
Variable sized online interval coloring with bandwidth

Leah Epstein∗ Thomas Erlebach † Asaf Levin ‡

Abstract

We consider online coloring of intervals with bandwidth in a setting where colors have variable
capacities. Whenever the algorithm opens a new color, it must choose the capacity for that color and
cannot change it later. The goal is to minimize the total capacity of all the colors used. We consider
the bounded model, where all capacities must be chosen in the range (0, 1], and the unbounded model,
where the algorithm may use colors of any positive capacity. For the absolute competitive ratio, we give
an upper bound of 14 and a lower bound of 4.59 for the bounded model, and an upper bound of 4 and
a matching lower bound of 4 for the unbounded model. We also consider the offline version of these
problems and show that whereas the unbounded model is polynomially solvable, the bounded model is
NP-hard in the strong sense and admits a 3.6-approximation algorithm.

1 Introduction

Online interval coloring received much attention recently. In the basic problem, the nodes of an interval
graph arrive online, one by one, together with the interval representation. The goal is to find a proper vertex
coloring (i.e., each pair of adjacent vertices, i.e. intersecting intervals, are assigned distinct colors) with
a minimum number of colors. The coloring has to be determined online, i.e., each new interval must be
assigned a color upon arrival.

A study of this standard problem was done by Kierstead and Trotter [KT81]. They constructed an
online algorithm which uses at most 3ω − 2 colors where ω is the maximum clique size of the interval
graph. They also presented a matching lower bound of 3ω − 2 on the number of colors in a coloring of an
arbitrary online algorithm. Note that the chromatic number of interval graphs equals the size of a maximum
clique, which is equivalent in the case of interval graphs to the largest number of intervals that intersect
any point (see [JT95, Gol80]). Many papers studied the competitive ratio of First-Fit for this problem
[Kie88, KQ95, PRV04, CS88]. The latter paper shows that the competitive ratio of First-Fit is strictly worse
than the competitive ratio of the algorithm of [KT81].

Adamy and Erlebach [AE03] introduced the interval coloring with bandwidth problem and presented
a 195-competitive algorithm. In this problem each interval has a bandwidth requirement in (0, 1]. The
intervals are to be colored so that at each point, the sum of bandwidths of intervals colored by a certain color
does not exceed 1. This problem was studied also in [Nar04], giving an improved competitive ratio of 10,
and in [EL05a], showing a lower bound of 3.2609 for this model.

We study a variant of this problem, where colors are not necessarily of capacity 1 as in [AE03]. The
input arrives as in this model, however, an algorithm may use colors of arbitrary capacity. In an online
environment, the capacity of a color is determined when the color is first used. The coloring is valid if for
every color a that is used with capacity Ca, at each point the sum of bandwidths of intervals colored by a
does not exceed Ca. The cost of a coloring is the sum of the capacities of the colors used.

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il.
†Department of Computer Science, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom.

te17@mcs.le.ac.uk.
‡Department of Statistics, The Hebrew University, Jerusalem, Israel. levinas@mscc.huji.ac.il.

1

We study two models. In the Unbounded Model, there is no restriction on the capacities of colors. In
the Bounded Model, the capacities cannot exceed the value 1.

The interval coloring problem with bandwidth of Adamy and Erlebach [AE03] is a generalization of the
well known bin packing problem (see e.g. [Ull71, dlVL81, KK82, LL85, CW98, CGJ97, Sei02]). In that
problem, items of size in (0, 1] are to be partitioned into subsets of sum not exceeding 1. These subsets
are called bins. In the online problem the items are assigned one by one to bins. If all input intervals are
intersecting, we get an input of the bin packing problem, where bins correspond to colors.

Our problem is related to variable sized bin packing (see [Mur87, FL86, Csi89, Sei01, SvSE03]), but
does not generalize it. In the bin packing problem, allowing the usage of bins of any size (even if the sizes
are bounded by 1) leads to a simple 1-competitive algorithm, which assigns every item a bin of the same
size. In the variable sized bin packing problem, a set of allowed bin sizes is set in advance, and the algorithm
can only use bins of this fixed set of sizes.

As mentioned in [AE03], the interval coloring problem with bandwidth arises in many applications.
Most of the applications come from the field of communication networks. Consider a network with a line
topology that consists of links, where each link has channels of constant capacity. A connection request
is from one network node a to another node b and has a bandwidth associated with it. The set of requests
assigned to a channel must not exceed the capacity of the channel on any of the links on the path [a, b]. The
goal is to minimize the number of channels (colors) used. In our problem, we can choose the capacity of
the channel, and therefore we pay a cost proportional to the capacity of the channel, rather than a fixed cost,
that is charged in the case of unit capacity channels. A connection request from a to b corresponds to an
interval [a, b] with the respective bandwidth requirement and the goal is to minimize the sum of capacities
of the channels used to serve all requests. In our model, we allow different capacities since not all channels
are necessarily identical.

Another important application comes from scheduling. A requested job has a starting time, a duration,
and a resource requirement during its execution. Jobs (intervals) arrive online and must be assigned to a
machine (color) immediately. It is possible to pick a machine of any capability, which is fixed when the
machine is ordered. The cost of the machine is proportional to its resource capacity. The objective is to
minimize the sum of the costs of the machines used.

