
OPERATIONS RESEARCH
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000
issn 0030-364X |eissn 1526-5463 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Connectivity Measures for Internet Topologies on the
Level of Autonomous Systems

Thomas Erlebach
Department of Computer Science, University of Leicester, UK, t.erlebach@mcs.le.ac.uk

Linda S. Moonen*, Frits C.R. Spieksma
Operations Research Group, Katholieke Universiteit Leuven, Belgium, {linda.moonen | frits.spieksma}@econ.kuleuven.be

Danica Vukadinović
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able to compute optimal solutions to instances of realistic size of the connectivity problems in the valley-free
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teristics of the directed graph models of the AS-level Internet produced by different inference algorithms. It

turns out that (i) we can quantify the difference between the undirected AS-level topology and the directed

graph models with respect to fundamental connectivity measures, and (ii) the different inference algorithms

yield topologies that are similar with respect to connectivity, and are different with respect to the types of
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1. Introduction

It is a cliché to state that stability and robustness of the Internet are fundamental for ensuring

today’s efficient communication. Maintaining the speed and the reliability of Internet-based com-

munication is a prime challenge for service providers, their clients, and other involved institutions.

In order to understand the potential vulnerability of Internet-based communication, we need to

get an idea of the routes that are being used for sending traffic, of the routes that could be used

for sending traffic, and how different ways of sending traffic vary with respect to their susceptibil-

ity to failing systems and/or failing connections. Recent incidents such as the Middle East fiber

cut in January 2008 and the Taiwan earthquake in December 2006 each upsetting internet traffic

emphasize this point, see also Wu et al. (2007).

A first step is then to find out how traffic is being sent over the Internet. This, however, is

already not so easy to find out (Chang et al. 2004). To explain this, let us view the Internet as a

set of Autonomous Systems (ASs; an AS is a subnetwork under separate administrative control),

which are connected by physical links. ASs exchange routing information using the Border Gateway

Protocol (BGP); this is a protocol that governs the communication between a pair of ASs. More

specifically, each AS uses a local routing policy that determines which routes are announced to

which neighboring ASs. For commercial reasons, details about these local policies of individual ASs

are not publicly available. Obviously, this makes it difficult to create an accurate model that can

be used in the analysis of the robustness of the Internet.

The routing policies impose restrictions on the paths that traffic can take in the network. These

restrictions can be captured by the so-called valley-free path model, explained below in more detail.

The valley-free path model assumes a special directed graph model of the Internet on the level

of Autonomous Systems, referred to as AS-level Internet, that contains information about the AS

relationships. Algorithms that infer such directed graph models from available routing data have

been proposed in the literature.

We consider the adaptation of two classical measures of network connectivity, the number of

disjoint paths and the size of a minimum cut, to the valley-free path model. Our first main con-

tribution is to present exact algorithms (i.e., algorithms that are guaranteed to find an optimal

solution) for these classical connectivity problems adapted to the valley-free path model. The algo-

rithms are based on integer programming formulations of the problems and use paradigms such as

branch-and-price and branch-and-bound. Our second main contribution is an experimental evalu-

ation of these algorithms applied to four types of directed graph models of the AS-level Internet

produced by different inference algorithms. Most importantly, the evaluation confirms that our
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algorithms are able to compute optimal solutions to instances of realistic size of the connectivity

problems in the valley-free path model in reasonable time. Furthermore, our experimental results

provide some information about the characteristics of the directed graph models of the AS-level

Internet produced by different inference algorithms. Our algorithms also make it possible to quan-

tify the difference between the undirected AS-level topology and the directed graph models with

respect to fundamental connectivity measures; we further motivate the relevance of the comparison

of these different graph models in Section 1.2. Thus, our work focuses on connectivity; for other

characteristics of topologies of the AS-level Internet (such as degree) we refer to Mahadevan et al.

(2005).

Let us proceed by describing the background of this work in more detail. Routing policies depend

mostly on the economic relationships between ASs. They represent an important aspect of Internet

structure. The main trends in the diversity of commercial agreements between ASs are discussed in

Huston (1999a,b). We will refer to routing policies governed by the BGP as BGP routing policies,

or BGP policies for short. A good survey of BGP routing policies and interdomain traffic engineer-

ing can be found in Quoitin et al. (2003) and Caesar and Rexford (2005). The impact of economic

relationships on the engineering level, more precisely on BGP policies, has been recognized as one

of the reasons for BGP path inflation (i.e., the phenomenon that traffic uses paths that are some-

times longer than necessary; see Gao and Wang (2002)) and one of the important factors in route

convergence analysis (i.e., the fact that, when a previously valid path to a destination D becomes

invalid, it can take a long time until the network has obtained a new valid path to D (Labovitz

et al. 2001)). Thus, the previously adopted undirected model of the Internet, which ignores BGP

policies, is only a crude approximation of reality and might produce a distorted picture of the routes

used in practice. On the other hand, incorporating all of the peculiarities of the manifold contracts

between ASs in a new model would add too much complexity (assuming one would know these

contracts). Therefore, a coarse classification of AS relationships into three categories—customer-

provider, peer-to-peer, and siblings—has been proposed (Gao 2001). More recent work has focused

attention mainly on customer-provider and peer-to-peer relationships (Subramanian et al. 2002).

