
Constant-factor approximation for minimum-weight
(connected) dominating sets in unit disk graphs

Christoph Ambühl∗ Thomas Erlebach† Matúš Mihal’ák‡ Marc Nunkesser§

June 30, 2006

Abstract

For a given graph with weighted vertices, the goal of the minimum-weight dominating set
problem is to compute a vertex subset of smallest weight such that each vertex of the graph is
contained in the subset or has a neighbor in the subset. A unit disk graph is a graph in which each
vertex corresponds to a unit disk in the plane and two vertices are adjacent if and only if their
disks have a non-empty intersection. We present the first constant-factor approximation algorithm
for the minimum-weight dominating set problem in unit disk graphs, a problem motivated by ap-
plications in wireless ad-hoc networks. The algorithm is obtained in two steps: First, the problem
is reduced to the problem of covering a set of points located in a small square using a minimum-
weight set of unit disks. Then, a constant-factor approximation algorithm for the latter problem
is obtained using enumeration and dynamic programming techniques exploiting the geometry of
unit disks. Furthermore, we show how to obtain a constant-factor approximation algorithm for
the minimum-weight connected dominating set problem in unit disk graphs.

Our techniques also yield a constant-factor approximation algorithm for the weighted disk
cover problem (covering a set of points in the plane with unit disks of minimum total weight) and
a 3-approximation algorithm for the weighted forwarding set problem (covering a set of points in
the plane with weighted unit disks whose centers are all contained in a given unit disk).

1 Introduction

The dominating set problem is a classical optimization problem on graphs. For a given undirected
graph G = (V, E), a subset D ⊆ V of its vertices is called a dominating set if every vertex in V is
contained in D or has a neighbor in D. A vertex in D is called a dominator. A dominator dominates
itself and all its neighbors. The goal of the minimum dominating set problem (MDS) is to compute a
dominating set of smallest size. In the weighted version, the minimum-weight dominating set problem
(MWDS), each vertex of the input graph is associated with a weight, and the goal is to compute a
dominating set of minimum weight.

A dominating set D ⊆ V is called a connected dominating set in the graph G = (V, E) if the
subgraph induced by D is connected. The minimum connected dominating set problem (MCDS) and
minimum-weight connected dominating set problem (MWCDS) are defined in the obvious way.

∗Department of Computer Science, University of Liverpool, e-mail: christoph@csc.liv.ac.uk
†Department of Computer Science, University of Leicester, e-mail: te17@mcs.le.ac.uk
‡Department of Computer Science, University of Leicester, e-mail: mm215@mcs.le.ac.uk
§Institute of Theoretical Computer Science, ETH Zürich, e-mail: mnunkess@inf.ethz.ch

1

For general graphs, MDS (and therefore MWDS) is NP-hard [8]. Furthermore, MDS for general
graphs is known to be equivalent to the set cover problem, implying that it can be approximated
within a factor of O(log n) for graphs with n vertices using a greedy algorithm (see, e.g., [15]), but
no better unless all problems in NP can be solved in nO(log log n) time [7]. Approximation ratio
O(log n) can also be achieved for the weighted set cover problem and thus for MWDS. The best
known approximation ratio for MWCDS in general graphs is O(log n) as well [9].

In this paper, we are concerned with MWDS and MWCDS in a special class of graphs: unit disk
graphs. A unit disk graph is a graph in which each vertex is associated with a (topologically closed)
unit disk in the plane and two vertices are adjacent if and only if the corresponding disks have a non-
empty intersection. We are interested in efficient approximation algorithms. An algorithm for MDS
(or MWDS) is called a ρ-approximation algorithm, and has approximation ratio ρ, if it runs in poly-
nomial time and always outputs a dominating set whose size (or total weight) is at most a factor of ρ
larger than the size (or total weight) of the optimal solution. The definitions for MCDS and MWCDS
are analogous. A polynomial-time approximation scheme (PTAS) is a family of approximation algo-
rithms with ratio 1 + ε for every constant ε > 0.

A major motivation for studying (connected) dominating sets in unit disk graphs comes from rout-
ing in wireless ad-hoc networks, where dominating sets have been proposed for the construction of
routing backbones (see, e.g., [1]). Each node of the graph models a wireless device, and two nodes are
connected by an edge if they are close enough to receive each other’s transmissions. A message that is
broadcast by all nodes of a dominating set will be received by all nodes of the network. Therefore, a
small connected dominating set is an energy-efficient routing backbone. Recent work has emphasized
that ad-hoc networks are often heterogeneous as different nodes have different capabilities. Therefore
it is meaningful to assign weights to the nodes (giving small weight to nodes that have a large remain-
ing battery life, for example) and aim to determine a (connected) dominating set of small weight [16].
Thus, one arrives at the MWDS and MWCDS problems in unit disk graphs.

Clark et al. [6] have proved that MDS is NP-hard for unit disk graphs. Lichtenstein [12] has
shown that MCDS is NP-hard for unit disk graphs. Constant-factor approximation algorithms for
MDS and MCDS in unit disk graphs were given by Marathe et al. [13]. For MDS in unit disk graphs,
a PTAS was presented by Hunt et al. [11], based on the shifting strategy [2, 10]. These algorithms,
however, do not extend to the weighted version. In particular, the PTAS is heavily based on the fact
that the optimal dominating set for unit disks in a k×k square has size at most O(k2) and can thus be
found in polynomial time using complete enumeration if k is a constant. In the weighted case, there is
no such bound on the size of an optimal (or near-optimal) solution, as an optimal solution may consist
of a large number of disks with tiny weight. For MCDS in unit disk graphs, a PTAS was presented in
[5]. For the special case of unit disk graphs with bounded density, asymptotic fully polynomial-time
approximation schemes (with running time polynomial in 1

ε
and in the size of the input, but achieving

ratio 1 + ε only for large enough inputs) were presented for MDS and MCDS in [14].
Wang and Li [16] give distributed algorithms for MWDS and MWCDS in unit disk graphs that

achieve approximation ratio O(min{log ∆, σ}), where ∆ is the maximum degree of the graph and σ
is the ratio of the maximum weight to the minimum weight of a disk. Note that these approximation
ratios are not better than the known ratios for general graphs in the worst case.