For an algorithm A, we denote its cost by A as well. The cost of an optimal offline algorithm that knows
the complete sequence of intervals is denoted by OPT. We consider the absolute competitive ratio and the
absolute approximation ratio criteria. For an online algorithm we use the term competitive ratio whereas for
an offline algorithm we use the term approximation ratio. The competitive ratio of A is the infimum R such
that for any input, A ≤ R · OPT. If the competitive ratio of an online algorithm is at most C we say that it
is C-competitive. If an algorithm has an unbounded competitive ratio, we say that it is not competitive. The
approximation ratio of a polynomial time offline algorithm is defined similarly to be the infimum R such
that for any input, A ≤ R · OPT. If the approximation ratio of a polynomial time offline algorithm is at
most R we say that it is an R-approximation algorithm.

We first consider the online problem. We give tight bounds for the unbounded model, showing that the
competitive ratio achieved by applying doubling is 4, and this is best possible. For the bounded model, we
show that an adaptation of the algorithm in [Nar04] combined with doubling is 14-competitive. We prove
that no algorithm has competitive ratio better than 4.59.

We further show that the offline unbounded problem can be solved using a simple polynomial algorithm,
while the bounded problem is NP-hard in the strong sense. For that problem we design an approximation
algorithm with ratio 18

5 = 3.6.

2

2 Preliminaries

The following KT`b algorithm for the online interval coloring with bandwidth problem was studied by
Epstein and Levy [EL05a, EL05b] (see also [Nar04]). We are given an upper bound b on the maximum
bandwidth request. We are also given a value of a parameter `. The algorithm partitions the requests into
classes and then colors each class using the First-Fit algorithm. The partition of the requests is performed
online so that a request j is allocated to class m, where m is the minimum value so that the maximum load
of the requests that were allocated to classes 1, 2, . . . , m with the additional new request is at most m`. For
an interval vi that was allocated to class m a critical point of vi is a point q in vi so that the set of all the
intervals that were allocated to classes 1, 2, . . . , m − 1 prior to the arrival of vi, together with vi, has total
load strictly larger than (m − 1)` in q (i.e., q prevents the allocation of vi to class m − 1). They proved the
following lemmas.

Lemma 1 Given an interval vi that was allocated class m. For the set Am of intervals that were allocated
to class m, and for every critical point q of vi the total load of Am in q is at most b + `. If all intervals have
the same bandwidth b, and ` is divisible by b, this total load is at most `.

Lemma 2 For every m, the set Am of intervals that were allocated to class m has a maximum load of at
most 2(b + `). If all intervals have the same bandwidth, b, and ` is divisible by b, the set Am of intervals
that were allocated to class m has a maximum load of at most 2`.

Lemma 3 The number of classes used by the algorithm is at most dω∗

`
e, where ω∗ is the maximum load.

3 Online Algorithms

3.1 The unbounded model

Our algorithm for the unbounded model simply uses standard doubling (see [BKM+92, AAF+97]). I.e.,
we keep a current “guess” of the maximum load of the complete sequence, which is actually a lower bound
on the load, and a single active color. On the arrival of the first interval, we initialize the guess to be the
smallest (negative) power of 2 that is not larger than the bandwidth requirement of the interval. We open the
first color with capacity which is twice the guess. Each time an interval arrives we color it with the active
(i.e., last opened) color if possible. If a new interval arrives that cannot be colored with the active color, this
means that the maximum load is at least twice larger than the current guess. We therefore update the guess
to equal twice the current guess, and open a new color with its capacity equal to twice the new value of the
guess. Repeat this process until the interval can be colored with the most recently opened color. This color
becomes active.

Theorem 4 The competitive ratio of the above algorithm is 4.

Proof. If there is a single color used by the algorithm, then its capacity is at most twice the largest load,
and the competitive ratio is bounded by 2. Otherwise, consider the last time a new color was opened by the
algorithm. The value L that is the current guess of the maximum load at this time is a lower bound on OPT.
The new color has capacity 2L, and since each time a new color is opened its capacity is at least twice the
previous capacity, we conclude that the total cost of the algorithm is at most 2L + L + L

2 + · · ·+ L
2i + · · · ≤

4L ≤ 4OPT.
Given a non-negative small value 0 < ε < 1

6 , we next describe a modified procedure whose asymptotic
competitive ratio is 2 + ε. The algorithm runs the KT`b algorithm with “unit” capacity that is set to 1

ε
. In

order to use the algorithm with unit capacities, we multiply the bandwidth of all input intervals by ε. In this

3

way we get b = ε and therefore we can use ` = 1
2 − ε, so that each class of the algorithm can be packed

using one color. The algorithm has the following performance guarantee:

Theorem 5 There is an online algorithm that for each input sequence provides a solution with cost at most
(2 + ε)OPT + O(1

ε
).