If ASs A and B are in a customer-provider relationship, i.e., if A is a customer of B, then B

announces all its routes to A, but A announces to B only its own routes and routes of its own

customers. If they are peers, they exchange their own routes and routes of their customers, but not

routes of their providers or other peers. If ASs A and B are siblings, then A announces all its routes

to B and B announces all its routes to A. These policies arise because customers do not want to

act as transit ASs for their providers, i.e., a provider cannot route traffic through a customer to a
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different provider of that customer. As a consequence, only valley-free paths are valid, i.e., paths

that first go “up” in the hierarchy and then “down” towards the destination. (A formal definition

will be given in Section 2. In this paper we will use the terms “valley-free path” and “valid path”

interchangeably.)

Thus, one arrives at the following model. The Internet is a graph containing the ASs as vertices.

The graph can have directed and undirected edges. There are three different ways in which two

vertices A and B can be connected:

i) an undirected edge between A and B. This is interpreted as “A and B are peers.”

ii) a directed edge from A to B, and a directed edge from B to A. This is interpreted as “A and

B are siblings.”

iii) a directed edge from A to B, and no directed edge from B to A. This is interpreted as “A is

customer of B.”

The resulting graph is called a ToR graph (see Section 2 for formal definitions). Two ASs with

at least one physical link between them are connected by a single edge (or a single pair of edges,

in the case of siblings) in this model, no matter how many physical links there are between these

two ASs. For comparison, note that the previously adopted undirected graph model of the Internet

consisted of an undirected graph with an undirected edge between two ASs if there is at least one

physical link between them.

Since information about the economic relationships between ASs is not publicly available (such

information is often treated like a business secret, see e.g. Chang et al. (2005)), four algorithms

have been proposed for inferring these relationships from BGP routing table information (see Gao

(2001), Subramanian et al. (2002), Di Battista, Patrignani, and Pizzonia (2003), Erlebach, Hall, and

Schank (2002)). However, it is not known how good the topologies produced by these algorithms

are and how these topologies differ from each other; we intend to (partially) answer this question.

Classical measures of network connectivity are the number of disjoint paths between two nodes,

and the minimum size of a cut separating these two nodes. In view of the large impact of BGP

policies in the Internet, we are interested in an adaptation of these connectivity measures to the

valley-free path model: We would like to compute the maximum number of vertex-disjoint valley-

free paths between two ASs and the minimum size of a valid cut between two ASs, i.e., the minimum

number of vertices that must be removed from the graph so that no valley-free path between these

two ASs remains. It is well known that in the standard graph models (in the standard model, a

path consists of a sequence of forward arcs in the directed case and of a sequence of undirected

edges in the undirected case) the maximum number of disjoint paths between s and t is equal to
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the size of a minimum s-t cut (provided that s and t are not adjacent); moreover, the corresponding

solutions can be computed efficiently (see Ahuja, Magnanti, and Orlin (1993)). In a ToR graph

this is not the case. It is NP-hard to compute the maximum number of vertex-disjoint s-t paths;

it is also NP-hard to compute the minimum size of a valid s-t cut. The best known approximation

ratio is 2 for both problems. Also, the minimum size of an s-t cut can be up to twice the maximum

number of vertex-disjoint s-t paths. Thus, the max-flow min-cut equality holds only approximately

for ToR graphs (Erlebach et al. 2005). Here, we present algorithms that are able to obtain optimal

solutions with a moderate amount of computation time using exact approaches, one of which

involves applying a branch-and-price algorithm. Furthermore, we apply our new exact algorithms

for the computation of connectivity measures in the valley-free path model to the directed graph

models produced by four different inference algorithms. Our experimental results confirm that it

is feasible to compute the minimum size of an s-t cut as well as a maximum number of vertex-

disjoint paths, in real AS-level Internet graphs in reasonable time. We also compare the results

from the exact methods with those of the 2-approximation algorithms from Erlebach et al. (2005),

thus providing some insight into the solution quality of these known approximation algorithms on

realistic instances.

We also compute disjoint paths and minimum cuts in the undirected Internet graph and compare

the results with those of the different directed models, thus allowing to quantify the difference in

connectivity between the undirected and directed graph models.

Additionally, our experimental results also provide information about the characteristics of the

directed graph models obtained with different inference algorithms. We further investigate the

differences between the four inference algorithms by also considering other aspects of the graph

models they produce. Apart from investigating the connectivity of the different graph models,

we report statistics concerning the number of ASs that are connected by a directed path in the

different directed models, a quantity that is related to the depth of the provider hierarchy and

to the customer-preference aspect of current inter-domain routing (Feigenbaum et al. 2002). The

latter means that paths through customers are preferred over paths through peers, and these to

paths through providers. We also study directed customer-provider cycles, which are a somewhat

unexpected structure, in the directed graph models. We claim that these cycles can help to detect

misclassified relationships and thus improve the accuracy of the Internet topology, see Section 1.2

for a further motivation.

In summary, our investigations address the following research questions:
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• In a graph on the scale of the Internet (containing up to 11,000 vertices and 30,000 edges, for

the February 2004 snapshot, after pruning vertices of degree one), is it feasible to compute exact

solutions to the NP-hard problems of finding a maximum number of vertex-disjoint valley-free

paths between two ASs or the size of a minimum cut? Such computations could prove useful for

ASs that want to evaluate different options for selecting upstream ISPs to improve the robustness

of their connection to the Internet, or more generally in future investigations of robustness issues

of the Internet.

• How does the performance of the 2-approximation algorithms proposed in Erlebach et al.