1.1 Our results

In this paper, we present the first constant-factor approximation algorithms for MWDS and MWCDS
in unit disk graphs. Our algorithm for MWDS solves the problem in two steps. First, we reduce
MWDS in unit disk graphs to the problem of covering a set of points that are located in a small

2

square using a minimum-weight set of unit disks. In the reduction we lose only a constant factor in
the approximation ratio. Then, we present a constant-factor approximation algorithm for the latter
problem using enumeration and dynamic programming techniques exploiting the geometry of unit
disks. To solve the MWCDS problem, we first compute an O(1)-approximation for the MWDS
problem and then use an approach based on a minimum spanning tree calculation to add disks to the
solution in order to make the dominating set connected.

We also show that our techniques yield a constant-factor approximation algorithm for the weighted
disk cover problem for unit disks and a 3-approximation algorithm for the special case of the forward-
ing set problem (see Section 5 for a definition of this problem).

The remainder of the paper is structured as follows. Our top-level approach to solving MWDS,
which consists of breaking the problem into subproblems in small squares, is presented in Section 2.
In Section 3, we show how the subproblem can be reduced to a special disk cover problem and give
a constant-factor approximation algorithm for the latter problem. We also describe how this implies
a constant-factor algorithm for the general weighted disk cover problem with unit disks. Section 4
shows how we can make a dominating set connected while incurring a cost that is bounded by a
constant factor times the cost of the optimal connected dominating set. In Section 5, we apply our
techniques to obtain a 3-approximation algorithm for the forwarding set problem. Finally, we give our
conclusions and mention some open problems in Section 6.

2 Algorithm for minimum-weight dominating sets

Let an instance of MWDS in unit disk graphs be given by a set D of weighted unit disks in the plane.
The weight of disk d ∈ D is denoted by wd ≥ 0. Each disk has radius 1 and is specified by the
coordinates of its center. For U ⊆ D, we write w(U) for

∑

d∈U wd.
Our algorithm uses a parameter µ < 1; we can set µ = 0.999. We partition the plane into squares

of side length µ. The square Sij , for i, j ∈ Z, contains all points (x, y) with iµ ≤ x < (i + 1)µ and
jµ ≤ y < (j + 1)µ.

For a square Sij that contains at least one disk center, let Dij be the set of disks in D whose center
is in Sij . Let N(Dij) denote the set of all disks in D \ Dij that intersect a disk in Dij . We consider
a subproblem to be solved for each square Sij that can be stated as follows: Find a minimum-weight
set of disks in Dij ∪N(Dij) that dominates all disks in Dij . Let OPTij denote an optimal solution to
the subproblem for square Sij . In Section 3, we will present an algorithm that outputs a solution Uij

for the subproblem satisfying w(Uij) ≤ 2 ·w(OPTij). In the end, we output the union of all sets Uij

that we have computed. It is clear that this yields a dominating set.

Theorem 1 There is a constant-factor approximation algorithm for the minimum weight dominating
set problem in unit disk graphs.

Proof. The algorithm described above outputs a dominating set U of weight at most
∑

w(Uij).
Here and in the following, the summation is over all squares Sij that contain at least one disk center.
As we will present a 2-approximation algorithm to solve each subproblem in Section 3, we have
w(Uij) ≤ 2 · w(OPTij). Let OPT denote an optimal dominating set for the whole instance. Let
OPT[Sij] = OPT ∩ (Dij ∪ N(Dij)). Note that OPT[Sij] is a feasible solution to the subproblem
for square Sij and therefore we have w(OPTij) ≤ w(OPT[Sij]).

We get w(U) ≤ ∑

w(Uij) ≤ 2
∑

w(OPTij) ≤ 2
∑

w(OPT[Sij]). The sum
∑

w(OPT[Sij])
adds the costs of solutions OPT[Sij] for all squares Sij that contain at least one disk center. Note that
a disk d in OPT can be in OPT[Sij] only if its center is in Sij or it intersects a disk with center in

3

Sij . Therefore, the distance between the center of d and the square Sij is at most 2. Consequently,
there are only O(1/µ2) squares Sij such that d can be in OPT[Sij]. More precisely, all such squares
must be fully contained in a disk of radius 2 +

√
2µ around the center of d, and for µ = 0.999

that disk can contain at most b(2 +
√

2µ)2π/µ2c = 36 such squares. This means that the number
of times each disk in OPT contributes its weight to

∑

w(OPT[Sij]) is bounded by 36. We get
∑

w(OPT[Sij]) ≤ 36 · w(OPT) and, thus, w(U) ≤ 2
∑

w(OPT[Sij]) ≤ 72 · w(OPT). �

3 Solving the subproblem for a small square

In this section we present a 2-approximation algorithm for the following problem: Given a µ × µ
square Sij , where µ < 1, and the set of disks Dij ∪ N(Dij), compute a minimum-weight set of disks
that dominates all disks in Dij .

Let OPTij denote the set of disks in an optimal solution for the problem. In the following, we
will often write that the algorithm “guesses” certain properties of OPTij . Such guesses are to be in-
terpreted as follows: The algorithm tries all possible choices for the guess (there will be a polynomial
number of such choices) and computes a solution for each choice. In the end, the algorithm outputs
the solution of minimum weight among all solutions found in this way. Some guesses may not lead
to feasible solutions; such guesses are discarded. In the analysis, we concentrate on the solution in
which the algorithm makes the right guess about OPTij . It then suffices to show that the solution the
algorithm finds for that guess is a constant-factor approximation of the optimum, because the solution
output by the algorithm in the end will be at least as good as the one it finds for that guess.

First, the algorithm guesses the largest weight w of a disk in OPTij . Note that there are at most
n possible values for this guess (where n is the number of disks in the instance). If there is a disk of
weight at most w in Dij , the algorithm simply outputs that disk as the solution (note that the disk has
its center in Sij and therefore dominates all other disks in Dij), and this solution is optimal. If there
is no disk of weight at most w in Dij , we know that OPTij consists entirely of disks in N(Dij) of
weight at most w. In this case, we first discard all disks from N(Dij) that have weight larger than
w and arrive at the following problem: Find a set of disks of minimum weight from N(Dij) that
dominates all disks in Dij . A disk d1 from N(Dij) dominates a disk d2 from Dij if and only if the
distance of the centers of d1 and d2 is at most 2. Therefore, we can increase the radius of the disks
in N(Dij) from 1 to 2 and reduce the radius of the disks in Dij from 1 to 0 and obtain an equivalent
problem: If D′ denotes the set containing the enlarged version of the disks in N(Dij) and P denotes
the set of centers of the disks in Dij , we need to find a minimum-weight subset of the disks in D′

that covers all points in P . Furthermore, we can renormalize the setting so that the disks in D ′ have
radius 1. The renormalized square S is now a δ × δ square, with δ = µ/2 < 1/2. Therefore, the
problem to be solved can be stated as follows:

Disk cover in a small square: Given a set P of points in a δ×δ square S, where δ < 1/2,
and a set D′ of weighted unit disks, find a minimum-weight subset of D′ that covers all
points in P .

