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Abstract

The network discovery (verification) problem asks for a minimum subset Q ⊆ V of queries in an
undirected graph G = (V,E) such that these queries discover all edges and non-edges of the graph. This
is motivated by the common approach of combining local measurements in order to obtain maps of the
Internet or other dynamically growing networks. In the distance query model, a query at node q returns
the distances from q to all other nodes in the graph. We describe how the existence of an individual
edge or non-edge in G can be deduced by potentially combining the results of several queries. This
leads to a characterization of when a set of queries Q “discovers” the graph G. In the on-line network
discovery problem, the graph is initially unknown, and the algorithm has to select queries one by one
based only on the results of the previous ones. We study the problem using competitive analysis and
give a randomized on-line algorithm with competitive ratio O(

√
n log n) for graphs on n nodes. We also

show lower bounds Ω(
√

n) and Ω(log n) on competitive ratios of deterministic on-line algorithms and
randomized on-line algorithms, respectively. In the off-line network verification problem, the graph is
known in the beginning and the problem asks for a minimum number of queries to verify all edges and
non-edges. We show that the problem is NP-hard and present an O(log n)-approximation algorithm.

1 Introduction

The recent growing interest in decentralized networks (such as the Internet or sensor networks) introduced
many new algorithmic aspects different from those in static, centrally planned networks. A key difference is
that there is no central authority which holds a map of such a network. Obtaining an accurate map, usually
modeled as a graph, is generally not easy due to the network’s dynamic growth process. That is, before
the structure of a network can be analyzed and interpreted, one needs to measure the network in order to
discover its nodes and links.

A common approach to obtain a map of a network, or at least a good approximation, is to make some
local measurements—which could be seen as local views of the network from selected nodes (also referred
to as vantage points)—and to combine these in an appropriate manner. There is an extensive body of related
work studying various aspects of this approach, confer e.g. [16, 10, 18, 13, 14, 11, 3, 20, 9, 1, 7, 8].

As measuring at a node is usually very costly (in terms of time, energy consumption and money), the
question of minimizing the number of such measurements arises naturally. Nevertheless, it was proposed
only recently [4] to study this problem from a combinatorial optimization point of view.

Beerliova et al. [4] introduce the network discovery and verification problems, which ask to find a map
of a network with a small number of queries (measurements). In the on-line network discovery problem only
the nodes V of a graph G are known in the beginning. An algorithm can make queries at nodes of the graph
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and each query returns a local view of the graph. The task of the algorithm is to choose a minimum subset
Q ⊆ V of queries, such that the whole graph is discovered, i.e., all edges and non-edges. The network
verification problem is the off-line version of the problem. The whole graph is known to the algorithm and
the task is to compute a minimum set of queries Q which verify all edges and non-edges. One possible
motivation for the off-line version is to be able to check with as few measurements as possible that a given
map is still correct.

Note that in order to discover a graph it might seem sufficient to discover only the edges of the graph.
However, especially in view of the on-line setting it is also necessary to have a proof (i.e., discover) for un-
connected node-pairs that there actually is no edge between them. An on-line algorithm can only know that
it has finished discovering the graph when both edges and non-edges have been discovered. Taking both into
account also makes it possible to in some sense quantify how much knowledge about the network is revealed
by a given set of queries. Therefore, this small observation could also be helpful when e.g. investigating the
quality of previously published maps of the Internet.

In [4], a very strong query model was used: a query at a node v reveals all edges and non-edges whose
endpoints have a different distance from v. That query model was motivated by the consideration that in
certain scenarios, it is possible to identify all edges on shortest paths between the query node and all other
nodes. In this paper, we study the network discovery problem and network verification problem in the model
where a query q ∈ V gives all distances from q to any other node of the investigated graph G. We refer to
the on-line problem as DIST–ALL–DISCOVERY and to the off-line problem as DIST–ALL–VERIFICATION.
This distance query model is much weaker than the model used in [4], in the sense that typically a query
reveals much less information about the network.

There are several reasons that motivate us to study the distance query model. First, in many networks
it is realistically possible to obtain the distances between a node and all other nodes, while it is difficult
or impossible to obtain information about edges or non-edges that are far away from the query node. For
example, so-called distance-vector routing protocols work in such a way that each node informs its neighbors
about upper bounds on the distances to all other nodes until these values converge; in the end, the routing
table at a node contains the distances to all other nodes, and a query in our model would correspond to
reading out the routing table. Another scenario is the discovery of the topology of peer-to-peer networks
such as Gnutella [6]. There, with the Ping/Pong protocol it is possible to use a Ping command to ask all
nodes within distance k (the TTL parameter of the Ping) to respond to the sender [2]. Repeated Pings could
be used to determine the distances to all other nodes. Real peer-to-peer networks, however, are often so large
that it becomes prohibitive to send Pings for larger values of k, and there are also many other aspects that
make the actual discovery of the topology of a Gnutella network very difficult [2]. Nevertheless, we believe
that our model is a good starting point for studying fundamental issues in the discovery of peer-to-peer
networks or other networks that support Ping/Pong-like protocols.

Related Work. There are several ongoing large scale efforts to collect data representing local views of the
Internet; here we will only mention two. The most prominent one is probably the RouteViews project [18] by
the University of Oregon. It collects data from a large number of so-called border gateway protocol routers.
Essentially for each router—which can be seen as a node in the Internet graph—the list of paths it knows (to
all other nodes in the network) is retrieved. More recently, and due to good publicity very successfully, the
DIMES project [10] has started collecting data with the help of a volunteer community, similar in spirit to
SETI@Home [19]. Users can download a client which collects paths in the Internet by executing successive
traceroute commands. A central server can direct each client individually by specifying which routes to
investigate.