(2005) compare to the performance of the exact algorithms, both in the quality of the solutions

found and in the running times?

• How large are the differences between the undirected graph model and the directed graph

models with respect to connectivity properties?

• How do the directed graph models produced by the four algorithms proposed in Gao (2001),

Subramanian et al. (2002), Di Battista, Patrignani, and Pizzonia (2003), Erlebach, Hall, and Schank

(2002) compare to each other? Here, we are mainly interested in (i) comparing connectivity mea-

sures, (ii) the depth of the provider hierarchy, and (iii) the occurrence of directed customer-provider

cycles in the directed graph models.

1.1. Related work

Our starting point for the interpretation of BGP policies is the work described in Gao (2001)

that addressed the problem of unavailable information about the exact relationships between ASs.

A heuristic algorithm was proposed for inferring AS relationships from BGP routing tables. In

addition, it was observed that a path between a pair of ASs follows a particular structure: no path

contains more than one peer-to-peer relationship, and once a provider-customer or peer-to-peer

relationship is encountered in the path, no customer-provider relationship can follow. If we ignore

sibling relationships for the moment and imagine that providers are at a higher level than their

customers and peers are at the same level, the valid paths are “only up,” “only down,” or “first

up and then down.” Valid paths can have only one “peak” (which can consist of a single AS or of

two ASs connected by a peer-to-peer relationship) and they must not contain “valleys.” Therefore,

such paths are also called valley-free paths. We use the same characterization of valid paths in this

paper.

Further work trying to infer AS relationships is presented in Subramanian et al. (2002). They

formalize the problem by posing it as the optimization problem of giving an orientation to the
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edges of an undirected AS graph with the objective of maximizing the number of paths in the

given BGP tables that become valid for this orientation. They pose the complexity of this problem

as an open question. They also give a heuristic algorithm that infers relationships by first ranking

all ASs and then applying certain rules to decide about the relationships between pairs of ASs

using the rank values. Independently obtained results in Di Battista, Patrignani, and Pizzonia

(2003) and Erlebach, Hall, and Schank (2002) resolve the open question of Subramanian et al.

(2002) and prove this inference problem to be NP-hard. Two heuristic algorithms for calculating

approximately optimal orientations with respect to the number of valid paths are also presented in

Di Battista, Patrignani, and Pizzonia (2003) and Erlebach, Hall, and Schank (2002), respectively.

In Rimondini et al. (2004), the algorithms from Subramanian et al. (2002) and Di Battista,

Patrignani, and Pizzonia (2003) are compared with respect to two measurements. First, the AS

relationships that are found by a certain algorithm on data sets from different moments in time

are considered (called the stability in the paper). Second, the AS relationships found by the two

algorithms on the same data set are taken into account (this is referred to as algorithm inde-

pendence). They conclude that both algorithms produce highly stable results, and that the AS

relationships found by both algorithms are very similar. This leads the authors to the conclusion

that the valley-free path approach leads to reliable results.

In another paper (Xia and Gao 2004), a comparison of the algorithms from Gao (2001) and

Subramanian et al. (2002) is performed. Furthermore, in this paper, a new algorithm for inferring

AS relationships is proposed, which is also taken into account in the comparison. The authors

evaluate the accuracy of the three algorithms using partial AS relationships obtained from BGP

community attribute and IRR (Internet Routing Registry) databases. They conclude that the new

algorithm proposed in the paper outperforms the algorithms from Gao (2001) and Subramanian

et al. (2002).

In Teixeira et al. (2003), the number of vertex- and edge-disjoint paths is computed for the

undirected model of the Internet AS topology, as well as for the topology of one Internet Service

Provider (ISP). They did not take routing policies into account.

1.2. Motivation

In this paper we investigate the number of vertex-disjoint valley-free paths and the size of a

minimum valid cut. These criteria serve as a measure of the connectivity between a pair of ASs,

and they are natural generalizations of the traditional max flow and min cut criteria for ordinary

graphs. We show how these two measures can be computed exactly and in reasonable time for
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AS-level Internet graphs that are constrained by BGP policies. Both connectivity measures are

important in practice. The size of a minimum cut represents the minimum number of other ASs

that must fail in order to disconnect a given pair of ASs; assuming that the routing protocol

automatically finds a path as long as a valid path exists in the network, the size of a minimum

cut is thus the natural metric for the robustness of the Internet connection between two ASs. The

number of disjoint valley-free paths between two ASs, on the other hand, is more relevant in a

setting where important data is sent simultaneously along different paths in order to make sure

that at least one copy of the data reaches the receiver. This might allow to investigate potential

gains of multipath extensions to BGP. If data is sent along k disjoint paths between two ASs,

the data can be received even if up to k − 1 arbitrary ASs fail. Interestingly, as there can be a

gap of factor two between the minimum cut size and the maximum number of disjoint paths in

the valley-free path model, these two views of robustness are not equivalent in this model: even if

the minimum cut has size k, it is not always possible to find k static paths that make the data

transmission resilient against k− 1 failures.

Our algorithms can be used to evaluate adjustments to the topology at the AS-level, both from

the viewpoint of an individual AS as well as from a more global point of view. As discussed in

Chang et al. (2003a, 2006), ASs periodically revise their (peering) relationships with other ASs

based on different criteria, among which reachability of other parts of the Internet is a prime one.