In the following subsection, we will present a 2-approximation algorithm for this problem. In view of
the discussion above, this implies that we have a 2-approximation algorithm for the problem of com-
puting a minimum-weight set of disks that dominates all disks in Dij for a given µ×µ square Sij , and
this is the ingredient that we needed in the previous section to obtain the constant-factor approximation
algorithm for MWDS in unit disk graphs.

4

UL

CL

LL LM LR

CR

URUM

Figure 1: One-hole solution (left), many-hole solution (middle), naming of regions (right)

3.1 Algorithm for disk cover in a small square

We are given a set P of points in a δ × δ square S and a set D′ of n weighted unit disks, and we want
to find a minimum-weight subset of D′ that covers all points in P . Let OPT′ denote a set of disks
constituting an optimal solution to this problem.

Let C be the area covered by the union of the disks in OPT′. A hole of OPT′ is defined to be a
topological component of S \ C. Intuitively, if S was a glass window and the disks in OPT′ were to
cover parts of this window, the holes would be the connected regions where one can still see through
the window.

Definition 1 OPT′ is a one-hole solution if it has exactly one hole and each disk in OPT′ forms
part of the boundary of that hole (and that part consists of more than 1 point). OPT′ is a many-hole
solution if it has at least two holes.

Definition 1 is illustrated in Fig. 1. If OPT′ is neither a one-hole solution nor a many-hole solu-
tion, it must be of one of the following types: Either OPT′ has no hole at all, or it has one hole but not
all disks in OPT′ form part of the boundary of the hole. If OPT′ does not have a hole, we can delete
one disk d from OPT′ (and remove all points in d from P) to obtain a solution with at least one hole.
If OPT′ has one hole but not all disks are on the boundary of the hole, let d′ be a disk that is not on
the boundary of the hole. If we delete d′ from OPT′ (and the corresponding points from P), we have
at least two holes and arrive at a many-hole solution. Therefore, OPT′ can always be converted into
a one-hole or many-hole solution by deleting at most two disks.

The algorithm guesses whether OPT′ is a one-hole solution or a many-hole solution. If OPT′

is neither of these, the algorithm also guesses this and additionally guesses the one or two disks that
need to be removed from OPT′ (and added to the solution computed by the algorithm) in order to
obtain a one-hole or many-hole solution. Hence, we can assume that OPT′ is a one-hole or many-hole
solution and that the algorithm has guessed correctly which of the two is the case. In each of the two
cases, we will encounter subproblems that can be solved by dynamic programming, as stated in the
following lemma.

Lemma 1 Let P be a set of points located in a strip between the horizontal lines y = y1 and y = y2

for some y1 < y2. Let D be a set of weighted unit disks with centers above the line y = y2 (upper
disks) or below the line y = y1 (lower disks). Furthermore, assume that the union of the disks in
D contains all points in P . Then a minimum-weight subset of D that covers all points in P can be
computed in polynomial time.

5

Proof. A solution consists of some upper disks and some lower disks. All upper disks in the solution
intersect the line y = y2, and all lower disks the line y = y1. We view the upper halfplane bounded by
y = y2 and the lower halfplane bounded by y = y1 as special cases of disks (with weight 0). For a set
U of upper disks and a point p ∈ P with x-coordinate xp, we say that an upper disk u ∈ U is active
at xp if its lowest intersection point with the vertical line x = xp has the smallest y-coordinate among
all lowest intersection points of disks u′ ∈ U with that line. If there are two or more active upper disks
at x = xp by this definition, we consider only the one with leftmost center. For lower disks, active
disks are defined similarly (i.e., having an intersection point with x = xp of largest y-coordinate). For
a given solution and a given x-coordinate xp, there is one active upper disk and one active lower disk
at xp (and each of these could also be the respective halfplane, as mentioned above). The algorithm
computes a table Tp for every point p ∈ P , in order of non-decreasing x-coordinates. For ease of
presentation, we assume that no two points have the same x-coordinate. Let p1, p2, . . . , pk denote the
points of P in order of increasing x-coordinates. For an upper disk u and a lower disk d, the table
entry Tpi

(u, d) denotes the optimal weight of a solution that covers all points from p1 up to pi and has
u and d as the active upper and lower disk, respectively, at xpi

. (If u and d do not cover pi, we say
that u, d is not feasible for pi and set the table entry to ∞.) The table Tp1

can be initialized by setting
Tp1

(u, d) = wu + wd for all pairs of disks u and d that cover p1. Once the tables for p1, . . . , pi−1

have been computed, the table entries Tpi
(u, d) for all feasible disks u and d for pi can be computed

as follows:

Tpi
(u, d) = min{Tpi−1

(u′, d′) + [u 6= u′] · wu + [d 6= d′] · wd | u′, d′ feasible for pi−1}

Here, the term [u 6= u′] is 1 if u 6= u′, and 0 otherwise (and similarly for [d 6= d′]). Intuitively,
the equation is based on the observation that an optimal solution covering p1, . . . , pi with u and d as
active disks for xpi

can be obtained by adding u and d to an optimal solution corresponding to some
Tpi−1

(u′, d′), where the weight of u or d needs to be added only if xpi
is the first x-coordinate for

which u or d is active. The correctness of the calculation in the case of unit disks follows from the
fact that an upper or lower disk can be active in the solution only for points in P that are consecutive
(except if the disk is actually the lower or upper halfplane mentioned above, but these special disks
have weight 0 and therefore do not cause problems if their weight is added each time they become
active). The weight of an optimal solution for the disk cover problem can be found by locating the
minimum value Tpk

(u, d) among all feasible disks u, d for pk. The solution itself can be found using
standard bookkeeping techniques. �

In the following two subsections, we deal with the one-hole case and the many-hole case, respec-
tively.

3.1.1 One-hole solutions

Assume that OPT′ is a one-hole solution. The boundary of the hole is formed by disks from OPT′

and, potentially, some parts from sides of the square S (we view the latter as special kinds of disks
with weight 0 and infinite radius, i.e., halfplanes, and do not treat them explicitly in the following).
All disks in OPT′ have their centers outside S. Using the lines that are the extensions of the sides
of S, we can partition the plane outside S into 8 regions in the natural way (see also Fig. 1): upper
left region (UL), upper middle region (UM), upper right region (UR), central right region (CR), lower
right region (LR), lower middle region (LM), lower left region (LL), and central left region (CL). The
upper region (U) is the union of UL, UM and UR, and similarly for the lower region (L).