Data obtained by these or similar projects has been used in heuristics to obtain maps of the Internet,
basically by simply overlaying possible paths found by the respective project, see e.g. [14, 18, 10, 16].
Another line of research aims at inferring from such local views the types of economic relationships between
nodes in the Internet graph, cf. [11, 20, 9].

Beerliova et al. [4] propose the general problem of network discovery (verification) and study it for the
“layered graph” query model: a query q ∈ V returns all edges and non-edges between nodes of different
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distances from q. They present an o(log n) inapproximability result for the off-line version and give a
randomized on-line algorithm with competitive ratio O(

√
n log n). The on-line algorithm presented in this

paper is based on a similar approach, but requires new ideas.
Network verification in the layered graph query model is closely related to the problem of finding the

metric dimension of a graph, which can be defined as the cardinality of a minimum subset of nodes Q ⊂ V
such that every node in the graph has a unique vector of distances to Q (see [12]). Such a minimum subset Q
is also called a basis of the graph and it is easy to see that this is the same as a minimum query set in the
layered graph query model. Khuller et al. [17] investigate the problem of finding such a basis (and thus
a minimum query set). They present an O(log n)-approximation algorithm and investigate special graph
classes. Cáceres et al. [5] study the metric dimension in Cartesian products of graphs and give many helpful
references, pointing out interesting connections to other closely related problems.

Our Results and Outline. In Section 2 we start with some basic definitions concerning network discovery
and verification in the distance query model. We then give a characterization of the queries that discover an
individual non-edge and the sets of queries that together discover an individual edge.1 These characteriza-
tions will be very helpful in the remainder of the paper.

In Section 3 we show lower bounds on the number of queries needed to discover or verify a graph, based
on the independence number α(G), clique number ω(G) and size of the edge-set of the graph, |E(G)|.

For DIST–ALL–VERIFICATION we present polynomial time algorithms for basic graph classes—chains,
cliques, trees, cycles, and hypercubes. For general graphs, the problem turns out to be NP-hard and an
O(log n)-approximation algorithm is presented; see Section 4.

For DIST–ALL–DISCOVERY we show in Section 5 that no deterministic on-line algorithm can be better
than O(

√
n)-competitive and no randomized on-line algorithm can be better than O(log n)-competitive.

Finally, we present our main result, a randomized on-line algorithm with competitive ratio O(
√

n log n).

2 Definitions and Preliminaries

Throughout this paper we assume graphs to be undirected and connected. For a given graph G = (V, E),
we denote the number of nodes by n = |V | and the number of edges by m = |E|. For two distinct nodes
u, v ∈ V , we say that {u, v} is an edge if {u, v} ∈ E and a non-edge if {u, v} /∈ E. The set of non-edges
is denoted by E. By G we denote the complement of G, i.e., G = (V, E).

A query is specified by a node v ∈ V and is called a query at v or simply the query v. In the distance
query model the answer of a query at v consists of the distances from v to every node of G. We refer to
sets of nodes with the same distance from v as layers. We use Li or simply layer i to refer to the layer of
nodes at distance i from the query node. By dG(u, v) we denote the distance from u to v in G. We may
omit the subscript G if it is clear from context to which graph the distance refers. Let DG(Q), for Q ⊆ V ,
be a collection of distance vectors, one vector dG(Q, v) for each node v ∈ V . The vector dG(Q, v) has
dimension |Q|, and each component gives the distance dG(q, v) of one of the (query) nodes q ∈ Q to v; the
i-th component corresponds to the i-th query node. Thus, we write DG(Q) 6= DG′(Q), for G′ = (V, E′),
if there exists at least one query q ∈ Q and a node v ∈ V such that dG(q, v) 6= dG′(q, v). Conversely,
DG(Q) = DG′(Q), if dG(q, v) = dG′(q, v) holds for all queries q ∈ Q and all nodes v ∈ V .

As opposed to the layered graph query model studied in [4], in the distance query model a query at node
v does not explicitly return edges or non-edges. We shall show, however, how the information about the
distances of nodes to (possibly a combination of several) queries can be utilized for discovering individual
edges or non-edges of the graph. But first we give a formal notion of what we mean by “discovering” a
graph in this model. Note that we use the two terms discover and verify to distinguish between the on-line
and the off-line setting, they are otherwise equivalent (and we sometimes use the word “discover” also in

1Note: At first sight it may seem that the only way to discover an edge in the distance query model is to query one of its incident
nodes. It turns out that the query model allows more intricate deductions and that also edges at a large distance from the query
nodes can be discovered. This will be explained in detail in Section 2.
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the off-line setting). I.e. the following definitions hold for both terms but for simplicity are stated only for
the network discovery setting.

Discovering a Graph. A query set Q ⊆ V for the graph G = (V, E) discovers the edge e ∈ E (discovers
the non-edge e ∈ E), if for all graphs G′ = (V, E′) with DG(Q) = DG′(Q) it must hold that e ∈ E ′

(e ∈ E′). Q ⊆ V discovers the graph G, if it discovers all edges and non-edges of G.

Equivalent Definition. Q discovers G implies that any graph G′ with DG(Q) = DG′(Q) must have
the same edges and non-edges as G, in other words: G′ = G. Conversely, if a query set Q for G yields
DG(Q) = DG′(Q) only for G′ = G and for no other graph, then Q discovers G (since it clearly can
discover each edge and non-edge individually).

This gives an equivalent definition: A query set Q ⊆ V discovers the graph G = (V, E), if for every
graph G′ = (V, E′) 6= G at least one of the resulting distances changes, i.e., DG(Q) 6= DG′(Q). Intuitively,
the queries Q which discover a graph G can distinguish it from any other graph G′ (sufficient and necessary
condition).