More specifically, an existing AS might consider improving the robustness of its connection to the

Internet by changing or adding peering relationships with ISPs. Our algorithms could serve as a

tool to evaluate the gains in connectivity arising from different choices of peering partners. Similary,

consider the situation of a newly created AS that wishes to connect to several ISPs in order to

achieve a very robust connection to the Internet. Using our algorithms, the new AS could evaluate,

for different choices of ISPs, the resulting connectivity to other important ASs in the Internet.

More precisely, for each potential choice of providers, the new AS could use our algorithms to

determine the robustness of its connectivity to the most important ASs to/from which it expects

to send/receive a significant amount of traffic. In this way the new AS could identify an optimal

choice of providers (given its budget and the potential providers and their costs), see also Wang

and Loguinov (2006).

It is also conceivable that organizations (or governments) that have an interest in helping to

maintain a high level of robustness in a larger part of the Internet would use our algorithms to

evaluate the connectivity and identify potentially problematic bottlenecks, indicated by small valid
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cuts between important ASs. In this way, our results may be helpful to achieve more resilient and

efficient inter-domain routing.

By computing connectivity measures on the directed graph models as well as the underlying

undirected graph, we can also quantify the impact of BGP routing policies on connectivity mea-

sures. The significant difference that we observe in the connectivity of the directed and undirected

models confirms the large impact of BGP policies on routing in the Internet that has already

been observed in a number of other contexts (Gao and Wang 2002, Labovitz et al. 2001, Tangmu-

narunkit et al. 2001a,b, 2003). In addition, the observed gap between the undirected and directed

model might be used to explore to what extent backup routes (routes not used because they violate

business relationships) can improve robustness (see also Wang et al. (2007)).

Furthermore, we perform extensive computational experiments with our new exact algorithms

on four types of topologies of the AS-level Internet. Apart from demonstrating the usability of our

algorithms on realistic instances, our investigations also provide useful information on the similari-

ties and differences between the topologies produced by the four different inference algorithms from

Gao (2001), Subramanian et al. (2002), Di Battista, Patrignani, and Pizzonia (2003), Erlebach,

Hall, and Schank (2002). We believe that it is important to learn more about the characteristics

of the topologies produced by different inference algorithms, as recent results about measurements

on the AS level of the Internet have shown that there is a need for a simple and accurate algorithm

to infer relationships; see Spring, Mahajan, and Anderson (2003) about path inflation in inter-

and intra-domain routing, Akella et al. (2003b) about multi-homing (i.e., the phenomenon that

customers tend to have more than one external link to different providers, in order to guarantee

the reliability of their network), and Akella et al. (2003a) about scaling properties of the Internet

regarding link congestion. Thus, in addition to the two connectivity measures, we study aspects

such as the depth of the provider-hierarchy in the different topologies and the presence of so-called

customer-provider cycles. When two ASs are connected via different paths, there might be an

incentive to prefer one path over the other. As described in Spring, Mahajan, and Anderson (2003),

routing through a customer brings profit, through a peer is neutral, and through a provider incurs

costs for the sender. Obviously, this may have implications for the particular path chosen, and

therefore we report statistics about the depth of hierarchy and so-called customer chains in the

directed graph models. Finally, we investigate the occurrence of directed customer-provider cycles.

Our analysis indicates that this concept can be useful for detecting misclassifications.
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1.3. Outline

Section 2 gives formal definitions of the concepts that we require in this paper, and we discuss a

primal-dual formulation of the problem. Section 3 deals with the computation of vertex-disjoint

valid paths; Section 4 describes how we compute minimum cuts with respect to valid paths. Section

5 reviews the known 2-approximation algorithms for solving both problems. In Section 6, we present

our experimental results concerning the number of vertex-disjoint valid paths and the sizes of

minimum cuts in the four different models with inferred relationships and the undirected model.

We discuss their implications and also the differences that we observe in the depth of the provider

hierarchy in the different models. Statistics about directed cycles in the graphs are given and some

examples where they can be used to detect misclassifications are shown. We conclude in Section 7

by summarizing our results and drawing conclusions.

2. Problem description

In order to formulate the problem, we first state some preliminaries in Section 2.1. Then, in

Section 2.2 we give a mathematical formulation for the problems of finding the maximum number

of vertex-disjoint paths and minimum cut sizes.

2.1. Preliminaries

In Subramanian et al. (2002), Di Battista, Patrignani, and Pizzonia (2003), Erlebach, Hall, and

Schank (2002), the problem of inferring the AS relationships in the Internet is referred to as the

Type of Relationship (ToR) problem. Following this terminology, we construct a graph G = (V,E),

called a ToR graph, as follows: the vertices of G are the ASs. As mentioned before, a directed edge

from u to v, where u, v ∈ V , together with a directed edge from v to u means that u and v are

siblings. A directed edge from u to v means that u is a customer of v, and an undirected edge

means that u and v are in a peer-to-peer relationship. In a ToR graph, a directed edge from u to

v is denoted by (u, v), and an undirected edge between u and v by {u, v}.

We define a path p = (v1, v2, . . . , vr) from v1 to vr in a ToR graph G = (V,E) to be valid if it

satisfies one of the two following conditions:

1. There exists some j, 1≤ j ≤ r, such that (vi, vi+1) ∈E for 1≤ i≤ j − 1 and (vi, vi−1) ∈E for

j +1≤ i≤ r.