If we follow the boundary of the hole in counterclockwise direction, we will encounter disks with
center in CL, then disks with center in L, then disks with center in CR, then disks with center in U .

6

d`

dL

du

pu

x

p`

L

p`

du

d`

pu

x

dL

d

cL

c

Figure 2: The region L is defined by parts of the boundaries of disk dL, drawn dashed, and disks du

and d` (left). A disk d with center not in CL from OPT′ intersecting L must have its center in the
cone of two halflines starting at the center cL of dL and passing through pu and p`, respectively (right)

The points on the boundary that are in the intersection of two consecutive disks on the boundary are
called corners. Each corner is determined by two disks (the disks on whose boundaries it lies).

Among all corners that are determined by at least one disk whose center is in CL, let p` denote the
one with the smallest y-coordinate and let pu denote the one with the largest y-coordinate. Let p′` and
p′u be defined analogously with respect to CR. (The case where no part of the boundary of the hole
is created by disks with center in CL or CR is easier and is not treated in detail here.) The algorithm
guesses the corners p`, pu, p′` and p′u and the pairs of disks determining them. As there are only O(n2)
pairs of disks, the number of potential guesses is polynomial.

Let dL be the unit disk that has p` and pu on the boundary and has its center to the left of the line
p`pu. Note that in general dL is not a disk that is part of the input of the problem. Let d` and du be the
disks from OPT′ that have their center in CL and contain p` and pu, respectively, on the boundary. Let
x be the intersection point of the boundaries of d` and du that is closer to S. Let L be the connected
region that is delineated by the boundary of dL between pu and p`, and by the boundary of d` between
x and p`, and by the boundary of du between pu and x. See Fig. 2 (left) for an illustration.

Lemma 2 The only disks in OPT′ that intersect L have their center in CL or in the union of UR, CR
and LR. Furthermore, no disk from OPT′ with center in CL can cover a point outside L that is not
already covered by du or d`.

Proof. As pu and p` are on the boundary of the hole, no disk in OPT′ can contain pu or p` in its
interior. Hence, any disk d from OPT′ that intersects L must either have its center to the left of the
line p`pu and intersect the parts of the boundaries of d` and du that define L, or it must have its center
to the right of the line p`pu and intersect the boundary of L twice on the part that is also a boundary
of dL. In the former case, the y-coordinate of the center of d must lie between the y-coordinates of
the centers of d` and du, and hence d must have its center in CL. (To see this, consider the disk d′

that is obtained from d by shifting it horizontally to the right until it first contains pu or p` on its
boundary; observe that the disk du can be rotated around pu until it becomes identical to d′, with its
center continuously moving downward; the same argument can be applied to the disk d` and shows

7

that the center of d′ must have larger y-coordinate than the center of d`. By the same argument, we
also have that cL must lie in CL.) In the latter case, the center c of d must lie in the cone of points
between the halflines starting at the center cL of dL and passing through p` and pu, respectively, see
Fig. 2 (right). We want to show that c cannot be in UM or LM. Assume for a contradiction that c is
in UM (the case for LM is similar). The slope of the line connecting cL and pu is at most δ/

√
1 − δ2.

Therefore, the largest y-coordinate of a point in the intersection of the cone and UM is bounded by
ypu

+ δ2/
√

1 − δ2, so the distance between pu and any point in that intersection is at most δ/
√

1 − δ2

(see Fig. 3 for an illustration). Hence, for δ <
√

2/2 (and we even have δ < 1/2), a unit disk with

pu

≤ δ

square S

≥
√

1 − δ2

≤ δ/
√

1 − δ2

cL

Figure 3: Any disk with center in the cone and in UM contains point pu, for δ <
√

2/2

center in that intersection must contain pu. Thus, c cannot be in UM, as d would then contain pu in its
interior. Similarly, we get that c cannot be in LM. Furthermore, c clearly cannot be in UL or LL, as it
must be to the right of pu. Hence, we have shown that c must be in the union of UR, CR and LR.

We have shown that the only disks in OPT′ that intersect L have their center in CL or in the union
of UR, CR and LR. It remains to show that no disk from OPT′ with center in CL can cover a point
outside L that is not already covered by du or d`. Let d′ be a disk from OPT′ with center in CL. All
disks from OPT′ are on the boundary of the hole, and pu and p` are the topmost and lowest corners,
respectively, that are determined by at least one disk with center in CL. Therefore, d′ must appear on
the boundary of the hole between pu and p`. This implies that d′ \ (du ∪ d`) consists of one region
that is contained in L and a second region that is outside the square S (and cannot contain any points
from P). This establishes the claim. �

Similar to L, we can define a region R with respect to CR, p′` and p′u, and the analogue of Lemma 2
holds for R.

Let P ′ be the set of points that is obtained from P by removing the points that are contained
in one of the disks determining the four corner points guessed by the algorithm. For the points in
P ′ ∩ (L ∪ R), we can compute an optimal disk cover using Lemma 1 (rotated by 90◦), since the
points are contained in the vertical strip containing S and the only disks that need to be considered for
covering them have their center to the left or to the right of the strip. The remaining points in P ′ can
only be covered by disks with center in U or in L by OPT′, hence we can again compute an optimal
disk cover for them using Lemma 1. If we output the union of the two disk covers, we have computed
a 2-approximation to the overall disk cover problem in this square.

3.1.2 Many-hole solutions

Now we consider the case that OPT′ is a many-hole solution. There must be two disks d1, d2 ∈ OPT′

such that S \ (d1∪d2) consists of two disjoint regions and each of these two regions contains a hole of

8

d1

c1

d2

c2

y-axis

x-axis

CL CR

U

bounding square b

L

square S

Figure 4: New coordinate system for the many-hole case

OPT′. (As a special case, d1 or d2 could be any halfplane that touches a side of S but does not contain
S; in this case, we would have a single disk from OPT′ that intersects the square in such a way that
two holes are created.) We use a new coordinate system in which the y-axis contains the centers c1

and c2 of d1 and d2, respectively, and the intersection points of the boundaries of d1 and d2 are on the
x-axis. Let b be the smallest axis-parallel square containing the (rotated) square S. Let δ ′ be the side
length of b. Note that δ′ ≤ δ

√
2 <

√
2/2. See Fig. 4 for an illustration. As for the one-hole case, we

partition the plane outside b into regions UL, UM, UR, CR, LR, LM, LL, CL, and we define regions
U and L as before.