Characterizing the Queries Discovering a Non-Edge. If we look at a particular non-edge e ∈ E, there
exists a query q ∈ Q that confirms this non-edge to be in G:

Observation 1 For G = (V, E) the queries Q ⊆ V discover a non-edge {u, v} ∈ E if and only if there
exists a query q ∈ Q with |d(q, u) − d(q, v)| ≥ 2.

Proof. The implication “⇐” is easy to see: Clearly, if there is a query q such that |d(q, u) − d(q, v)| ≥ 2,
then {u, v} is a non-edge. To see the second implication “⇒”, assume that {u, v} is a non-edge and that
(for contradiction) every query node q gives |d(q, u)−d(q, v)| ≤ 1. We show that if {u, v} was an edge, the
distances returned by Q would not change. Indeed, u and v are either in the same layer or in two consecutive
layers of a query q. Therefore adding an edge {u, v} to G cannot decrease a distance from q to any other
node. �

For a query q and {u, v} ∈ E with |d(q, u)− d(q, v)| ≥ 2, we say that q discovers the non-edge {u, v}.
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Figure 1: Edge {v3, v4} of a graph (left) is discovered by the combination of queries at nodes v1 and v6; the
distances to the query node v1 (middle) and v6 (right) are depicted via layers of the graph

Characterizing the Sets of Queries Discovering an Edge. An edge may be discovered by a combination
of several queries (this is a major difference to the layered graph query model of [4], where the set of edges
and non-edges discovered by a set of queries is simply the union of the edges and non-edges discovered by
the individual queries). If a node w is in layer i + 1 of a query q, this shows that w must be adjacent to at
least one node from layer i. If layer i has more than one node, then in general it is not clear which node
from layer i is adjacent to w. Figure 1 shows an example of how a combination of two queries can discover
an edge even if each of the two queries alone does not discover the edge: The edge {v3, v4} is neither
discovered by a query at v1 nor by a query at v6 alone. The query at v1 reveals that v4 is connected to v2 or
to v3. The query at v6 identifies {v2, v4} as a non-edge. From these two facts one can deduce that v4 must
be connected to v3, i.e., {v3, v4} is an edge. This discussion is generalized by the following observation.
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Observation 2 For G = (V, E) the queries Q ⊆ V discover an edge {u, v} ∈ E if and only if there is a
query q ∈ Q with the following two properties:

(i) The nodes u and v are in consecutive layers of query q, say, u in the i-th layer Li and v in the (i+1)-th
layer Li+1, and Li \ {u} does not contain any neighbor of v.

(ii) The queries Q discover all non-edges between v and the nodes in Li \ {u}.

Proof. We again start with the easy direction “⇐”: From the result of query q in (i) one can deduce that
there must be an edge from some node in Li to v. From (ii) it follows that {u, v} is the only possibility for
such an edge.

For the implication “⇒”, we give a proof by contradiction. Assume that the query set Q discovers the
edge {u, v}. Observe that if (i) does not hold, then all queries yield the same results if {u, v} is removed
from G. To see this, consider an arbitrary query q′ ∈ Q. If u, v are originally at the same distance from q′,
they also will be at the same distance after removing {u, v}. If u, v are originally at different distances
from q′, say u ∈ Li′ and v ∈ Li′+1, we know that since (i) does not hold, v has another neighbor in
Li′ \{u}. Therefore, we know that v is in Li′+1 even after removing the edge {u, v}. So in this case as well,
DG(Q) does not change if we remove {u, v}. This contradicts our assumption that Q discovers {u, v}.

Thus, we can assume that (i) holds. For each q ∈ Q for which (i) holds, assume that (ii) does not hold.
Let q be a query for which (i) holds. Assume that u is in layer Li of that query and v is in layer Li+1. As (ii)
does not hold, there must be at least one non-edge eq = {u′, v} for some u′ ∈ Li that is not discovered by
Q. We modify the graph G as follows: We remove the edge {u, v}, and we add the edges eq for all q ∈ Q
for which (i) holds (these edges eq are not necessarily distinct). It is easy to see that the resulting graph G′

satisfies DG′(Q) = DG(Q), proving that Q does not discover the edge {u, v} in G, a contradiction. �

We say that a query for which (i) holds is a partial witness for the edge {u, v}. The word “partial”
indicates that the query alone is not necessarily sufficient to discover the edge; additional queries may be
necessary to discover the non-edges required by (ii).

We conclude that a set of queries discovers a graph G if and only if it discovers all non-edges and
contains a partial witness for every edge.

3 Lower bounds

In this section we show lower bounds on the number of queries needed to discover G. We relate this number
to the independence number α of the graph, to the clique number ω of the graph, and to the number of
edges m.

Lemma 1 For any graph G with independence number α and diameter diam > 2, at least logd diam

2
e (α)−1

queries are needed to discover G. If diam = 2, we need at least α − 1 queries.

Proof. Let A0 ⊆ V be an independent set of size α. Any query q splits the nodes into at most diam + 1
layers. In layer 0 there is only q itself. We merge each pair of consecutive layers 2i − 1 and 2i, for i ≥ 1,
so that we obtain at most β := d diam

2
e new layers L̃i (the last new layer may consist of a single original

layer). Query q does not discover any non-edge whose endpoints lie within the same new layer. At least
α − 1 nodes of the independent set A0 are distributed among the β new layers (one node of A0 may be the
query node, which is not in the new layers). Thus, there must be a new layer L̃i with at least (α − 1)/β
nodes from A0. Let A1 denote the set of these nodes. If (α − 1)/β > 1, then we need at least one more
query to discover the non-edges within A1. After the second query, there is a new layer containing at
least (|A1| − 1)/β ≥ ((α − 1)/β − 1)/β nodes from A1, and the argument can be repeated. Let αk, for
k ≥ 1, denote the size of the biggest subset of A0 for which the queries q1, . . . , qk do not discover any
non-edge. By the arguments above, we have αk ≥ ak, where a0 = α and ak =

ak−1−1

β
for k ≥ 1. We get

ak = α
βk − 1

βk − 1

βk−1 − . . . − 1

β
, i.e. ak = 1

βk (α − βk−1

β−1
) if β > 1 and ak = α − k if β = 1. If k queries
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discover G, we must have that ak ≤ 1. For β = 1 we get k ≥ α−1. For β > 1 we get βk+1 ≥ 1+α(β−1),
i.e. k ≥ logβ α + logβ (β − 1 + 1

α
) − 1 ≥ logβ α − 1. �

Lemma 2 For any graph G with clique number ω we need at least ω − 1 queries to discover G.