2. There exists some j, 1 ≤ j ≤ r, such that (vi, vi+1) ∈ E for 1 ≤ i ≤ j − 1, {vj, vj+1} ∈ E, and

(vi, vi−1)∈E for j +2≤ i≤ r.
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Otherwise, a path is called invalid. This definition of valid paths captures the notion of “valley-free”

paths arising from BGP routing policies. From now on, whenever we talk about paths in a ToR

graph, we refer to valid paths. A path from s to t is also called an s-t path. Note that the reverse

of an s-t path is a t-s path, hence the direction of a valid path is not important. Two s-t paths are

called vertex-disjoint if they do not share any vertices except s and t.

Let p = (v1, v2, ..., vr) be a valid path from s to t. We can divide p into a forward part and a

backward part at some node vj , such that (vi, vi+1) ∈ E, i = 1,2, . . . , j − 1 (we know by definition

that such a j exists; if j is not unique, we simply choose the maximal value for j). If p contains

only directed edges, we say that a node v` is on the forward part of p if ` < j, v` is on the backward

part of p if ` > j and v` is the node where p changes direction if ` = j. If p contains an undirected

edge, we say that a node v` is on the forward part of p if ` ≤ j and v` is on the backward part if

` > j.

Let G = (V,E) be a ToR graph. For two non-adjacent vertices s and t in G, a minimum valid

s-t cut in G is a set of vertices C ⊆ V \{s, t} of minimum cardinality such that there is no s-t path

in the ToR graph G \C (i.e., in the graph that is obtained from G by deleting the vertices in C

and their incident edges). Note that a minimum valid s-t cut is a smallest set of ASs whose failure

disconnects s and t if only valid paths are allowed.

A directed cycle v = (v1, v2, . . . , vr), r > 2, in a ToR graph G = (V,E) is defined in the usual

sense, i.e., the vertices v1, v2, . . . , vr are distinct and we have (vi, vi+1) ∈ E for i = 1, . . . , r − 1 and

(vr, v1)∈E.

[INSERT FIGURE 1 AROUND HERE]

As mentioned before, the maximum number of vertex-disjoint paths can be strictly less than the

number of nodes in a minimum cut; we give an example from Erlebach et al. (2005) to illustrate

this. In Figure 1 we see that the maximum number of vertex-disjoint paths is equal to 1, while

the size of a minimum cut equals 2. Indeed, one can verify that the set of valid s-t paths equals

{(s, a, b, t), (s, a, b, c, t), (s, a, c, t), (s, a, c, b, t), (s, c, b, t)}, and thus the maximum number of vertex-

disjoint paths is equal to 1. Furthermore, one can easily verify that a minimum cut has at least

size 2, since after removing one of the nodes a, b or c, there is still a valid path connecting s and t.

2.2. Problem formulation

Let us now give two integer programming formulations; the first formulation (denoted by P) models

the problem of finding a maximum number of vertex-disjoint paths between s and t, the second

formulation (denoted by D) models the problem of finding a minimum-sized set of nodes such that

each path between s and t contains at least one node from this set.
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Let G = (V,E) be a ToR graph and s, t two distinct vertices of G. Assume that there is no direct

edge between s and t (otherwise, we remove the direct edge, compute the maximum number of

vertex-disjoint s-t paths, and add one to the result). Denote by P the set of all valid s-t paths in

G, and let Vp be the set of all vertices contained in path p ∈ P, except for s and t. Further, we

define a decision variable xp for each valid path p, as follows:

xp =

{

1 if valid path p is in the solution
0 otherwise.

Using a set-packing formulation, we get the following integer programming formulation:

(P) max
∑

p∈P

xp (1)

s.t.
∑

p:v∈Vp

xp ≤ 1 ∀v ∈ V \ {s, t} (2)

xp ∈ {0,1} ∀p∈P (3)

The objective (1) is to maximize the number of paths between s and t. Constraints (2) state

that each vertex (except for s and t) can belong to at most one path, and constraints (3) are the

zero-one constraints on the xp variables.

The second formulation has a variable yv for every v ∈ V \ {s, t}:

yv =

{

1 if vertex v is in the s-t cut
0 otherwise.

The second formulation can now be given as follows:

(D) min
∑

v∈V \{s,t}

yv (4)

s.t.
∑

v∈Vp

yv ≥ 1 ∀p∈P (5)

yv ∈ {0,1} ∀v ∈ V \ {s, t} (6)

A property of formulations (P) and (D) is that the LP-relaxation of (P) and the LP-relaxation

of (D) constitute a primal-dual pair of linear programs. Further, notice that formulation (P) has

exponentially many variables (since the number of valid s-t paths can be exponential in the number

of vertices), and, equivalently, formulation (D) has exponentially many constraints.
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3. Problem P: vertex-disjoint paths in ToR graphs

In this section we present two exact algorithms for solving problem P; i.e., for finding the maximum

number of vertex-disjoint paths in ToR graphs. The first one is a branch-and-price algorithm

based on the integer programming formulation (1)-(3) (Section 3.1), and the second algorithm is

a branch-and-bound method in which a max-flow computation has to be performed in each node

of the search tree (Section 3.2).

3.1. A branch-and-price algorithm

Branch-and-price is a technique for solving integer programs with a huge number of variables.