The disks d1 and d2 create two holes in S; we refer to the left hole as LH, and to the right hole
as RH. Because OPT′ is a superset of {d1, d2}, OPT′ may contain more than two holes, but all the
holes in OPT′ are contained in either LH or RH.

We begin with some observations: It is clear that for a point with coordinates (x, y) that is con-
tained in LH or RH, we have |y| < 1−

√
1 − x2. Furthermore, for any two points such that one is from

LH and one from RH, the y-distance between the points is at most 1 −
√

1 − α2, where α is the x-
distance between the points. This follows from the following computation. Assume the first point has
coordinates (−α1, y1) and the second point (α2, y2), for some α1, α2 ≥ 0. We have α1+α2 = α ≤ δ′,
and the y-distance of the points is bounded by |y1|+ |y2| ≤ 1−

√

1 − α2
1 +1−

√

1 − (α − α1)2. We
find that this expression is maximized at α1 = α and α1 = 0, giving an upper bound of 1−

√
1 − α2.

Lemma 3 In OPT′, no disk with center in the union of UR, CR and LR (in the union of UL, CL and
LL) can intersect LH (RH).

Proof. We consider the case of LH and the union of UR, CR and LR only. The other case is symmetric.
For brevity, let R denote the union of UR, CR and LR.

Assume, for a contradiction, that there is a disk d in OPT′ that has its center c in R and intersects
LH. We will show that d covers RH completely, contradicting our assumption that OPT′ is a many-
hole solution with at least one hole in RH.

Assume that d does not cover RH completely. Then there must be a point q in RH that is not
contained in d. Furthermore, as d does not cover LH completely, there must be a point p in LH that

9

p

C

c′

v
q

u

1

1

c

α

h α′

Figure 5: No disk from the union of UR, CR and LR can intersect LH

lies on the boundary of d. Assume without loss of generality that q is not below p. As d contains
p but not q and its center is to the right of q, c must lie below q. Moreover, c lies on a circle C of
radius 1 with center p, because d has p on its boundary. See Fig 5. Consider point c′ on C at distance
1 from q and below q (observe that c′ exists because p and q are at most

√
2/2 apart). Let α denote

the angle of lines qp and qc′ and let α′ denote the angle of line qp and the negative y-axis. Observe
that both α and α′ are at most 180◦. Because c lies left of c′ on circle C, it is enough to show that
α ≤ α′, i.e., cos α ≥ cos α′, i.e., c is not in R (a contradiction). Let u, h and v denote the distance,
the horizontal distance and the vertical distance of p and q. Then cos α = u/2 and cos α′ = v/u. We
have v ≤ 1 −

√
1 − h2, i.e., 1 − h2 ≤ (1 − v)2, i.e., 2v ≤ v2 + h2 = u2, i.e., v/u ≤ u/2, which

concludes the proof. �

Our approach to the weighted disk cover problem in the many-hole case can now be outlined as
follows. We will show that LH contains a region L such that points in L can be covered only by disks
with center in CL by OPT′. Let P ′ ⊆ P be the points in LH that are not in L and are not already
covered by the disks the algorithm guesses to define L. We will show that points in P ′ can only be
covered by disks with center in U or L. The same approach will be applied to RH. This breaks the
problem into two independent subproblems: covering points in L and in the corresponding region of
RH using disks with center in CL or CR, and covering the remaining points using disks with center in
U or L. Each of the two subproblems can be solved optimally by dynamic programming (Lemma 1).
Since the subproblems are independent, the union of their optimal solutions gives an optimal solution
to the disk cover problem in the many-hole case.

In the following we discuss this solution approach for points from P that are in LH in more detail.
The arguments for RH are symmetric. Lemma 3 shows that no disk with center in the union of UR,
CR and LR can intersect LH. We distinguish the following three cases concerning disks with center
in CL that are contained in OPT′:

1. OPT′ does not contain any disk with center in CL.

2. OPT′ contains one disk with center in CL.

3. OPT′ contains two or more disks with center in CL.

10

The algorithm guesses which of the three cases holds for OPT′. In the first case we have that all
points in LH are covered by disks with center in U or L by OPT′. In the second case, we have to
additionally guess the disk d with center in CL that is in OPT′. The remaining points in LH (those
that are not covered by d) can then again only be covered by disks with center in U or L by OPT′.

It remains to deal with the third case, where OPT′ contains two or more disks with center in CL.
We can show that in this case, all disks from OPT′ with center in CL must lie on the boundary of the
same hole.

Assume that the boundary of the solution contains a part of a disk with center in CL (as we will
show in Lemma 7, this is always the case). Let pu and p` be the corners with largest and smallest
y-coordinate, respectively, among all corners of holes that are determined by at least one disk with
center in CL. Let du and d` be the disks with center in CL that determine pu and p`, respectively, and
let dL be the disk with center to the left of pu and p` that contains pu and p` on the boundary. (Note
that dL is in general not a disk that is part of the input.) By our assumption pu and p` are distinct.

The algorithm guesses these points and the disks determining them. The disks du, d` and dL

define a region L in the same way as in the one-hole case, see Fig. 2 (left). The region L contains
points from P that are covered in OPT′ using disks with center in CL (see Lemma 4). It follows that
these disks form a boundary between pu and p` of the same hole (Lemma 5). And, because every
disk from OPT′ with center in CL must be on this boundary (Lemma 6), the disks with center in CL
cannot cover any other point outside L.

The points in LH that are not in L must be therefore covered by disks with center in U or L.
Similarly, the points in RH can be split into those that can only be covered by disks with center in
CR and those that can be covered by disks with center in U or L. We create two subproblems that
can be solved by dynamic programming (Lemma 1): one subproblem for the points to be covered by
disks with center in U or L, and one subproblem for the points to be covered by disks with center in
CL or CR. For both subproblems, there is a (vertical or horizontal) strip that contains all the points
to be covered while all disks have their centers outside that strip. As OPT′ cannot contain a disk
that covers points from both subproblems, the union of the optimal solutions to the two subproblems
actually gives an optimal disk cover for the square.

Lemma 4 OPT′ does not contain any disk with center outside CL that intersects L in LH.