Proof. By Lemma 3, the number of colors that our algorithm uses is at most
⌈

ω∗

`

⌉

. Each of them costs 1
ε
,

and 1 after scaling, where ω∗ is the maximum load of the scaled input. Note that ω∗ ≤ OPT · ε (due to the
scaling) and therefore the cost of the solution of the algorithm is at most

⌈

ω∗

`

⌉

·
1

ε
≤

(

εOPT
`

+ 1

)

·
1

ε
=

OPT
1
2 − ε

+
1

ε
=

2 · OPT
1 − 2ε

+
1

ε
≤ 2(1 + 3ε) · OPT +

1

ε
,

where the last inequality holds for ε < 1
6 . By scaling ε before the application of the algorithm we obtain an

online algorithm that uses colors of total cost at most (2 + ε)OPT + 6
ε

as claimed.

3.2 The bounded model

Our algorithm for this case is the following adaptation of the algorithm of Narayanaswamy [Nar04] for
the online interval coloring problem with bandwidth. We partition the requests into three groups. Large
requests are requests with bandwidth in the interval

(

1
2 , 1
]

, medium requests are requests with bandwidth
in the interval

(

1
4 , 1

2

]

, and small requests are requests with bandwidth at most 1
4 . We use disjoint colors for

coloring requests of distinct groups. Our algorithm is different from the algorithm of [Nar04] mainly in the
procedure for coloring the small requests.

For packing large requests we use unit capacity colors, and pack these requests using Kierstead and
Trotter’s algorithm [KT81] for online interval coloring (without bandwidth). This is equivalent to using the
algorithm in Section 2 with ` = 1 and ignoring bandwidth requirements. In this case the total load of a class
is at most two requests at each point, and as explained in [KT81], each class requires at most three colors.

Lemma 6 The total cost of the colors used by the large requests is at most 6 · OPT.

Proof. Denote by L the maximum number of large requests that have a common point, i.e., the largest clique
of large requests consists of L large requests. Note that the total load of the large requests is larger than L

2 .
Hence OPT > L

2 . The algorithm uses three colors, each of unit capacity, to pack each class of Kierstead
and Trotter’s algorithm [KT81]. The number of classes used by the algorithm is L, and therefore the cost of
the colors used by the large requests is at most 3L, and therefore at most 6 · OPT.

For packing medium requests we again use unit capacity colors, and pack these requests using the
algorithm in Section 2, giving each interval bandwidth of 1

2 . This is similar to using Kierstead and Trotter’s
algorithm for online interval coloring (without bandwidth). Each class is packed using one color (and not
three colors). This packing of each class is feasible by Lemma 2, since we use b = ` = 1

2

Lemma 7 The total cost of the colors used by the medium requests is at most 4 · OPT.

Proof. Denote by L the maximum number of medium requests that have a common point (there is a clique
of L medium requests). Note that the total load of the medium requests is at least L

4 . Hence OPT ≥ L
4 .

The algorithm uses one unit capacity color to pack each class of Kierstead and Trotter’s algorithm [KT81].
The number of classes used by the algorithm is L, and therefore the cost of the colors used by the medium
requests is at most L, and therefore at most 4 · OPT.

It remains to describe the packing of the small requests. We partition the small requests into type 1
requests and type 2 requests. A type 1 request is a request such that upon its arrival, for each point within

4

the request the total load of previously presented type 1 requests, plus the load of the new request, is at most
1
2 . A type 2 (small) request is a small request that is not a type 1 request.

We use separate sets of colors for type 1 small requests and type 2 small requests. The type 1 small
requests are packed using the doubling procedure (described in the unbounded model). Recall that in that
procedure, the capacity of each color that we use is an integer power of 2. Therefore, the last opened color
that we use for small requests of type 1 has a capacity of at most 1

2 .
The packing of type 2 small requests uses only colors with unit capacity and is carried out by applying

algorithm KT`b for ` = 1
4 and b = 1

4 . More precisely, we apply algorithm KT`b to all small requests, but
the requests that are assigned to the first two classes by KT`b are actually the type 1 small requests that are
handled as explained above.

The purpose of this partition into types is that if the load caused by the small intervals is very low, then
opening a color of capacity 1 right away might be an overkill for the small intervals. Specifically, we want
to show an absolute competitive ratio of 4, which would be impossible if a unit capacity color was opened
immediately.

Lemma 8 The total cost of the colors used by the small requests is at most 4 · OPT.

Proof. If there is no type 2 small request, then the claim holds since the doubling procedure is a 4-
competitive algorithm. Thus, we can assume that there is at least one type 2 small request. Note that in
this case all colors that we use to color type 1 small requests have a total cost that is at most 1. Consider
the execution of the algorithm KT`b for ` = 1

4 and b = 1
4 on the complete input (i.e., already starting at the

first interval). All intervals of the first two classes that would have been opened by KT`b are colored in our
algorithm by the set of colors which are given capacities smaller than 1. To see this last property note that
by the definition of KT`b, the first two classes of the algorithm contain only intervals whose total load is at
most 2` = 1

2 . All these intervals are by definition type 1 small requests. Therefore, if we denote by ω∗ the
maximum total load of the small requests, then OPT ≥ ω∗ and the number of unit capacity colors that the
algorithm uses in order to pack the type 2 small requests is at most

⌈

ω∗

`

⌉

− 2 ≤ 4ω∗ + 1 − 2 = 4ω∗ − 1.
Since the total cost of the type 1 small requests is 1, we conclude that the algorithm packs the small requests
using colors with total cost that is at most 4ω∗ ≤ 4 · OPT.

