obser-
vation function δ preserves information about dependencies between steps. It is there-
fore possible to relate equivalence classes in Der(G)/≡sh to traces in Traces(G).

Proposition 1 (faithfulness). For any two derivations sequences s1, s2 ∈ Der(G),
s1 ≡sh s2 iff δ(s1) $ δ(s2). That means, δ extends to δ : Der(G)/≡sh → Traces(G),
establishing a one-to-one correspondence given by δ([s]≡sh) = [δ(s)]$.

Proof. We show that derivation steps ρ1ρ2 are sequentially independent iff δ(ρ1)|δ(ρ2).
First, steps ρ1ρ2 are sequentially independent iff(1) ρ2 does not require ρ1 and the trans-
formation ρ′2, obtained by anticipating ρ2, does not disables ρ1. By Def. 7 and Lemma 2
this is equivalent to saying that δ(ρ1) ⊀ δ(ρ2) and δ(ρ1) 6↗ δ(ρ2).

To see equivalence (1), consider that sequential (in)dependence is expressed in
terms of existence or otherwise of morphisms i : L1 → D2 such that m1 = r∗2 ◦ i
(∃i) and j : L2 → D1 such that m2 = r∗1 ◦ j (∃ j). If ∃i ∧ ∃ j, we have independence. In
the case of a sequential dependency, there are three cases. If ∃i∧@ j or @i∧@ j, by Def. 7

Lecture Notes in Computer Science 11

l1 ≺ l2. Now assume @i ∧ ∃ j, i.e., the steps are in deliver-delete dependency, where the
1st produces or uses an item which is deleted by the 2nd (@i), but the 2nd does not use
anything created by the 1st (∃ j). Put together, this means we are faced with a use-delete

dependency. Defining match m′2 = l∗1 ◦ j : L2 → G leads to a transformation G
p2,m′2
=⇒ H′2

where the use-delete dependency on G
p1,m1
=⇒ H1

p2,m2
=⇒ H2 translates into a use-delete

dependency between G
p1,m1
=⇒ H1 and G

p2,m′2
=⇒ H′2. Since both H1

p2,m2
=⇒ H2 and G

p2,m′2
=⇒ H′2

generate the same label l2, this implies that l1 ↗ l2. The proof for ≺ is analogous.

4 Preserving Observable Behaviour

The definition of abstract conflicts and dependencies not only allows us to filter se-
quences and partition them into traces, but can also be useful in the analysis of ob-
servable behaviour under evolution of the system. Evolution scenarios such as internal
refactorings or addition of new features should preserve not only the interface, but the
observable behaviour in the sense that the observed sequences of the old system can be
mapped to those of the new one. Moreover, this mapping should extend to traces, i.e.,
respect the equivalence relation on sequences. We start by defining a mapping between
the signatures of system.

Definition 9 (label-preserving morphism). Let G = (ATG, P, X, π) and G′ =

(ATG′, P′, X, π′) be TAGTS over the same data signature Σ = (S , OP). A label-
preserving morphism from f : G → G′ is a mapping of rule names f : P → P′

preserving rule signatures, i.e., for all p ∈ P, π(p) = 〈sp, (x1 : s1, . . . , xn : sn)〉 implies
π′(f (p)) = 〈sp′, (x1 : s1, . . . , xn : sn)〉.

Notice that we do not impose any condition on the relation of type graphs or rule spans.
Not surprisingly, therefore this mapping will not preserve or reflect behaviour, but it
will allow us to translate labels.

Proposition 2 (translating labels). Given a label-preserving morphism f : G → G′

and an algebra homomorphism fD : D −→ D′, a mapping of labels fL : LS ig(G),D →

L
′

S ig(G),D′ is given by p(a1, . . . , an) 7→ fP(p)(fD(a1), . . . , fD(an)).

Proof. By Def. 9, fP(p)(fD(a1), . . . , fD(an)) is a label in L
′

S ig(G),D′ because fD preserves
sorts.

In order to study the impact of evolution on the observable behaviour, we relate the
traces of the new and the old system based on the free extension f ∗L of fL to sequences.