Proof. Let d be a disk that has its center c outside CL and that intersects L in LH. Since c is not in
CL, c has to be to the right of the line p`pu and d intersects dL twice between the points pu and p`.
We claim that c must be in the union of UR, CR and LR. This follows by the same arguments as in
the proof of Lemma 2 (which are applicable since δ ′ ≤

√
2δ <

√
2/2). However, Lemma 3 shows

that no disk with center in the union of UR, CR and LR intersects LH, and therefore no such disk can
intersect L in LH. �

Lemma 5 pu and p` lie on the boundary of the same hole in OPT′, and the boundary between pu

and p` is formed by disks with center in CL (or parts of sides of S) only.

Proof. Observe that from the construction of the region L we have that all disks with center in CL that
are on the boundary of the solution can appear only in the region L. Since no other disk than those
with center in CL can intersect L (Lemma 4), the results follows. �

In the following, we define `u and `d to be the horizontal lines that contain the upper and lower
side of b, respectively.

Lemma 6 If there is a disk with center in CL that lies on the boundary of a hole in OPT′, then all
disks with center in CL lie on the boundary of a hole in OPT′.

11

`u

cy

dy

y

1

1

1

1

x

U

L

CL

`d

LH

dx

cx

p`

Figure 6: Setting in the many-hole case where a disk with center in CL lies on the boundary

Proof. For a contradiction, assume that d′
l ∈ OPT′ has its center in CL but does not lie on the

boundary of any hole in OPT′. Let T denote the set of disks in OPT′ that have their centers in CL.
Consider the boundary BT formed by disks in T inside b. Disk d′l must lie on BT . Let q be a corner
point of BT formed by d′l. Recall that pu and p` are the highest and lowest corner points of OPT′

that are determined by a disk with center in CL. This means that pu and p` are the highest and lowest
points on BT that are also on the boundary of a hole in OPT′. q cannot be between pu and p` on BT

by Lemma 5. Therefore, let us assume that q lies below p`. (If q lies above pu, the arguments are
analogous.)

Let dx with center in CL and dy with center in L be the disks that determine p`. (Observe that dy

has to exist; if p` is created as an intersection of dx and `d, then q cannot be below p`.) Let cx and cy

be their respective centers, see Fig. 6. Let x be the rightmost intersection point of the boundary of dx

and `d. Let y be the leftmost intersection point of the boundary of dy and `d. The only area that is left
uncovered by disks dx and dy and that could be covered by d′l lies in the triangular region with corner
points p`, x and y. That region is nonempty if y lies to the right of x. We claim that if x = y, then cy

lies in R, the union of UR, CR and LR. Thus if y moves to the right of x, then cy moves to the right as
well, i.e., cy stays in R, which is a contradiction to Lemma 3. We are left to prove the claim. Assume
that x = y. Let h be the horizontal distance of cy and p` (see Fig. 7 for an illustration). Observe that
h is equal to the horizontal distance of cx and x (for this observe that line cxp` is parallel to line xcy).
Therefore, h ≥

√
1 − δ′2. For δ′ ≤

√
2/2 we have h ≥ δ′ and therefore cy lies in R. �

Lemma 7 There can be at most one disk d` ∈ OPT′ that has its center in CL and is not on the
boundary of OPT′.

Proof. Assume for contradiction that there are at least two disks with center in CL that do not appear
on the boundary of OPT′. Lemma 6 implies that then all disks with center in CL do not appear on

12

cx

1

b

cy

δ′

dx

p`

≤ δ′

h

h x `d

1

1

1

Figure 7: The shown setting is impossible: Center cy must lie to the right of b because h > δ′

the boundary of OPT′. Now we proceed similarly as in the proof of Lemma 6. Let T denote the
set of disks in OPT′ that have their center in CL. Consider the boundary BT formed by disks from
T inside b (and observe that all disks from T appear on BT). Let dx and dz be two adjacent disks
on BT (with common corner point q), and assume without loss of generality that dx is above dz , i.e.,
the center cx of dx is above the center cz of dz , see Fig. 8. We can assume that q is in LH, because
otherwise one of the two disks dx and dz would be redundant. Because no disk with center in CL
is on the boundary of OPT′, point q must be covered by some disk with center in U or L (note that
Lemma 3 shows that q cannot be covered by a disk with center in the union of UR, CR and LR).
Assume that q is covered by a disk dy with center cy in L (the case when cy is in U is analogous). Let
x and z be the rightmost intersections of the disks dx and dz , respectively, with line `d. Points that are
covered by dz and not by dx must be in the triangular region qxz. We show that the triangular region
qxz is covered by dy, and therefore dz could be removed from OPT′, a contradiction to the fact that
OPT′ is an optimum solution. Disk dy does not cover the entire triangular region qxz if and only if y,
the leftmost intersection of dy and `d, is to the right of x. (Note that the rightmost intersection of dy

and `d is always to the right of x, if dy has center in L.) If dy has q on its boundary (i.e., the distance
of cy and q is 1), we can argue similarly as in Lemma 6 (q takes the role of p`) and show that dy must
have its center cy in the union of UR, CR, LR. It is easy to observe that if the distance from cy to q is
less than 1, cy remains in the union of UR, CR and LR, which contradicts Lemma 3. �

In summary, we have shown that in both the one-hole case and the many-hole case we can obtain a
2-approximation (in the many-hole case, even an optimal solution) of the minimum-weight disk cover
for the given δ × δ square S. Furthermore, all other cases (no holes, or one hole with not all disks
on the boundary of the hole) can be reduced to one of these cases by guessing one or two disks in the
optimal solution. Therefore, we obtain a 2-approximation algorithm for the problem of computing a
minimum-weight disk cover in a small square.

3.2 Algorithm for general weighted disk cover with unit disks

We remark that our result on disk cover in a small square also implies a constant-factor approximation
algorithm for the general weighted disk cover problem with unit disks (i.e., given a set of points
and a set of weighted unit disks, find a minimum-weight set of disks that covers all the points). We

13

`u

dz

cz

q

cy dy

y z
x

U

L

CL
cx

dx

`d

Figure 8: Setting for the many-hole case where no disk with center in CL is on the boundary

can simply partition the plane into δ × δ squares and compute an approximate disk cover for each
square. Then we output the union of all computed disk covers as the solution. As a disk from the
optimal solution can be used to cover points in at most O(1/δ2) different δ×δ squares, we lose only a
factor of O(1/δ2) in the approximation ratio by solving the problem for each square separately. More
precisely, for every disk d, any square containing a point covered by d must be fully contained in a disk
of radius 1 +

√
2δ around the center of d, and hence there are at most bπ(1 +

√
2δ)2/δ2c = 36 such

squares (for δ = 0.999/2). Since our algorithm for disk cover in one square has approximation ratio 2,
the overall approximation ratio of our algorithm for the weighted disk cover problem with unit disks
is 72. Previously, constant-factor approximation algorithms were known only for the unweighted case
of the disk cover problem [3, 4]. Moreover, the approximation ratio 72 of our algorithm improves also
the approximation ratio 102 for the unweighted case from [4].