Proof. Consider a clique Kω ⊆ G of size ω. Let q be the first query. The nodes of Kω appear in at most two
consecutive layers i and i + 1 of query q. Observe that q is a partial witness of an edge from Kω if and only
if there is exactly one node v from Kω in layer i and the rest is in layer i+1. Moreover, q is a partial witness
only for edges incident on v. After query q, there is still a Kω−1 for which no query has been made that is a
partial witness of any of its edges. Therefore, by induction (using the fact that one query is necessary for a
K2 as the base case), it follows that we need at least ω − 1 queries to discover G. �

Lemma 3 Any graph G with n nodes and m edges needs at least m/(n − 1) queries to be discovered.

Proof. Consider the layers of an arbitrary query q ∈ V . For each node v on layer i, q can be a partial witness
for at most one edge {u, v} with u in layer i − 1. Therefore, q can be a partial witness for at most n − 1
edges. Since a set of queries that discovers G must contain a partial witness for each of the m edges of G,
the bound follows. �

This lower bound shows that graphs with a super-linear number of edges need a non-constant number
of queries to be discovered.

4 Network Verification

4.1 Polynomially Solvable Cases

Lemma 4 G needs 1 query to be discovered if and only if G is a chain. A clique Kn needs n− 1 queries to
be discovered.

Proof. If G is a chain, then clearly a vertex of degree 1 discovers the chain. On the other hand, if one query
q discovers the whole graph G, observe that q cannot discover an edge or non-edge between two vertices
at the same distance from q. Therefore, the vertices of G have unique distance from q and therefore G is a
chain.

The second part of the statement follows from Lemma 2 and since with n − 1 queries each edge has at
least one incident query and therefore will be discovered. �

The example of the cycle with 4 nodes C4 shows that there is a graph that needs n − 1 queries to be
discovered and is not a clique. (The same holds for graphs that are obtained from Kn by deleting one edge,
for n ≥ 4.) In general, for cycles the following lemma holds.

Lemma 5 A cycle Cn, n > 6, needs 2 queries to be discovered.

Proof. By Lemma 4 we have that 1 query does not discover a cycle. We show now that 2 queries are enough.
We argue for n being odd, i.e., n = 2k + 1. Similar arguments can be given for even n.

Let V = {v0, . . . , vn−1} be ordered according to their appearance on the cycle. Let q1 = v0 and
q2 = v2 be two queries at Cn. Query v0 divides the vertices into layers according to the distance. In every
layer i ≥ 1 there are 2 vertices vi and vn−i (see Figure 2). Observe that q1 is a partial witness for all edges
except {vk, vk+1}, and q2 is a partial witness for {vk, vk+1} (cf. Figure 2).

Query q1 discovers all non-edges between vertices from non-neighboring layers. We show that q2 dis-
covers all the remaining undiscovered non-edges of type {vi, vn−i}, {vi, vn−i−1} and {vi+1, vn−i}, for i =
1, 2, . . . , k − 1. Notice that {v1, vn−1} and {v1, vn−2} are the only unknown non-edges incident on v1 after
query q1. Observe that if n > 6, query q2 discovers these non-edges. Hence we consider an unknown non-
edge {va, vb} where a > 2 and a ≤ k and b ≥ k+1, b ∈ {n−a+1, n−a, n−a−1}. The distance da from
v2 to va can be used to bound the distance to vb as follows: d(v2, vb) ≥ min{4+(da −1), da +2} ≥ da +2
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Figure 2: Cycle Cn can be discovered by queries at v0 and v2
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Figure 3: Legs, bodies, spiders and connectors in a tree

(by considering the lengths of the two paths from v2 to vb via v0 or via vk). Thus the distances d(q2, va) and
d(q2, vb) differ by at least two and therefore q2 discovers the non-edge {va, vb}.

We showed that q1 and q2 discover all non-edges and are partial witness for all edges. Therefore q1 and
q2 discover the cycle Cn. �

Now we characterize the optimal query set for a tree T . For this, we define a leg to be a maximal path
in the tree starting at a leaf and containing only vertices of degree at most 2, see Fig. 3. Therefore, if T is
not a chain, there has to be a node u of degree greater than 2 adjacent to the last vertex of the leg. We call
u a body and we say that the leg is adjacent to its body u. The body u with all its adjacent legs is called a
spider. Nodes that are not part of a spider are called connectors (i.e., nodes that are not in a leg and have no
adjacent leg).

Lemma 6 Let T = (V, E) be a tree that is not a chain. Denote by B ⊂ V the set of bodies of the graph.
Let lb, for b ∈ B, be the number of legs adjacent to b. Let T [B] be the induced subgraph of T on vertex
set B. Let V C(T [B]) denote a minimum vertex cover of T [B]. Then the minimum number of queries to
discover T is

∑

b∈B(lb − 1) + |V C(T [B])|.