Using Lemmas 6, 7 and 8, we establish the following theorem.

Theorem 9 There exists a 14-competitive online algorithm for the bounded model.

4 Lower bounds

4.1 The unbounded model

We next show that the competitive ratio of our algorithm for the unbounded model is best possible. To prove
the lower bound, we again apply methods similar to [BKM+92].

Theorem 10 Any online algorithm for the unbounded model has a competitive ratio of at least 4.

Proof. Before we construct the lower bound we note that we assume for ease of presentation that bandwidth
requirements can be numbers larger than 1. Clearly, the unbounded model is equivalent to any model where
the bandwidths are bounded by some constant (not necessarily 1). Before presenting the sequence, we can
compute a bound on the largest bandwidth needed for the proof, and thus our lower bound satisfies the
model.

Our construction of the lower bound for the unbounded model is based on instances in which OPT
equals the maximum load, whereas the algorithm tries to guess an upper bound on the maximum load, and

5

pays the sum of all its guesses. We consider input sequences with the following structure. The first interval
is [0, 1] with a unit bandwidth request. Given an arbitrary prefix of intervals for which the algorithm opened
the set of colors with capacities c1 ≤ c2 ≤ · · · ≤ ck the next interval is disjoint to all the previous intervals
with bandwidth request ck + ε for a sufficiently small value of ε. Then, the algorithm needs to open another
color with capacity at least ck+1 ≥ ck +ε. Note that at this step OPT = ck +ε as all the intervals are disjoint
and therefore they all fit into a common color with capacity ck + ε, whereas the algorithm pays

∑k+1
j=1 cj .

Given a fixed value of ρ that is strictly smaller than 4, we will show that if our input sequence is long
enough an online algorithm cannot pay at each step k at most ρ times the cost of OPT at this step (the
sequence can be stopped at any point, preventing all future intervals from arriving). Assume that this does
not hold, and that there is a ρ-competitive online algorithm with ρ = 4 − δ for some δ > 0. Denote this
algorithm by A. Assume that given the above input sequence for the value of ε that satisfies 1

1+ε
= 1 − δ2,

A opens colors with capacities c1 < c2 < · · · < ck < · · · . Then, since A is ρ-competitive the following
inequalities must hold:

k+1
∑

j=1

cj ≤ ρ(ck + ε) and c1 ≤ ρ.

Let rk+1 = 4−δ−
Pk

j=1
cj

ck+ε
, for k ≥ 1. The inequality above implies ck+1

ck+ε
≤ rk+1. Note that if rk+1 < 1, A

cannot open a color of sufficient capacity in step k + 1 without violating the assumption that its competitive
ratio is ρ. We will show that the values rk+1 for k = 1, 2, . . . form a decreasing sequence so that rk+1 must
be strictly less than 1 for some large enough value of k (depending only on ε). This is a contradiction to
rk+1 ≥ 1 and shows that such a sequence of ck’s cannot exist, hence no algorithm can achieve competitive
ratio 4 − δ for any δ > 0.

First, we observe that r2 = 4 − δ − c1
c1+ε

≤ 4 − δ. Next, we will show that rk+2 ≤ rk+1/(1 + γ) for
all k ≥ 1 (as long as rk+1 ≥ 1), where γ > 0 is a constant. Assuming that rk+1 ≤ 4 − δ was shown by
induction, we can bound rk+2 as follows.

rk+2 = 4 − δ −

∑k+1
j=1 cj

ck+1 + ε
= 4 − δ −

∑k
j=1 cj

ck + ε
·

ck + ε

ck+1 + ε
−

ck+1

ck+1 + ε

= 4 − δ − (4 − δ − rk+1) ·
ck + ε

ck+1 + ε
−

ck+1

ck+1 + ε

≤ 4 − δ − (4 − δ − rk+1) ·
ck + ε

rk+1(ck + ε) + ε
−

1

1 + ε

≤ 4 − δ − (4 − δ − rk+1) ·
ck + ε

(rk+1 + ε)(ck + ε)
−

1

1 + ε

= 4 − δ − (4 − δ − rk+1) ·
1

rk+1 + ε
−

1

1 + ε

= 4 − δ − (4 − δ) ·
1

rk+1 + ε
+

rk+1

rk+1 + ε
−

1

1 + ε

≤ 5 − δ −
1

1 + ε
−

4 − δ

rk+1 + ε
≤ 5 − δ −

1

1 + ε
−

4 − δ

rk+1(1 + ε)

We claim that
5 − δ −

1

1 + ε
−

4 − δ

rk+1(1 + ε)
≤

rk+1

1 + γ
(1)

where γ is chosen in such a way that 4
1+γ

≥ 4 − δ2 is satisfied. We see that (1) is equivalent to

1

1 + γ
r2
k+1 − (5 − δ −

1

1 + ε
)rk+1 +

4 − δ

1 + ε
≥ 0.

6

As this is a quadratic inequality of the form ax2 + bx + c ≥ 0 with a > 0, it suffices to show that the
discriminant b2 − 4ac is negative. For δ < 0.1 we can calculate as follows.

b2 − 4ac = (5 − δ −
1

1 + ε
)2 −

4

1 + γ
·
4 − δ

1 + ε
≤ (4 − δ + δ2)2 − (4 − δ2)(4 − δ)(1 − δ2)

= δ5 − 3δ4 − 7δ3 + 29δ2 − 4δ ≤ 0.0001δ + 2.9δ − 4δ ≤ −δ < 0

Hence, (1) holds, and the proof is complete.