4 Connecting the dominating set

In this section we consider the problem of adding disks to a given dominating set in order to produce
a connected dominating set. We present an algorithm that solves this problem by adding disks of total
weight at most O(w∗), where w∗ denotes the optimal weight of a connected dominating set for the
given set of weighted unit disks. Note that the problem of connecting up a dominating set is a special
case of the node-weighted Steiner tree problem; for general graphs, the best known approximation
ratio for the latter problem is logarithmic in the size of the graph [9].

Let D be a set of weighted unit disks, and let U ⊆ D be a dominating set. Let G denote the unit
disk graph corresponding to the disks in D, and assume that G is connected (otherwise, G cannot have
a connected dominating set). The vertex set of a connected component of G[U] (the subgraph of G
induced by U) is called a cluster of U . We create an auxiliary graph H . The vertices of H correspond
to the clusters of U . For every path of length at most 3 in G that connects a vertex in one cluster c1

of U to a vertex in another cluster c2 of U and whose one or two internal vertices are not in U , we

14

add an edge between c1 and c2 to H . The weight of the edge is the sum of the weights of the disks
corresponding to the one or two internal vertices of the path. Note that H can have parallel edges.
Next, we compute a minimum spanning tree T in H . (The proof of the theorem below shows that H
is a connected graph.) Finally, we connect the dominating set U by adding all disks that correspond
to internal vertices of the paths in G that correspond to the edges of T .

Theorem 2 Let D be a set of weighted unit disks and U be a dominating set. Let w∗ be the weight
of a minimum-weight connected dominating set for D. There is an efficient algorithm that computes a
set U ′ of disks such that U ∪ U ′ is a connected dominating set and w(U ′) ≤ 17w∗.

Proof. We show that the auxiliary graph H contains a spanning tree T ′ of weight at most 17w∗. This
implies that H is connected. Furthermore, the weight of the set U ′ of disks that the algorithm adds to
U is at most the weight of the minimum spanning tree, and the weight of the minimum spanning tree
is upper bounded by the weight of T ′. Therefore, we get w(U ′) ≤ 17w∗.

It remains to show how to construct a spanning tree T ′ of H with weight at most 17w∗. Let U∗ be
an optimal connected dominating set, w(U ∗) = w∗. Let C be an arbitrary non-empty set of clusters
of U , but not the set of all clusters of U . Let C̄ be the set of the remaining clusters of U . We claim
that G must contain a path π from a vertex in some cluster in C to a vertex in some cluster in C̄ such
that π contains at most two internal vertices and has the property that all its internal vertices are in
U∗ \ U . (Note that such a path π corresponds to an edge in H .) To prove the claim, we argue as
follows. Let x be an arbitrary vertex in a cluster in C, and y an arbitrary vertex in a cluster in C̄.
As U∗ is a connected dominating set, there must be a path p in G from x to y all of whose internal
vertices are in U ∗. Let x′ be the last vertex on p that is not in U and that is dominated by a vertex x′′

in a cluster in C. Note that such a vertex x′ must exist. Furthermore, x′ or the vertex y′ after x′ on p
must be dominated by a vertex y′′ in a cluster in C̄. Therefore, we obtain the desired path as x′′, x′, y′′

or x′′, x′, y′, y′′.
Now we can create a spanning tree of H as follows. We start with a tree consisting of a single

vertex of H (corresponding to some cluster of U) and grow the tree by repeatedly finding a path π in
G that connects a vertex from a cluster in the tree to a vertex in a cluster not in the tree and has the
properties discussed above. The claim above shows that such a path must exist. We can thus grow the
tree by adding the edge in H that corresponds to the path π. This is repeated until we have a spanning
tree T ′.

The weight of each edge in the spanning tree T ′ corresponds to the weight of the internal vertices
(which are in U∗) of a path of length at most 3 that connects different clusters of U . Furthermore, a
vertex (disk) d of U ∗ can contribute to at most 17 edges of H: Whenever d contributes to the weight
of an edge, it is an internal vertex of a path that connects two clusters of U whose closest disks have
(graph-theoretic) distance at most 2 from it. However, the set of disks at distance at most 2 from d can
contain at most 18 disjoint disks (see e.g. [16]) and therefore at most 18 disks from different clusters
of U . As the spanning tree can contain at most 17 edges between these 18 clusters, we obtain that d
contributes its weight to at most 17 edges of the spanning tree T ′. Consequently, w(T ′) ≤ 17w∗. �

Together with Theorem 1, we obtain the following corollary.

Corollary 1 There is a constant-factor approximation algorithm for the minimum-weight connected
dominating set problem in unit disk graphs.

The approximation ratio of the algorithm of Corollary 1 is at most 72 + 17 = 89.

15

5 A 3-approximation algorithm for minimum-weight forwarding sets

In this section we consider the minimum-weight forwarding set problem (MWFS). In this problem,
we are given a distinguished unit disk do (the source disk), a set of weighted unit disks D with centers
in do, and a set of points P in the plane outside do (but contained in the union of the disks in D). The
goal is to find a minimum-weight subset D′ of D such that every point in P is covered by at least one
disk from D′. In the unweighted version of the problem (MFS), all disks have weight 1. Obviously,
the problem is a special case of the disk cover problem.

MFS and MWFS arise in wireless ad-hoc networks in the context of the efficient implementation
of flooding [4]. Flooding is a broadcasting mechanism where each node forwards the message to all
its neighbors. This leads to many redundant messages. A more efficient implementation is obtained
by letting each node forward the message only to a subset of the one-hop neighbors (the forwarding
set) that covers all the two-hop neighbors. If the wireless network is modeled as a unit disk graph,
the problem of determining a smallest (or minimum-weight) forwarding set for a node is just MFS (or
MWFS) as defined above.