Proof. We show first that we indeed need at least that many queries. For this observe that if there is no
query in two legs adjacent to a body, then we cannot discover the non-edges formed by vertices of the two
legs at the same distance from the body. Therefore there has to be at least one query in every leg but one of
any body. Moreover, if there are two legs of two different bodies which are connected by an edge then there
has to be at least one query in one of the legs. Otherwise we cannot discover the non-edge between vertices
of the legs at the same distance from their bodies. Therefore for any two bodies connected by an edge at
least one of them has a query in every leg. Observe that the bodies with all legs containing a query form a
vertex cover of T [B] and therefore a minimum vertex cover gives a lower bound on the number of spiders
that have a query in every leg.

To prove that the claimed number of queries is sufficient, we construct a query set Q in the following
way. We compute a minimum vertex cover of T [B] (which can be done in polynomial time on trees). Let u
be a body. We add the leaves of lu − 1 of its legs to Q. If u is in the vertex cover, we add also the leaf of the
last (the lu-th) leg to Q.
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We show now that Q discovers T . We start with non-edges. Let {v, w} be a non-edge. We distinguish
several cases. First, consider the case that both v and w are from legs. Consider the following subcases.

1. v and w are from the same leg. Clearly, the non-edge is discovered by any query.

2. v and w are from different legs, and there is a query q in the leg where v or w is. This query discovers
the non-edge. (Note that there must be a query in the leg of v or w if they are in different legs of the
same spider, or in legs of spiders whose centers are adjacent.)

3. v and w are from different spiders centered at u and u′, which are not neighbors, and there is no
query in the legs containing v and w. Let the path from u to u′ be u, x, . . . , y, u′, where x = y is
possible. Let q be a query from a leg adjacent to a body b such that the path from b to u does not
contain x, possibly b = u. Let dv be the distance from u to v, dw be the distance from u′ to w
and let d ≥ 2 be the distance between u and u′. If q does not discover the non-edge {v, w} then
|d(q, v)− d(q, w)| = |dv − (d + dw)| ≤ 1. Then a query q′ from a leg adjacent to a body b′ such that
the path from b′ to u′ does not contain y satisfies |d(q′, v)− d(q′, w)| = |(dv + d)− dw| ≥ 3 and thus
q′ discovers the non-edge.

Now, consider the case that at least one of the two nodes, say, the node v, is not from a leg. Then any
query in a tree of the forest T \ {v} that does not contain w verifies the non-edge. Observe that such a query
always exists.

Therefore Q discovers all non-edges. We claim now that Q discovers all edges. For this observe that for
a tree T any query is a partial witness for every edge. To see this imagine the tree rooted at the query node.
Therefore, Q discovers T , which concludes the proof. �

Lemma 7 A query set discovering a d-dimensional hypercube Hd is a vertex cover and any vertex cover
verifies a d-dimensional hypercube Hd for d ≥ 4. A minimum vertex cover discovers H3. Therefore we need
2d−1 queries (size of a minimum vertex cover in Hd) for d ≥ 3.

Proof. First we show that a query set Q that discovers the given hypercube Hd is a vertex cover. Let {u, v}
be an arbitrary edge. Recall that we can label the nodes of the hypercube by d-dimensional vectors such that
there is an edge between two vertices if and only if their labels have Hamming distance 1. Now, suppose
that neither u nor v is in Q. We show that no other query is a partial witness for the edge {u, v}. Let q
be a query. W.l.o.g. u is closer to q than v is. Therefore, w.l.o.g., u = 000 . . . 0 and v = 100 . . . 0 and
q = q1q2 . . . qd, where q1 = 0. There must exist an i > 1 such that qi = 1. Then w = 10 . . . 0

︸ ︷︷ ︸

i−1

10 . . . 0 is

a neighbor of v and is at the same distance from q as u, and therefore q cannot be a partial witness for the
edge {u, v}. Thus, Q does not discover Hd.

Now we show that an arbitrary vertex cover discovers Hd when d ≥ 4. Clearly, a vertex cover discovers
all edges. We show that it discovers also all non-edges. Let {u, v} be a non-edge in Hd. If u or v are in
the vertex cover, the non-edge is discovered. We assume now that neither u nor v is in the vertex cover.
W.l.o.g., u = 00 . . . 0 and v = 1 . . . 1

︸ ︷︷ ︸

k

0 . . . 0, k ≥ 2. If k = d, i.e., v is antipodal to u then 10 . . . 0 is a

neighbor of u and therefore in the vertex cover. 10 . . . 0 has a distance d − 1 to v and distance 1 to u and
since (d − 1) − 1 = d − 2 ≥ 2 the query at this node discovers the non-edge {u, v}. If k < d then vertex
0 . . . 01 (neighbor of u and therefore in the vertex cover) has distance k + 1 to v and distance 1 to u and
therefore the distance difference is k ≥ 2 and therefore {u, v} is discovered.

For d = 3, observe that V \{000, 111} is a vertex cover, but does not discover the non-edge {000, 111}.
On the other hand this is not a minimum vertex cover for H3 and therefore a minimum vertex cover for H3

has to contain a vertex from every antipodal pair (and therefore discovers every such non-edge). To discover
a non-edge {u, v} of vertices at distance 2 from each other, i.e., w.l.o.g., u = 000 and v = 110, note that
111 has to be in the vertex cover if none of u, v is in it, and 111 discovers the non-edge {u, v}.

Finally, we note that the size of a minimum vertex cover for Hd, d ≥ 1, is 2d−1. To see this, observe
that every vertex can cover at most d edges. The hypercube has 1

2
2dd edges and therefore a lower bound on
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the size of any vertex cover is 2d−1. One can easily check that all vertices with even Hamming distance to
the origin 00 . . . 0 form a vertex cover and the number of such vertices is 2d−1. �

4.2 NP-Hardness

We consider the complexity of the DIST–ALL–VERIFICATION problem and show that it is NP-hard. First
we prove a useful lemma.