4.2 The bounded model

In order to construct the lower bound, we use as a black box the lower bound of Kierstead and Trotter
[KT81] given originally for the standard online interval coloring problem. They designed for any integer k
a lower bound sequence where the clique size is at most k, whereas any online algorithm is forced to use
3k − 2 colors. In [EL05a] it was shown that this construction can be adapted to the case where the value k
or bounds on it are known in advance to the algorithm.

Theorem 11 Any online algorithm for the bounded model has a competitive ratio of at least 4.5.

Proof. Let k be a large enough integer. We are going to have at most two such constructions, where there
is no overlap between the intervals of the two constructions. Let ε > 0 be a small value, such that P = 1

2ε

is an integer. We start with such a construction where all intervals have bandwidth 1
2 + ε. Since the largest

capacity of a color can be 1, no two overlapping intervals can receive the same color, and therefore the
algorithm is forced to use 3k−2 colors, whereas an optimal offline algorithm can use at most k colors, each
of capacity 1

2 + ε.
The second construction will use intervals of bandwidth 1

2 +jε for some 2 ≤ j ≤ P . In this construction
as well the algorithm is forced to use 3k − 2 colors of capacity at least 1

2 + jε, whereas the construction is
k-colorable. An optimal offline algorithm uses k colors of capacity 1

2 + jε each, and these colors are used to
color all intervals of the first construction as well. Consider the 3k − 2 colors with largest capacity opened
by the algorithm for the first construction. Let s be the number of colors out of these colors whose capacity
is strictly smaller than 1

2 + jε. The algorithm has to open at least s new colors of capacity 1
2 + jε.

Already in the first construction, the algorithm only needs to open colors whose capacities are in the set
{1

2 + ε, 1
2 + 2ε, . . . , 1

2 + Pε = 1}. Consider only the 3k − 2 colors of largest capacities that are opened for
the first construction. Let Xj for 1 ≤ j ≤ P be the number of colors of capacity 1

2 + jε.

Let C be the competitive ratio. The cost of the algorithm for the first construction is at least
P
∑

j=1
(1
2 +

jε)Xj . Note that according to the definition of the values Xj ,
P
∑

j=1
Xj = 3k − 2, therefore we can write this

lower bound on the cost as 3k
2 −1+ε

P
∑

j=1
jXj . Since the optimal cost is (1

2 +ε)k, we get 3k
2 −1+ε

P
∑

j=1
jXj ≤

C(1
2 + ε)k. This is equivalent to

P
∑

j=1

jXj ≤ CP (1 + 2ε)k − 3kP + 2P . (2)

For every 2 ≤ j ≤ P we get a lower bound on the cost of the algorithm for the second construction of

7

P
∑

i=1

(
1

2
+ iε)Xi + (3k − 2 −

P
∑

i=j

Xi)(
1

2
+ jε)

=
3k − 2

2
+ ε

P
∑

i=1

iXi +
3k − 2

2
+ jε(3k − 2) −

1

2

P
∑

i=j

Xi − jε
P
∑

i=j

Xi

= (3k − 2)(1 + jε) + ε

j−1
∑

i=1

iXi + ε
P
∑

i=j

(i − j)Xi −
1

2

P
∑

i=j

Xi.

Therefore,

(3k − 2)(1 + jε) + ε

j−1
∑

i=1

iXi + ε
P
∑

i=j

(i − j)Xi −
1

2

P
∑

i=j

Xi ≤ Ck(
1

2
+ jε) ,

or

2P (3k − 2)(1 + jε) +

j−1
∑

i=1

iXi +
P
∑

i=j

(i − j)Xi − P
P
∑

i=j

Xi ≤ 2PCk(
1

2
+ jε) = PCk + jCk .

We get
j−1
∑

i=1

iXi +
P
∑

i=j

(i − j)Xi − P
P
∑

i=j

Xi ≤ P (C − 6)k + 4P + j(C − 3)k + 2j . (3)

For each 1 ≤ j ≤ P , we multiply the inequality for j by the coefficient aj , and add up the resulting
inequalities. The values of the coefficients are a1 = P+1

2 (for equation (2)), and for j > 1, aj = 1.
Next, we compute the coefficient of each value Xi, 1 ≤ i ≤ P , in the resulting inequality. Given a value

Xi, its coefficient in the inequality (2) is i. Its coefficient in the inequality (3) for j > i is i and for j ≤ i is
i − j − P . Therefore, we get

P + 1

2
i +

i
∑

j=2

(i − j − P) +
P
∑

j=i+1

i = i

(

P + 1

2
+ P − 1

)

− P (i − 1) −

(

i(i + 1)

2
− 1

)

=
iP

2
+

i

2
+ iP − i − Pi + P −

i2

2
−

i

2
+ 1 ≥ (P − i) ·

i + 2

2
≥ 0 .