Definition 10 (induced relation between traces). We define !⊆ Traces(G) ×
Traces(G′) by t ! t′ if and only if there exist sequences of observations s ∈ L◦S ig(G)
and s′ ∈ L◦S ig(G′) such that t = [s]$, t′ = [s′]$′ and f ∗L (s) = s′.

The relation! records whatever traces are preserved, but it could be partial or empty,
merge or split traces. How can we guarantee preservation of behaviour at the interface
level? Existence and equivalence of sequences are based on dependencies and conflicts

12 Tamim Ahmed Khan et al.

between labels. If we introduce new conflicts or dependencies, we will potentially make
illegal existing sequences or differentiate between sequences that previously have been
equivalent. In order to preserve observable behaviour in the sense of making! a total
function, dependencies and conflicts have to be reflected. We first define the various
preservation and reflection properties that we will require and then state this observation
formally.

Definition 11 (reflection/preservation properties). Given a label-preserving mor-
phism f : G → G′ and its induced mapping of labels fL : LS ig(G) → L′S ig(G′), f

– preserves conflicts iff for all l1, l2 ∈ LS ig(G), l1 ↗ l2 implies fL(l1)↗ fL(l2)
– reflects conflicts iff for all l1, l2 ∈ LS ig(G), fL(l1)↗ fL(l2) implies l1 ↗ l2.
– preserves dependencies iff for all l1, l2 ∈ LS ig(G), l1 ≺ l2 implies fL(l1) ≺ fL(l2)
– reflects dependencies iff for all l1, l2 ∈ LS ig(G), fL(l1) ≺ fL(l2) implies l1 ≺ l2.

Theorem 1 (preservation of observable traces). If fL reflects dependencies and con-
flicts, then relation! is a total function!: Traces(G) → Traces(G′). If, moreover,
fL preserves dependencies and f : P→ P′ is injective, then function! is injective.

Proof. We have to prove that for traces t1, t2 ∈ Traces(G) and t′1, t
′
2 ∈ Traces(G′)

– ! is a function, i.e., t1 ! t′1 and t1 ! t′2 implies t′1 = t′2
– ! is total, i.e., for all t1 there exists t′1 s.t. t1 ! t′1
– ! is injective, i.e., t1 ! t′1 and t2 ! t′1 implies t1 = t2

Let’s consider the first item above.

1. If fL reflects dependencies and conflicts then, for all sequences s ∈ L◦S ig(G) and
labels l1, l2 in s, l1|l2 implies fL(l1)| fL(l2), i.e., fL preserves independence.

2. If fL reflects independence, s1 $ s2 implies that f ∗L (s1) $ f ∗L (s2), i.e., f ∗L pre-
serves $. To see that this is true, assume two strings s1, s2 ∈ L◦S ig(G). If they are
$-equivalent, one is a permutation of the other by exchanging independent labels
only. Since fL preserves independence of labels, the chain of permutations leading
from s1 to s2 can be simulated to obtain a corresponding chain linking f ∗L (s1) and
f ∗L (s2), so that f ∗L (s1) $ f ∗L (s2).

3. From the definition of! it follows that, if t1 ! t2 and t1 ! t3, then there exists
s1, s2 ∈ t1 such that f ∗L (s1) = s′1 ∈ t2 and f ∗L (s2) = s′2 ∈ t3. By definition of $,
s1 $ s2. By 2 above, s′1 $ s′2 and, therefore, t2 = t3.

To see that relation! is total we have to make sure that f ∗L is a total function, that is, for
each sequence s ∈ L◦S ig(G) there exists s′ ∈ L◦S ig(G′) such that f ∗L (s) = s′. It is clear that f ∗L
is total as a function L∗S ig(G) → L∗S ig(G′). For a sequence s ∈ L∗S ig(G) to be in L◦S ig(G) it has
to respect the dependencies and conflicts of G. Since any dependencies and conflicts in
G′ are reflected in G, s ∈ L◦S ig(G) implies f ∗L (s) ∈ L◦S ig(G′ . For injectivity we have

1. If fL preserves dependencies then f ∗L (s1) $′ f ∗L (s2) implies s1 $ s2, i.e., f ∗L reflects
$′. To see this, we show that s1 6$ s2 implies f ∗L (s1) 6$ f ∗L (s2).
(a) If s1 and s2 have different lengths, f ∗L (s1) and f ∗L (s2) will because f ∗L preserves

the lengths of sequences.