Lemma 8 To discover a non-edge in a graph of diameter 2, one of its endpoints has to be a query.

Proof. A non-edge {u, v} is discovered by a query q, if the distances from q to u and v differ by at least
2. Since diam = 2, any node other than q is at distance 1 or 2 and therefore a query q /∈ {u, v} cannot
discover the non-edge {u, v}. �

Theorem 1 The problem DIST–ALL–VERIFICATION is NP-hard.

Proof. We present a polynomial-time reduction from the VERTEX–COVER problem to our problem. Let
G = (V, E) be a given graph for which a vertex cover is to be found. Let n = |V |. The basic idea is to create
the complement G of G and add a new node s to the graph and connect it to all other nodes. The resulting
graph G′ has diameter 2. According to Lemma 8 a query set Q verifying G′ contains an endpoint of every
non-edge. Thus, discovering the non-edges in G′ corresponds to finding a vertex cover in G. To verify also
the edges of G′ we may need more queries, however, and the number of these additional queries may vary.
Therefore we modify the construction of G′ in order to force an additional fixed (or more precisely: tightly
bounded) number of queries which discover all edges. Given an instance G = (V, E) of VERTEX–COVER,
we start by constructing G and then extend it as follows: For each node v ∈ V , we add two new nodes v ′

and v′′ and the edges {v, v′}, {v, v′′} and {v′, v′′}. In addition, we connect v′′ to all nodes w ∈ V that are
not adjacent to v in G. Finally, we add an extra node s and make it adjacent to all nodes of type v ′ and v′′.
Call the resulting graph G′. An example of the construction is shown in Figure 4. Denote the set of all nodes
of type v′ by V ′, and the set of all nodes of type v′′ by V ′′. We observe that G′ has diameter 2. Furthermore,
both V ′ and V ′′ are independent sets in G′.

Let C ⊆ V be an optimal vertex cover for G. We claim that QC = {s} ∪ V ′ ∪ V ′′ ∪ C is a query set
that verifies G′. First, note that QC contains partial witnesses for all edges of G′; in particular, the query at
v′ is a partial witness for all edges in G′ that connect v to other nodes from V . Furthermore, QC verifies all
non-edges. For non-edges incident to a node from {s} ∪ V ′ ∪ V ′′, this is obvious. For non-edges between
nodes in V this follows because C, being a vertex cover in G, contains at least one endpoint of every edge
in G, and therefore at least one endpoint of every non-edge in G between nodes in V . Hence, there is a
query set of size 2n + 1 + |C| that verifies G′.

Let Q be any query set that verifies G′. As V ′ and V ′′ are independent sets and G′ has diameter 2,
Q must contain at least n − 1 nodes from V ′ and at least n − 1 nodes from V ′′ by Lemma 8. Furthermore,
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the set C ′ = Q ∩ V must be a vertex cover of G, since it must contain an endpoint of every non-edge in
G′ between nodes in V . Hence, a query set Q that verifies G′ yields a vertex cover of G of size at most
|Q| − 2n + 2.

The discussion above shows that a polynomial-time algorithm computing an optimal query set for G′

would give a vertex cover of size at most (2n + 1 + |C|) − 2n + 2 = |C| + 3. As VERTEX–COVER is
NP-hard to approximate within a factor of 7/6 − ε by [15], the problem DIST–ALL–VERIFICATION is
NP-hard. �

4.3 Approximation Algorithm

We present an O(log n)-approximation algorithm for DIST–ALL–VERIFICATION that is based on the well-
known greedy algorithm for the set cover problem. This technique was also used to derive the O(log n)-
approximation algorithm for metric dimension (equivalent to network verification in the layered graph query
model) in [17].

Theorem 2 There is an O(log n)-approximation algorithm for DIST–ALL–VERIFICATION.

Proof. We transform an instance G = (V, E) of DIST–ALL–VERIFICATION into an instance of the set
cover problem as follows. The edges and non-edges form the ground set E ∪ E for the set cover problem.
For each query q ∈ V , we introduce a subset Sq = Uq ∪ Wq of the ground set, formed by the set Uq of
non-edges it verifies and the set Wq of edges for which it is a partial witness. By Observations 1 and 2,
we can compute Uq and Wq. As a set of queries verifies G if and only if it discovers all non-edges and
contains a partial witness for every edge, there is a direct correspondence between set covers and query sets
that discover G. The standard greedy set cover approximation algorithm gives an approximation ratio of
O(log |E ∪ E|) = O(log

(
n
2

)
) = O(log n). �

5 Network Discovery

5.1 Lower Bounds for Online Algorithms

We present a lower bound of Ω(
√

n) on the competitive ratio of any deterministic on-line algorithm for
the problem DIST–ALL–DISCOVERY. We also obtain an Ω(log n) lower bound on the competitive ratio of
randomized on-line algorithms.

Theorem 3 There is no o(
√

n)-competitive deterministic on-line algorithm for DIST–ALL–DISCOVERY.

Proof. Consider the graph Gk from Figure 5. It is a tree built recursively from a smaller tree Gk−1 as
depicted in the figure. Alternatively, Gk can be described as follows. Start with a chain of length 2k − 1
from x to vk. For 1 ≤ i ≤ k, the node on the chain at distance 2i − 1 from x is labeled as vi. To each such
node vi, 1 ≤ i ≤ k, we attach another chain (which we call arm) of length 2i−1, starting at vi. The number
nk of nodes of Gk satisfies nk = nk−1 + 1 + 2k for k > 1 and n1 = 3. Hence, nk = k2 + 2k.
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Gk is a non-trivial tree and, by Lemma 6, the optimum number of queries is 2. Now consider any
deterministic algorithm A. As all vertices are indistinguishable to A, we may assume that the initial query
q0 made by A is at vk. This sorts the vertices into layers according to their distance from vk. There is
no non-edge discovered within the layers. In particular, the non-edge {x, y} in G1 (see Figure 5) is not
discovered. We now show that A needs at least k additional queries to discover {x, y}.