Therefore the left hand side of the resulting inequality is non-negative. Next, consider the right hand
side. It is equal to

P + 1

2
(CP (1 + 2ε)k − 3kP + 2P) +

P
∑

j=2

(P (C − 6)k + 4P + j(C − 3)k + 2j)

=
P + 1

2
(CP (1 + 2ε)k − 3kP + 2P) + (P − 1)(P (C − 6)k + 4P) + ((C − 3)k + 2)(

P (P + 1)

2
− 1) .

Letting k tend to infinity, we get the following inequality on C.

0 ≤ (P 2 + P)(C(
1

2
+ ε) −

3

2
) + (P 2 − P)(C − 6) + (C − 3)

P 2 + P − 2

2
.

Next, we let P tend to infinity and get 0 ≤ C−3
2 + (C − 6) + C−3

2 = 2C − 9. This gives a lower bound of
4.5 on C.

Remark 12 Running a linear program using Matlab for P = 400 we can get a lower bound of 4.591 on C.

8

5 Offline problems

In this section we show that the unbounded model is polynomially solvable (offline) whereas the bounded
model is NP-hard and we provide a 3.6-approximation algorithm for it.

5.1 The unbounded model

The unbounded model problem is clearly polynomially solvable. The algorithm computes the maximum
load, and then opens a single color with capacity equal to the maximum load. Clearly, all the intervals can
be colored using this color, and we obtain a feasible solution whose cost equals the maximum load, which
is a lower bound on the optimal cost. Hence, we conclude the following:

Proposition 13 The offline problem of the unbounded model is polynomially solvable.

5.2 The bounded model

We first show that the resulting offline problem for the bounded model is NP-hard.

Theorem 14 The offline problem of the bounded model is NP-hard in the strong sense.

Proof. We show a reduction from the 3-Partition problem defined as follows (see problem [SP15] in [GJ79]):
We are given a set of 3m positive numbers s1, s2, . . . , s3m such that

∑3m
j=1 sj = mB and each si satisfies

B
4 < si < B

2 . The goal is to find out whether there exists a partition of the numbers into m sets such that
the sum of elements of each set is exactly B. The 3-Partition problem is known to be NP-hard in the strong
sense.

Given such an instance of the 3-Partition problem we define an instance of the variable size interval
coloring problem as follows: We are given a set of m intervals each with bandwidth request 1 and all of
them are the interval [0, 1]. Moreover, we are given another set of 3m intervals [2, 3], where the i-th interval
of this set has a bandwidth request si

B
. We claim that there is a feasible solution to this variable size interval

coloring problem of cost at most m if and only if the 3-Partition instance is a YES instance.
To see this last claim first note that the variable size interval coloring problem must color with distinct

colors the intervals of the first set (since we are considering the bounded model), and we can color with the
same color intervals from the second set as long as their total bandwidth request is at most 1. I.e., there is a
solution to the variable size interval coloring of cost at most m, if and only if the intervals of the second set
(the intervals of [2, 3]) can be partitioned into m sets such that the total bandwidth request of the intervals
of a set is at most 1. This means that the sum of elements of each such set is at most B, i.e., the 3-Partition
instance is a YES instance.

Because of the fact that the bounded model problem is NP-hard, we turn our focus to designing an
approximation algorithm for this problem. We define a small request to be a request with bandwidth that is
at most 1

2 , and a large request to be a request whose bandwidth is strictly larger than 1
2 . Our algorithm uses

disjoint sets of colors to color the small requests and the large requests.
For small requests we sort the intervals in non-decreasing order of their left end-point. Then, we use

colors with maximum capacity 1 and color the intervals according to the First-Fit algorithm. After we color
all the small requests, we compute the maximum load of the last color that is opened and we change its
capacity to be this value of the maximum load.

Lemma 15 The cost of colors that our algorithm uses to color the small requests is at most 2 · OPT.

9

Proof. Assume that the algorithm uses c colors to color the small requests and that the maximum load in the
last color equals a. Then, the cost of the colors that our algorithm uses to color the small requests is c−1+a.
Note that if c = 1 then this cost is at most the maximum load (which equals the maximum load of the small
requests) and therefore a ≤ OPT. So we assume that c ≥ 2. Consider the leftmost point in which the load
of the last color is a, and denote this point by p. Then, p is the left end-point of an interval that our algorithm
colors with the last color. Denote by I this interval, and recall that the bandwidth request of I is at most 1

2 .
Since our algorithm decided not to place I in the first c− 1 colors we conclude that the load of each of these
colors in the point p is at least 1

2 (this is so because the intervals are sorted from left to right). Therefore, the
total load of all the small requests at point p is at least c−1

2 + a. Therefore, OPT ≥ c−1
2 + a ≥ c−1+a

2 . Since
the algorithm pays at most c − 1 + a, this cost is at most 2 · OPT.

It remains to consider the large requests. Before presenting our algorithm, we consider the following
algorithm. We sort the large requests in non-decreasing order of their left end-point. Then, we use colors
with capacity 1 and color the intervals according to the First-Fit algorithm. We note that using First-Fit
minimizes the number of colors that are used to color the large requests (when the intervals are sorted) and
since the capacity of each color is 1 whereas in the optimal solution the capacity of each color is at least 1

2 ,
we conclude that this algorithm uses colors with total cost of at most 2 · OPT.