Lecture Notes in Computer Science 13

(b) If s1 and s2 contain different labels, they are still different under fL and so f ∗L
because f is injective on rule names. *****

(c) If s1 and s2 have the same lengths and contain the same labels, s1 6$ s2 only if
s2 is a permutation of s1 reversing two dependent symbols. Since fL preserves
dependencies, the same holds for f ∗L (s1) and f ∗L (s2).

2. If f ∗L reflects $ then! is injective, because if t1 ! t3 and t2 ! t3, there exists
s1 ∈ t1 s.t. f ∗L (s1) = s′1 ∈ t3 and s2 ∈ t2 s.t. f ∗L (s2) = s′2 ∈ t3. By definition of $,
s′1 $ s′2. By 2 above, s1 $ s2 and, therefore, t1 = t2.

Example 5 (preservation of observable behaviour). Considering again the example dis-
cussed in Fig. 1, we present two changes to the model. The first is to reverse the direc-
tion of the associations highlighted by the small circles on the type graph shown in the
figure below. The second is to record the number of visits of each customer to the hotel,
to introduce a promotional 10% discount on all payments of every 10th visit. This is
achieved by an update to the occupyRoom rule to count visits, and a change to clearBill
to distinguish the cases where the bill is paid with or without discount. Note the use of
a conditional expression for calculating the value of the paid attribute.

Rule: clearBill

Type Graph

Rule: occupyRoom

Obviously, there is no total morphism between the new type graph and the original
one (in neither direction) because of the reversal of edges, so this evolution scenario
would not fall into any of the established notions of morphism between graph transfor-
mation systems designed to preserve or reflect derivations. None of the existing depen-
dencies/conflicts are dropped, nor are new ones added. Hence all dependencies/conflicts
are reflected, in which case Theorem 1 implies that traces are preserved.

Let us conclude by discussing the relation with regression testing, i.e., the execution
of a set of test cases on each new version of the system to avoid a deterioration of
existing functionality. To save time and effort it is advisable to reuse existing test cases
and concentrate tests on features which have changed [8]. Given a test case, it can be

14 Tamim Ahmed Khan et al.

classified as required, reusable or obsolete [9]. In our example above, the model-level
evolution preserves traces. Therefore, all test cases are reusable (none are obsolete), and
the tests should produce the same observable behaviour, provided individual rules are
implemented correctly.

5 Related Work

We discuss a couple of approaches to behaviour-preserving evolution as well as a re-
lated line of work characterising derivations through analysis of dependencies. As men-
tioned in the Introduction, semantics-preserving morphisms between graph transforma-
tion systems have been studied for a number of years, starting with [1, 2]. The common
idea is to relate type graphs and rules of the system by means of morphisms such that
both instance graphs and transformations can be translated from one system to the other.
Approaches vary for the direction and level of generality of these relations (see [10] for
an analysis of possible combinations), but they all constrain the relation between (what
we consider) the implementations of the systems. Instead, we do not consider directly
the relation between type graphs and rules, but only between dependencies and conflicts
over labels of the two versions of the system.

Evolution at the level of observable behaviour has been studied in [11] based on
rewriting with borrowed context [12]. In this approach, labels are derived as extensions
of given graphs required to apply a rule. Thus they have a different structure than our
observations, which are based on rule names and formal parameters, but this may be a
matter of representation. A more detailed analysis would be in order to see if we can
model communication with a component in such a way that borrowed context provides
an observational semantics fit for testing. More significantly, [11] addresses the refac-
toring of graphs representing diagrams whose operational semantics is specified by a
fixed set of rules. That means, it is only this graph that is being evolved, not the rules
themselves. Technically, unlike [13], our approach is based on trace theory [14] rather
than labelled transition systems and bisimulation. We have analysed conflicts and de-
pendencies to provide a mechanism by which we can filter out invalid traces at the level
of observations. Work in [15] has used conflicts and dependencies to define conditions
for the (non-)existence of actual derivations. Our approach is different for its focus on
observable behaviour, but shares some of the intuitions and techniques.