Observe that in the rightmost arm (attached to vk) we have vertices from every layer. A picks a vertex
from some layer j and, because all the vertices in this layer are indistinguishable for A, we may force A
to pick the vertex from the rightmost arm. Such a query in the rightmost arm does not reveal any new
information within Gk−1. The vertices within one layer of Gk−1 remain indistinguishable for A. Thus,
when A places its first query in Gk−1, we can force it to be at a node from Gk−1’s rightmost arm. Clearly,
we can continue recursively in this manner and therefore we can force A to query in every arm before it
discovers {x, y}. This yields that A needs at least 1 + k queries to discover Gk.

Since nk = k2 + 2k, we have that k = Θ(
√

nk). Together with the fact that the optimum needs 2
queries, we get the desired lower bound. �

Theorem 4 There is no o(log n)-competitive randomized on-line algorithm for DIST–ALL–DISCOVERY.

Proof. To show a lower bound on the competitive ratio of any randomized algorithm A against an oblivious
adversary, we use Yao’s principle [21]: The (worst case) expected number of queries of a randomized
algorithm A (against all inputs) is at least the expected number of queries of the best deterministic algorithm
for any input distribution. Thus, to show the lower bound for any randomized algorithm, we create a set of
instances and a probability distribution and show that any deterministic algorithm performs badly on this
input distribution in expectation.

The input set Gk is as follows. The graph is always isomorphic to Gk (as shown in Figure 5). Let layer
Li be the set of all nodes at distance i from vk. The input distribution is constructed by permuting the labels
(identities) of the nodes in each layer Li, 1 ≤ i ≤ 2k − 1, using a permutation chosen uniformly at random.
Let A be any deterministic algorithm. Let Ek denote the expected number of queries made by A on an
instance Gk from Gk, assuming that a query at vk (or at some node outside Gk, if the Gk is part of a larger
tree) may have been made already but no other query inside Gk has been made. When the algorithm makes
the first query q inside Gk, there are the following cases. If the query q is made at some vi, at the parent of
vi, or at a node in the arm attached to the parent of the parent of vi, then after the query there is still a Gi

such that no query has been made in it (except possibly at its root vi). In that case, we say that a Gi remains.
The expected number of queries required to discover Gi is then Ei. If the query q is made at one of the
children of v1, no Gi remains, and the algorithm may not require any additional queries. Letting pi denote
the probability that a Gi remains after the first query, we have Ek ≥ 1 +

∑k−1

i=1
piEi.

The algorithm makes the first query inside Gk at some layer j. Since the labels of the nodes of layer j
have been permuted randomly, each of the nodes in layer j is equally likely to be the query node. For each
layer, the probability that a Gi remains (possibly as part of a remaining Gi′ for i′ > i) after a query in that
layer is at least 1

k+1
for each i ∈ {1, 2, . . . , k − 1}. (The minimum is achieved at the leaf layer.) Hence, we

get

Ek ≥ 1 +
k−1∑

i=1

1

k + 1
Ei

for k ≥ 2 and E1 = 1. This implies Ek ≥ Hk+1 − 1

2
= Θ(log k), where Hh =

∑h
i=1

1

i
denotes the h-th

harmonic number. Noting that the optimum is 2 and applying Yao’s principle, we obtain the theorem (note
that k = Θ(

√
nk), where nk is the number of nodes in Gk, and thus log k = Θ(log nk)). �

5.2 Randomized Online Algorithm

In this section we present a randomized algorithm for DIST–ALL–DISCOVERY. The algorithm has com-
petitive ratio O(

√
n log n), which is very close to the lower bound Ω(

√
n) for deterministic algorithms but

leaves a gap to the lower bound Ω(log n) for randomized algorithms.
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The algorithm is a (non-straightforward) adaptation of the randomized algorithm for network discovery
in the layered graph query model given in [4].

Theorem 5 There is a randomized on-line algorithm with competitive ratio O(
√

n log n) for DIST–ALL–
DISCOVERY.

Proof. The algorithm runs in two phases. In the first phase it makes 3
√

n lnn queries at nodes chosen
uniformly at random. In the second phase, as long as there is still an undiscovered pair {u, v} (i.e., the
queries executed so far have not discovered whether {u, v} is an edge or non-edge), the algorithm executes
the following. First, it queries both u and v. This discovers if {u, v} is an edge or non-edge. In case it is a
non-edge, the algorithm then knows from the queries at u and v the set S of all queries that discover {u, v}:
S is the set of vertices w for which |d(u, w) − d(v, w)| ≥ 2. The algorithm then queries the whole set S.
In case {u, v} is an edge, the algorithm distinguishes three cases. First, if the queries at u and v discover
a non-edge, say, {u, w}, that hadn’t been discovered before, the algorithm proceeds with the pair {u, w}
instead of {u, v} and handles it as described above. Second, if the number of neighbors of u and the number
of neighbors of v is at most

√
n√

ln n
, then the algorithm queries also all neighbors of u and v (notice that after

querying u and v we know all their neighbors). With this information we know the set S of vertices that are
partial witnesses for {u, v}: a vertex w is in S if and only if the two vertices are at distances i and i + 1
from w and all the other neighbors of the more distant vertex are at distances i + 1 or i + 2. Third, if the
number of neighbors of u or the number of neighbors of v is more than

√
n√

ln n
, the algorithm does not do

any further processing for this pair (i.e., this iteration of the second phase is completed) and proceeds with
choosing another undiscovered pair {u′, v′} (if one exists).