Calinescu et al. [4] devised a 3-approximation algorithm for MFS. We combine our ideas from
Section 3 with their approach and obtain a 3-approximation algorithm for MWFS, the weighted ver-
sion of the problem. The 3-approximation algorithm ALG for the unweighted case from [4] partitions
the points in P according to the four quadrants defined by two orthogonal lines through the center o
of disk do, and then independently solves the covering problem for each quadrant. The union of these
four disk covers is then a disk cover for all the points in P . Clearly, the same approach can be applied
to the weighted case as well.

Lemma 8 ([4]) If an α-approximation algorithm is used for the (weighted) covering problem in each
quadrant, the approximation ratio of ALG is at most 3α.

The proof of this lemma is based on the observation that each disk in D can cover points from P
in at most three quadrants.

We present an optimal algorithm for the weighted covering problem of points in one quadrant,
thus obtaining a 3-approximation algorithm for MWFS.

Lemma 9 There is a polynomial-time optimal algorithm for the minimum-weight forwarding set
problem if the points P lie in one quadrant only.

Proof. For a disk d ∈ D, let w(d) denote the weight of the disk. Let Q be the quadrant in which
the points P lie. Let Q′ = Q − do be the external quadrant, i.e., the quadrant without the disk do.
Observe that in any optimal solution D′, each disk d ∈ D′ appears in Q′ on the boundary of the
solution (where the boundary of the solution means the boundary of the union of the disks from D ′).
To see this, consider a point p ∈ P . Let op be the half-line starting at o and passing through p. Because
p is covered by D′, the half-line must intersect the boundary of D′ at some point o′ that lies beyond
the point p. Let d′ ∈ D′ be the disk that contains o′. We say that disk d′ is active at p. Observe that o′

is in Q′. Because every disk from D contains o, the disk d′ contains the whole segment of op between
o and o′. Thus the disk d′ contains p as well. Therefore, if there is a disk d ∈ D′ that is not on the
boundary of the solution, we could remove the disk and keep the points covered, a contradiction to D ′

being an optimal solution.
In [4] it was proved that in Q′ the boundaries of any two disks from D can intersect in at most

one point. This implies that each disk from the optimal solution appears on the boundary of D ′ in Q′

exactly once (i.e., there is exactly one continuous part of the disk on the boundary).

16

We present a dynamic programming approach for the covering problem of points in Q (which is
an adaptation of the dynamic programming from Lemma 1). Assume that the points in P are ordered
according to their polar coordinates (with the reference center being o). The algorithm computes a
table with entries Ti(dj) that store the cost of an optimal solution for covering the points p1, . . . , pi in
such a way that dj is active at pi. If there is no solution for which dj is active at pi, we set the entry
to ∞. Computing T1(dj) is straightforward: We set T1(dj) = w(dj) if dj covers p1, otherwise we set
T1(dj) = ∞. For a disk dj that covers pi, we can compute the cost Ti(dj) using

Ti(dj) = min
k

{Ti−1(dk) + [j 6= k] · w(dj) | dj active at pi for the solution of Ti−1(dk)}.

Here, the term [j 6= k] is 1 if j 6= k, and 0 otherwise. The correctness of the computation is justified
by the fact that each disk can be active only for points in P that are consecutive. The weight of the
optimal solution can be obtained as the minimum of the table entries Tn(d), where n is the number of
points in P and d ranges over all disks in D that cover pn. The optimal solution itself can be obtained
using standard bookkeeping techniques. �

Theorem 3 There is a 3-approximation algorithm for the minimum-weight forwarding set problem.

6 Conclusion

We have presented the first constant-factor approximation algorithms for MWDS and MWCDS in unit
disk graphs. Our techniques also yield a constant-factor approximation algorithm for the weighted
disk cover problem with unit disks, and a 3-approximation algorithm for the weighted forwarding set
problem.

Our algorithms for MWDS and MWCDS make use of the geometry of the disks and therefore
require the disk representation as part of the input. It would be interesting to determine whether
similar approximation ratios can be achieved if the disk representation of the unit disk graph is not
given as part of the input.

As our algorithm for MWDS partitions the plane into small squares and solves the problem for
each square separately, it is suitable for a distributed implementation. However, the running time of
our algorithm, although polynomial, is quite large, since the algorithm must try all possibilities for the
many guesses it makes about the optimal solution. Furthermore, the approximation ratio is not a very
small constant. It would be interesting to design an improved algorithm for MWDS that is faster and
achieves a better approximation ratio. An interesting question is whether MWDS or MWCDS even
admit a PTAS for unit disk graphs. Finally, it would be interesting study whether MDS or MWDS
admit approximation algorithms with ratio better than Ω(log n) on general disk graphs.

References

[1] K. Alzoubi, P.-J. Wan, and O. Frieder. Message-optimal connected dominating sets in mobile
ad hoc networks. In Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc 2002), pages 157–164, 2002.

[2] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal
of the ACM, 41(1):153–180, 1994. Extended abstract published in the proceedings of FOCS’83,
pp. 265–273, 1983.

17

[3] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-dimension. Discrete
& Computational Geometry, 14(4):463–479, 1995.

[4] G. Calinescu, I. Mandoiu, P.-J. Wan, and A. Zelikovsky. Selecting forwarding neighbors in
wireless ad hoc networks. Mobile Networks and Applications, 9(2):101–111, 2004.

[5] X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Du. A polynomial-time approximation scheme for
the minimum-connected dominating set in ad hoc wireless networks. Networks, 42(4):202–208,
2003.

[6] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics,
86:165–177, 1990.

[7] U. Feige. A threshold of ln n for approximating set cover. In Proceedings of the 28th Annual
ACM Symposium on Theory of Computing (STOC’96), pages 314–318, 1996.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, New York-San Francisco, 1979.

[9] S. Guha and S. Khuller. Improved methods for approximating node weighted Steiner trees and
connected dominating sets. Information and Computation, 150(1):57–74, 1999.

[10] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems in
image processing and VLSI. Journal of the ACM, 32(1):130–136, 1985.

[11] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and R. E.
Stearns. NC-Approximation schemes for NP- and PSPACE-hard problems for geometric graphs.
Journal of Algorithms, 26(2):238–274, 1998.

[12] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329–343,
1982.

[13] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple heuristics for
unit disk graphs. Networks, 25:59–68, 1995.

[14] E. J. van Leeuwen. Approximation algorithms for unit disk graphs. In Proceedings of the 31st
International Workshop on Graph-Theoretic Concepts in Computer Science (WG’05), LNCS
3787, pages 351–361, 2005.

[15] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[16] Y. Wang and X.-Y. Li. Distributed low-cost backbone formation for wireless ad hoc networks.
In Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc 2005), pages 2–13, 2005.

18