6 Conclusion

We have taken a view of typed attributed graph transformation systems as components
encapsulating their type graphs and rules and communicating with the outside world
only through interfaces defined by rule signatures. Based on such a model, we have
investigated a concurrent observational semantics based on traces defined as equiva-
lence classes of sequences of observations. Traces can be extracted from the standard
concurrent semantics of shift-equivalence classes, but they can also be characterised by
conflict and dependency relations defined at the level of observations. This model is
used to study behaviour-preserving evolution of systems in terms of the preservation
and reflection of dependencies and conflicts. It turns out that adding dependencies and

Lecture Notes in Computer Science 15

conflicts results in a refinement, reducing the set of possible sequences of observations
as well as differentiating their equivalence. We are using these results to develop and
substantiate formally a method for regression testing, where traces represent equiva-
lence classes of test cases that have to be generated and filtered, and that can be carried
over to a new version of the system. We also intend to study an extension to the case of
rules with application conditions.

References

1. Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Padberg, J.: The category of typed graph
grammars and their adjunction with categories of derivations. In: 5th Int. Workshop on
Graph Grammars and their Application to Computer Science, Williamsburg ’94, LNCS 1073,
Springer-Verlag (1996) 56–74

2. Ribeiro, L.: Parallel Composition and Unfolding Semantics of Graph Grammars. PhD thesis,
TU Berlin (1996)

3. Heckel, R., Corradini, A., Ehrig, H., Löwe, M.: Horizontal and vertical structuring of typed
graph transformation systems. Mathematical Structures in Computer Science 6(6) (1996)
613–648

4. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the De-
sign of Existing Code (Addison-Wesley Object Technology Series). Addison-Wesley Pro-
fessional (July 1999)

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation (Monographs in Theoretical Computer Science. An EATCS Series). Springer (2006)

6. AGG: AGG - Attributed Graph Grammar System Environment. http://tfs.cs.
tu-berlin.de/agg (2007)

7. Baldan, P., Corradini, A., Montanari, U.: Contextual petri nets, asymmetric event structures,
and processes. Information and Computation 171(1) (2001) 1 – 49

8. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE Trans-
actions on Software Engineering 22 (1996)

9. Leung, H., White, L.: Insights into regression testing [software testing]. In: Software Main-
tenance, 1989., Proceedings., Conference on. (Oct 1989) 60–69

10. Engels, G., Heckel, R., Cherchago, A.: Flexible interconnection of graph transformation
modules - a systematic approach. In Kreowski, H.J., Montanari, U., Orejas, F., Rozenberg,
G., Taentzer, G., eds.: Formal Methods in Software and System Modeling. LNCS, Springer-
Verlag (2005) 38–63

11. Rangel, G., Lambers, L., König, B., Ehrig, H., Baldan, P.: Behavior preservation in model
refactoring using DPO transformations with borrowed contexts. In: ICGT ’08: Proceedings
of the 4th international conference on Graph Transformations, Berlin, Heidelberg, Springer-
Verlag (2008) 242–256

12. Baldan, P., Ehrig, H., König, B.: Composition and decomposition of DPO transformations
with borrowed context. In: Proc. ICGT 2006. Volume 4178 of LNCS. (2006) 153–167

13. Rangel, G., König, B., Ehrig, H.: Bisimulation verification for the DPO approach with bor-
rowed contexts. In: Proc. GT-VMT 2007. Volume 6 of ECEASST. (2007)

14. Diekert, V., Rozenberg, G., eds.: The Book of Traces. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA (1995)

15. Lambers, L., Ehrig, H., Taentzer, G.: Sufficient criteria for applicability and non-applicability
of rule sequences. In: Proc. GT-VMT 2008. Volume 10 of ECEASST. (2008)