Let ε > 0 be a given constant such that k = 1
2ε
−1 is an integer to be selected afterwards. Our algorithm

for the large requests computes k + 1 solutions and picks the cheapest solution among these. The first
solution is to pack all the large requests with a minimum number of unit capacity colors (using First-Fit on
the sorted list of large requests). For each j = 1, 2, . . . , k we define aj = 1

2 + jε and our (j + 1)-th solution
is constructed as follows. We partition the large requests into two classes: the first class consists of all large
requests with bandwidth at most aj , and the second class consists of all the remaining large requests. Each
class is packed separately using its own set of colors. The capacity of the colors that are used for the first
class is aj , whereas the capacity of the colors that are used for the second class is 1. Each class is packed
optimally using the minimum number of colors (using First-Fit on the sorted list of intervals from this class).
We next show that the cheapest solution among the k + 1 solutions has a cost of at most

(

8
5 + O(ε)

)

· OPT.

Lemma 16 The cheapest solution among the k + 1 solutions has a cost of at most
(

8
5−2ε

)

· OPT.

Proof. We prove that the algorithm colors the large requests with total cost of at most 8
5−2ε

· OPT and the
approximation ratio of the algorithm is at most 8

5−2ε
. Let a0 = 1

2 and ak+1 = 1. Let ρ be the competitive
ratio of the algorithm, we prove that ρ ≤ 8

5−2ε
. Denote by Xj the number of colors that OPT opens with

capacity in the interval (aj , aj+1], for j = 0, 1, 2, . . . , k. Then, OPT ≥
∑k

j=0 aj · Xj . We assume that the
cheapest solution among the k + 1 solutions costs at least ρ · OPT.

Since two intersecting large requests cannot be colored by the same color in any solution, we can com-
pute upper bounds on the number of colors of each capacity used by the algorithm in each one of the cases.
Note that our first solution can pack all the large requests using at most

∑k
j=0 Xj colors and therefore the

cost of this solution is at most
∑k

j=0 Xj . Since we assume that the cheapest solution among the k + 1 solu-
tions costs at least ρ · OPT, we conclude that

∑k
j=0 Xj ≥ ρ · OPT. Next, consider the (j + 1)-th solution

for j ≥ 1. The intervals of the first class can be colored using at most
∑k

i=0 Xi colors each with capacity aj

(since this amount of colors suffices to color all the large requests). The intervals of the second class can be
colored using at most

∑k
i=j Xi unit capacity colors. Therefore, the cost of the (j + 1)-th solution is at most

aj ·
(

∑k
i=0 Xi

)

+
∑k

i=j Xi. Since we assume that the cheapest solution among the k + 1 solutions costs at

least ρ · OPT, we conclude that aj ·
(

∑k
i=0 Xi

)

+
∑k

i=j Xi ≥ ρ · OPT.

10

We next consider the following set of inequalities (these inequalities hold by our assumption):

OPT ≥
k
∑

j=0

aj · Xj (4)

k
∑

j=0

Xj ≥ ρ · OPT (5)

aj ·

(

k
∑

i=0

Xi

)

+
k
∑

i=j

Xi ≥ ρ · OPT ∀j = 1, 2, . . . , k. (6)

We construct the following inequality: we multiply (5) by y0 = a0 −
∑k

i=1(ai − ai−1) · ai, and for each
j = 1, 2, . . . , k we multiply the j-th constraint of (6) by yj = aj −aj−1 = ε, and we add up all the resulting
inequalities. The left hand side of the resulting inequality is exactly

∑k
j=0 aj · Xj . This is so because the

coefficient of Xj in the resulting inequality is y0+
∑j

i=1 yi(ai+1)+
∑k

i=j+1 yiai = a0−
∑k

i=1(ai−ai−1) ·

ai+
∑k

i=1(ai−ai−1)ai+
∑j

i=1(ai−ai−1) = aj . By (4), we conclude that the left hand side of the resulting
inequality is at most OPT. The right hand side of the resulting inequality is ρ ·OPT ·

∑k
i=0 yi. We note also

that the coefficients yj are non-negative. To see this last claim note that for j ≥ 1, yj = ε > 0 and for j = 0,
y0 = a0 −

∑k
i=1(ai − ai−1) · ai = 1

2 −
∑k

i=1 ε ·
(

1
2 + iε

)

= 1−kε
2 − ε2

∑k
i=1 i = 1−kε

2 − ε2 · k(k+1)
2 ≥

1− 1

2ε
ε

2 − ε2 · 1
8ε2 = 1

8 > 0. Therefore, the inequality OPT ≥
∑k

j=0 aj · Xj ≥ ρ · OPT ·
∑k

i=0 yi holds.
Therefore,

ρ ≤
1

∑k
i=0 yi

=
1

1−kε
2 − ε2 · k(k+1)

2 + kε
=

2

1 + kε − k(k + 1)ε2
=

2

1 + 1
2 − ε − (1

4 − ε
2)

=
8

5 − 2ε
.

This completes the proof.
By Lemma 16, we obtain a solution that colors the large requests with colors of total cost at most

(

8
5 + O(ε)

)

· OPT. We would like to argue that by picking ε as an infinitesimally small positive number
we obtain an 8

5 approximation algorithm. However, picking such a value of ε will increase dramatically the
time complexity of our algorithm. To avoid these bad consequences we note the following lemma.