We refer to Barnhart et al. (1998) or Vanderbeck and Wolsey (1996) for a thorough description

of this technique. Here we apply it to solving instances of formulation (P). There are (at least)

two important issues to be considered when developing a branch-and-price algorithm: (i) how to

solve the pricing problem (this enables us to conclude that either we have solved the LP-relaxation

of (P), or we have identified a new variable (column) to be added to the restricted master (see

Section 3.1.1)); (ii) how to branch. We need to develop a partition of the solution space in such a

way that the efficient solvability of the pricing problem is preserved (see Section 3.1.2).

3.1.1. Column generation. We start by generating a feasible solution (consisting of a set

of vertex-disjoint paths) as follows. We apply a simple breadth-first search to find a valid path

between s and t, we add this path to the solution, and remove all nodes in this path (except s

and t) from our graph. Then a new iteration starts, and we repeat the breadth-first search until

no more valid paths can be found. The resulting set of paths found by this iterated breadth-first

search is denoted by P ′, and its value (number of disjoint paths) is referred to as VP′ . We consider

the restriction of the LP-relaxation of (P) to the variables xp for p ∈ P ′ (the restricted master

problem). We solve the restricted master using an LP-solver and obtain a solution to the restricted

primal program and its corresponding dual. Let us call the dual solution y∗. Now, we need to check

whether y∗ is also a feasible solution to the dual program that includes constraints for all paths

p ∈ P. In other words, we need to check whether there exists a valid s-t path p in the graph such

that
∑

v∈p
y∗

v < 1. This problem is known as the pricing problem (Vanderbeck and Wolsey 1996).

We can solve the pricing problem in polynomial time, thereby implying that the LP-relaxation of

formulation (P) (as well as the LP-relaxation of (D)) can be solved in polynomial time.

Claim 1. The LP-relaxation of (P) can be solved in polynomial time.
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Proof. We prove the claim by showing that the pricing problem can be reduced to a shortest

path problem. The result then follows from the “separation = optimization” result in Grötschel,

Lovász, and Schrijver (1988).

Consider the so-called 2-layer graph that has been proposed in Erlebach et al. (2005) (we first

assume that there are no undirected edges in G): two copies G1 and G2 of graph G are created,

but in G2 all edge-directions are reversed. Then, so called “vertical edges” are added, i.e., directed

edges from the vertices in G1 to their copies in G2. Finally, s in G1 is identified with its copy

in G2 and all edges that end in s are removed, and t in G1 is identified with its copy in G2 and

all edges that start in t are removed. In this way, all valid s-t paths in G correspond to directed

paths from s to t in the 2-layer model: If a valid s-t path in G first uses some forward edges and

then some backward edges, its forward part in the 2-layer model lies in G1, then it switches to the

second layer using a vertical edge, and then it goes again forward to t in G2 because of the inverted

edge-directions. (See Figure 2 for an illustration.)

[INSERT FIGURE 2 AROUND HERE]

We can deal with undirected edges in the following way. For an undirected edge {a, b}, we do

not add corresponding edges to G1 or G2, but instead add directed edges (a1, b2) and (b1, a2) to the

2-layer model, where a1, a2 (b1, b2) are the copies of a (b) in G1 and G2, respectively. This ensures

that valid s-t paths in G that include an undirected edge also have a corresponding path in the

2-layer model.

Next, we define the edge weights of the 2-layer graph as follows: edges entering a copy of vertex

v get weight y∗
v , except for vertical edges, which get weight 0. Observe that a shortest directed

path from s to t in the 2-layer model gives us a valid s-t path in G that minimizes the sum of the

y∗
v values of the vertices on the path. Since the shortest path problem can be solved in polynomial

time (using for instance Dijkstra’s algorithm), we can solve the pricing problem in polynomial time.

Q.E.D.

If the solution of the pricing problem produces a valid s-t path p such that the sum of y∗
v values

on this path is less than 1, we add path p to the restricted master and repeat the procedure. If

there is no such path, we are done and have obtained an optimal solution to the LP-relaxation of

(P). If the obtained solution is fractional, i.e., contains variables whose values are strictly between

0 and 1, we use a branching strategy in order to arrive at an integral solution.

3.1.2. Branching. If the optimal solution to the linear programming relaxation is fractional,

a natural approach is to try different ways of fixing these variables to integers and solving the

problem recursively for each of these alternatives (branching). Here it is important to preserve the
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form of the pricing problem and its efficient solvability in the branching procedure. We achieve this

as follows.

Given a feasible, optimal solution x∗ to the LP-relaxation of (P), we call a vertex fractional if it

has at least three incident edges that lie on different valid paths with value x∗
p > 0. Notice that if

a solution is fractional, it has at least one fractional vertex. Our branching strategy is as follows:

for a fractional vertex w, we delete all edges incident to w except two that could lie consecutively

on some valid path. Each possible way of doing this forms a branch. Thus, for instance, if w has

k incoming edges and ` outgoing edges, the number of branches is k` +
(

k

2

)

. If there are many

fractional vertices, we choose one for branching that has a maximum number of incident edges

lying on fractional paths.

In this way we exclude the current fractional solution, but do not exclude any integral solution,

and the problem structure is preserved: in each branch, we solve a problem of the same type on a

graph with fewer edges.

For each branch, if the value of the fractional solution is not larger than the value of the best

integral solution found so far, we do not enter that branch. Otherwise, we explore all branches in

a depth-first traversal. In this way we are sure to arrive at an optimal integral solution to (P).