The algorithm can be viewed as solving a HITTINGSET problem. For every non-edge {u, v} let Suv be
the set of vertices that discover {u, v}. Similarly, for every edge {u, v} let Suv denote the set of all partial
witnesses for {u, v}. The algorithm discovers the whole graph G if it hits all sets Suv, for {u, v} ∈ E ∪ E.
In the first phase, the algorithm aims to hit all the sets Suv of size at least

√
n ln n. Then, in the second phase,

as long as there is an undiscovered pair {u, v}, the algorithm queries the whole set Suv; if {u, v} is an edge,
it also queries all the neighbors of u and v in order to determine Suv, except in the case where the degree of
u or v is too large. In the case that the undiscovered pair {u, v} is an edge for which a partial witness has
already been queried before, the query at u or v must discover a new non-edge, and the algorithm uses that
non-edge instead of {u, v} to proceed.

We analyze the algorithm as follows. Let OPT be the optimal number of queries. Consider a pair {u, v}
for which the set Suv has size at least

√
n ln n. In each query of the first phase, the probability that Suv is

not hit is at most 1−
√

n ln n
n

= 1−
√

ln n√
n

. Thus, the probability that Suv is not hit throughout the first phase
is at most

(

1 −
√

ln n√
n

)3
√

n ln n

=






(

1 −
√

ln n√
n

)
√

n√
ln n






3 ln n

≤ e−3 ln n =
1

n3
.

There are at most
(
n
2

)
sets Suv of cardinality at least

√
n ln n. The probability that at least one of them is not

hit in the first phase is at most
(
n
2

)
· 1

n3 ≤ 1

n
.

Now consider the second phase, conditioned on the event that the first phase has indeed hit all sets Suv

of size at least
√

n ln n. If the unknown pair {u, v} is a non-edge, after querying u and v we know Suv,
and querying the whole set Suv requires at most

√
n lnn queries (note that |Suv| ≤

√
n ln n if {u, v} is

a non-edge that hasn’t been discovered in the first phase). If the pair {u, v} is an edge and the queries at
u and v discover a new non-edge, the algorithm proceeds with that non-edge and makes at most

√
n ln n

further queries (as above), hence at most
√

n ln n + 1 queries in total for this iteration of the second phase.
Otherwise, if the number of neighbors of u and of v is bounded by

√
n√

ln n
, we query also all neighbors of u

and v to determine the set Suv, amounting to at most 2
√

n√
ln n

queries, and then the set Suv, giving another
√

n ln n queries (since Suv hasn’t been hit in the first phase). In total, we make at most
√

n ln n + 2
√

n√
ln n
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queries in this iteration of the second phase. Consider the remaining case, i.e., the case where the unknown
pair {u, v} is an edge, no partial witness for the edge has been queried before, and u or v has degree larger
than

√
n√

ln n
. Assume that there are k iterations of the second phase in which the unknown pair falls into

this case. Note that no node can be part of an unknown pair in two such iterations. Hence, we get that
2|E| ≥ k

√
n√

ln n
and, by Lemma 3, OPT ≥ |E|

n
≥ k

√
n

2n
√

ln n
= k

2
√

n ln n
and therefore k ≤ 2

√
n ln n · OPT .

Now, let ` denote the number of iterations of the second phase in which the set Suv was determined and
queried (i.e., all iterations except the k iterations discussed above). We call such iterations good iterations.
The overall cost of the second phase is at most `

√
n ln n + 2`

√
n√

ln n
+ 2k. Clearly, OPT ≥ `, because no

two unknown pairs {u, v} considered in different good iterations of the second phase can be discovered by
the same query (or have the same partial witness). Therefore the cost of the algorithm is at most 3

√
n ln n+

`
√

n ln n + 2`
√

n√
ln n

+ 2k = O(
√

n log n) · OPT .

So we have that with probability at least 1− 1

n
, the first phase succeeds and O(

√
n log n) ·OPT queries

are made by the algorithm. If the first phase fails, the algorithm makes at most n queries (clearly, the
algorithm need not repeat any query). This case increases the expected number of queries made by the
algorithm by at most 1

n
n = 1. Thus, we have that the expected number of queries is at most O(

√
n log n) ·

OPT + 1

n
n = O(

√
n log n) · OPT . �

6 Conclusions and Future Work

In this paper, we have studied network discovery and network verification in the distance query model. We
have shown that the network verification problem is NP-hard and have given an O(log n)-approximation
algorithm. For certain graph classes there exist polynomial optimal algorithms or easy characterizations
of optimal query sets. For the network discovery problem, we have presented lower bounds of Ω(

√
n)

and Ω(log n) on the competitive ratio of deterministic and randomized on-line algorithms, respectively, and
designed a randomized on-line algorithm that achieves competitive ratio O(

√
n log n).

The query model studied in this paper is motivated by real-world scenarios such as discovering the
topology of a network that uses a distance-vector routing protocol by analyzing selected routing tables. An
interesting direction for future work would be to consider a more realistic model where queries can only
be executed at certain nodes of the network; this is motivated by the fact that only a rather small subset of
nodes in the Internet or in a network such as Gnutella can actually be used for queries. While our off-line
results translate to such a model with forbidden query nodes in a straightforward way, it is not clear whether
our on-line algorithm can be adapted to this model or a different approach needs to be employed.

Other query models may be suitable for other applications. For example, a query given by nodes u and v
could returns all shortest paths between u and v (or just one shortest path); or a query at node v could return
the distances to all nodes that are within distance at most k from v. Changing the objective of the problem
leads to other interesting variants, e.g., one could ask for the minimum number of queries that are required
to determine the diameter or the value of some other graph parameter of the network.
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