Lemma 17 There is a polynomial time algorithm that emulates the solution returned by our previous algo-
rithm for infinitesimally small value of ε.

Proof. Our previous algorithm constructs solutions by partitioning the set of large intervals into two classes,
and then solving the minimum coloring of each class by itself. The cost of each color of each class is
bounded by the largest bandwidth request of intervals of this class (and this bound can be better than the
bound we used in the proof of Lemma 16). Since the partitioning into two classes is done by deciding upon
a threshold value τ and all requests smaller than τ are assigned to the first class and all other requests are
assigned to the second class, we conclude that even for infinitesimally small value of ε we have to consider
at most n ways to partition the large intervals, where n is the total number of large intervals. Therefore, we
can execute the algorithm for an infinitesimally small value of ε by computing at most n solutions, and this
is a polynomial time algorithm whose running time is independent of ε.

The following corollary is a direct consequence of Lemmas 16 and 17.

Corollary 18 There is a polynomial time algorithm that colors the large requests with colors of total cost
at most 8

5 · OPT.

We next summarize the results for small requests and large requests.

11

Theorem 19 There is an approximation algorithm with ratio 18
5 = 3.6 for the variable sized interval col-

oring problem in the bounded model.

References

[AAF+97] J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, and O. Waarts. On-line routing of virtual circuits with
applications to load balancing and machine scheduling. Journal of the ACM, 44(3):486–504,
1997.

[AE03] U. Adamy and T. Erlebach. Online coloring of intervals with bandwidth. In Proceedings of
the First International Workshop on Approximation and Online Algorithms (WAOA’03), LNCS
2909, pages 1–12, 2003.

[BKM+92] S. K. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. E. Rosier, D. Shasha, and
F. Wang. On the competitiveness of on-line real-time task scheduling. Real-Time Systems,
4(2):125–144, 1992.

[CGJ97] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: A
survey. In D. Hochbaum, editor, Approximation algorithms. PWS Publishing Company, 1997.

[CS88] M. Chrobak and M. Ślusarek. On some packing problems relating to dynamical storage alloca-
tion. RAIRO Journal on Information Theory and Applications, 22:487–499, 1988.

[Csi89] J. Csirik. An online algorithm for variable-sized bin packing. Acta Informatica, 26:697–709,
1989.

[CW98] J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat and G. J.
Woeginger, editors, Online Algorithms: The State of the Art, LNCS 1442, pages 147–177,
1998.

[dlVL81] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + ε in linear
time. Combinatorica, 1:349–355, 1981.

[EL05a] L. Epstein and M. Levy. Online interval coloring and variants. In Proceedings of the 32nd In-
ternational Colloquium on Automata, Languages and Programming (ICALP’05), LNCS 3580,
pages 602–613, 2005.

[EL05b] L. Epstein and M. Levy. Online interval coloring with packing constraints. In Proceedings of the
30th International Symposium on Mathematical Foundations of Computer Science (MFCS’05),
LNCS 3618, pages 295–307, 2005.

[FL86] D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM Journal on Computing,
15:222–230, 1986.

[GJ79] M. R. Garey and D. S. Johnson. Computer and Intractability. W. H. Freeman and Company,
New York, 1979.

[Gol80] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

[JT95] T. R. Jensen and B. Toft. Graph coloring problems. Wiley, 1995.

[Kie88] H. A. Kierstead. The linearity of first-fit coloring of interval graphs. SIAM Journal on Discrete
Mathematics, 1(4):526–530, 1988.

12

[KK82] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional bin-
packing problem. In Proceedings of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS’82), pages 312–320, 1982.

[KQ95] H. A. Kierstead and J. Qin. Coloring interval graphs with First-Fit. SIAM Journal on Discrete
Mathematics, 8:47–57, 1995.

[KT81] H. A. Kierstead and W. T. Trotter. An extremal problem in recursive combinatorics. Congressus
Numerantium, 33:143–153, 1981.

[LL85] C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the ACM,
32(3):562–572, 1985.

[Mur87] F. D. Murgolo. An efficient approximation scheme for variable-sized bin packing. SIAM J.
Comput., 16(1):149–161, 1987.

[Nar04] N. S. Narayanaswamy. Dynamic storage allocation and online colouring interval graphs. In
Proceedings of the 10th Annual International Conference on Computing and Combinatorics
(COCOON’04), LNCS 3106, pages 329–338, 2004.

[PRV04] S. V. Pemmaraju, R. Raman, and K. R. Varadarajan. Buffer minimization using max-coloring.
In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04),
pages 562–571, 2004.

[Sei01] S. S. Seiden. An optimal online algorithm for bounded space variable-sized bin packing. SIAM
Journal on Discrete Mathematics, 14(4):458–470, 2001.

[Sei02] S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–671, 2002.

[SvSE03] S. S. Seiden, R. van Stee, and L. Epstein. New bounds for variable-sized online bin packing.
SIAM Journal on Computing, 32(2):455–469, 2003.

[Ull71] J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100,
Princeton University, Princeton, NJ, 1971.

13