We remark that our approach can be adapted easily to a version of the problem where each

vertex v has an integral capacity cv and we allow up to cv valid paths passing through it. (Here,

valid paths could occur more than once in the solution.) To solve this version of the problem, we

simply replace each vertex v by cv copies and then apply our algorithm as described above.

The branch-and-price algorithm for a given a ToR graph G and two distinct vertices s and t is

summarized by the pseudo-code given in Figure 3.

[INSERT FIGURE 3 AROUNG HERE]

3.1.3. Valid inequalities. In order to strengthen the LP-relaxation, a natural strategy is

to add valid inequalities. In this section we will discuss a class of inequalities that is valid for

formulation (P) of the vertex-disjoint paths problem. We will refer to these inequalities as triangle

inequalities.

As the name suggests, we consider triangles in the ToR graphs. We define a triangle as a subset

of three vertices which are connected with customer-provider edges in such a way that they do not

form a directed cycle. For example, if there are three vertices a, b and c, and there is an edge from

a to b, an edge from a to c and a third edge from b to c, this is a triangle. For each such triangle

t = (a, b, c), we define Tabc = {p ∈ P| p contains {a, b} or {a, c} or {b, c}}.
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Now, for every triangle t in a ToR graph the following inequality states that the sum of all valid

paths using one of the three edges in t must be smaller than or equal to one:

∑

p:p∈Tabc

xp ≤ 1 ∀ triangles (a, b, c)∈ V 3 (7)

It is clear that inequalities (7) are valid for (P). One can view inequalities (7) (as well as inequal-

ities (2)) as a manifestation of clique-inequalities for the node packing problem. Indeed, when we

build a graph in which there is a node for every path p ∈ P, and where two nodes are connected

iff the two corresponding paths share a vertex in the ToR graph, it is obvious that the node pack-

ing problem on this graph is exactly problem (P). Notice that inequalities (2) and (7) need not

constitute all clique inequalities in the node packing graph. In Section 6.2 we report briefly on the

computational effectiveness of these inequalities.

3.2. A branch-and-bound algorithm

Our second algorithm for solving the vertex-disjoint paths problem is a non LP-based branch-and-

bound algorithm, in which we use the same 2-layer graph representation as explained in Section 3.1.

We start with an initial solution, computed by the iterated breadth-first search discussed in

Section 3.1. The value of this solution is a lower bound on the integer optimum. Next, we compute

a maximum flow in the 2-layer graph, where we assign a capacity of 1 to each vertex. The flow we

find is not necessarily vertex-disjoint (since it may happen that the maximum flow found uses a

node in G1 and its copy in G2), so it is an upper bound on the optimal solution. We first check

whether the flow found by the maximum flow procedure is vertex-disjoint, or equal to the lower

bound, in which case we have found the integer optimum. Otherwise, we have to branch, which we

do as follows:

In every node in the search tree, we select a vertex v from the original graph that is used more

than once in the flow found by the maximum flow procedure. This vertex v has a copy v1 in the first

layer, and a copy v2 in the second layer of the 2-layer graph. Now, we generate two new branches

as follows:

In the first branch, we delete vertex v1, and all its adjacent edges, from the 2-layer graph. In the

second branch, we delete all incoming edges of v2, except for the vertical edge (v1, v2), from the

2-layer graph. Next, we perform a maximum flow calculation in each branching node, and repeat

this procedure until we have found the integer optimum. The correctness of the branching step

follows from the observation that if a node occurs in a path of the solution, it is either on the

backward part of the path, which is permitted in the first branch, or it is on the forward part or
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it is the node where the path changes direction (see Section 2.1), which is permitted in the second

branch.

The branch-and-bound algorithm is summarized by the pseudo-code given in Figure 4. In our

implementation, we actually compute min-cost maximum flows (all edges are assigned a cost of

one) instead of standard maximum flows, as we expect that maximum flows using a minimum total

number of edges can reduce the number of branching nodes required.

[INSERT FIGURE 4 AROUND HERE]

4. Problem D: minimum cuts in ToR graphs

We solve the minimum cut problem using the dual (D) presented in Section 2.2. Since (D) might

have exponentially many constraints, we first compute a set P ′ of vertex-disjoint s-t paths using

the iterated breadth-first search as described in Section 3.1 and start by solving the LP-relaxation

of (D) using only the constraints for paths in P ′. Solving this small linear program gives us a

solution y∗. Then we check whether there is a valid path such that
∑

v∈p
y∗

v < 1, again using a

shortest-path algorithm in the 2-layer model of the graph (i.e., we solve the separation problem

with respect to constraints (5)). If such a path is found, we add the corresponding constraint to

our linear program (D) and repeat the procedure until no more valid paths with
∑

v∈p
y∗

v < 1 can

be found. The resulting solution y is an optimal solution to the LP-relaxation of (D). In case the

resulting solution y is fractional, we branch.

The branching is more straightforward than for the vertex-disjoint paths problem. If there is a

vertex v such that 0 < yv < 1, we add a constraint yv = 0 (an exclusion constraint) in one branch

and yv = 1 (an inclusion constraint) in the other branch to the linear program and solve it again,

thus having two branches for a fractional vertex. If there are many fractional vertices, we simply

branch on the first one that we find. Similarly to the previous case, we do not enter a branch where

the optimal fractional solution is at least as large as the smallest integral solution found so far.

The branch-and-cut algorithm is summarized by the pseudo-code given in Figure 5.

[INSERT FIGURE 5 AROUND HERE]

We remark that the same approach can be used to solve the generalization of the problem where

each vertex v has a weight wv and the objective is to find a valid s-t cut of minimum weight. The

only difference is that the objective function becomes min
∑

v∈V \{s,t} wvyv.

Notice that we use two different approaches for solving the linear programming relaxations of

formulations (P) and (D). We found that there were no significant differences in running-time

between these two approaches.
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5. Approximation algorithms

In this section we discuss two 2-approximation algorithms for finding the maximum number of

vertex-disjoint paths and the size of minimum cuts. Both algorithms are presented in Erlebach

et al. (2005). In order to make the presentation self-contained, we repeat the description of these

algorithms in this section. Section 5.1 deals with the algorithm for the problem of finding the

maximum number of vertex-disjoint paths, and in Section 5.2 we give the algorithm for calculating

the size of a minimum cut.

5.1. Vertex-disjoint paths

Before stating the approximation algorithm, we need some definitions. If the forward part of a

path p1 intersects a backward part of a path p2 at a node v, we speak of a crossing at v. The two

paths p1 and p2 can be recombined at the crossing to form a new path, consisting of the first part

of p1 and the last part of p2. Given a graph G = (V,E) and two vertices s and t, the algorithm is

as follows.

2-Approximation algorithm VertexDisjointPaths (Erlebach et al. 2005)

1. Construct the 2-layer graph, and calculate a maximum flow in this graph.

2. Add, for each path in this maximum flow, the corresponding path in the original graph G to

P ′.

3. Define F as the set of all forward parts of paths in P ′, and B as the set of all backward parts.

4. Label all forward parts and all crossings as unscanned. Recombine the forward and backward

parts as follows:

(a) Select an unscanned forward part pf from F that has at least one unscanned crossing.

(b) Select the first unscanned crossing c on pf , and let pb in B correspond to a backward part

containing c.

(c) Recombine pf and pb at c. Label pf and all previous crossings on pb as scanned. If pb was

already recombined with some other forward part p′
f , mark p′

f as unscanned.

(d) Are there any unscanned forward parts with unscanned crossings left?

YES: Go to step 4a.

NO: Stop: a solution is found that is vertex-disjoint.

5.2. Minimum cut sizes

We now give the approximation algorithm for finding the minimum cut between two vertices s and

t. Assume again we have a ToR graph G = (V,E) and two vertices s, t ∈ V . We also assume there
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is no direct edge in G between s and t, since a s-t cut does not exist in that case. The algorithm

is then as follows:

2-Approximation algorithm MinCut (Erlebach et al. 2005)

1. Construct the 2-layer graph, and calculate a minimum cut in this graph.

2. From the cut found in step 1, construct a cut C in G as follows: C contains all vertices v ∈ V

for which at least one copy is in the cut found in step 1.

3. Stop: C is a cut in G containing at most twice the number of nodes as in a minimum cut.

6. Computational experiments

In this section we first give a description of the data we used for our experiments (Section 6.1).

Next, in Section 6.2, we discuss some issues concerning the implementation of the algorithms. In

Section 6.3 we give computational results and discuss the performance of the different algorithms.

The algorithms described in Sections 3, 4 and 5 are executed on a number of different ToR graphs,

and we compare these results with those in the undirected model (where routing policies that are

consequences of established economic relationships are not included) in order to quantify what the

differences are with respect to the size of a minimum cut and the number of disjoint paths. Finally,

in Section 6.4, we focus on the interpretation of the results.

6.1. Description of the data

We use BGP tables from five different dates (April 2001, February 2002, April 2002, January

2003 and February 2004), available from the University of Oregon Route Views project web-site

(OREGON), to construct undirected graphs and four types of ToR graphs. This means that we

have five different graphs for each of the five points in time, giving five undirected graphs and 20

ToR graphs in total. The undirected graphs are obtained by creating an undirected edge between

two ASs if they appear consecutively in some path in the BGP tables. We also used one undirected

graph model representing the Internet of April 1–16, 2002 that we obtained from CAIDA’s Internet

Topology Data Kit, ITDK0204 (CAIDA). We refer to this graph as the CAIDA graph, to the

undirected graphs based on Oregon Route Views data as undirected BGP graphs, and to the graphs

that include AS relationships as ToR graphs. The types of ToR graphs are denoted by A, B, C,

and D as follows:

• ToR graphs of type A are obtained using the algorithm from Erlebach, Hall, and Schank

(2002). They contain only customer-provider edges, no peer-to-peer or sibling edges.
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• ToR graphs of type B are obtained using the algorithm from Di Battista, Patrignani, and

Pizzonia (2003) by running the software bgpSat publicly available from their web-page (BGPSAT).

A majority of the edges are classified by bgpSat as customer-provider edges, but the classification

of some edges is left undetermined. We classify the latter edges as peer-to-peer edges (based on the

assumption that the algorithm tries to identify all customer-provider relationships, and peer-to-peer

edges are the most common type of relationship different from customer-provider relationships).

Thus, type B graphs contain customer-provider edges and a few peer-to-peer edges.

• ToR graphs of type C are obtained from the web-page (CIMVP) and have been produced with

the algorithm from Subramanian et al. (2002). The algorithm classifies edges as peer-to-peer edges,

customer-provider edges, or unknown edges. We treat the unknown edges as sibling edges (based

on the assumption that edges that could not be classified as customer-provider or peer-to-peer by

the algorithm fall into neither of these categories and should thus be assigned the third type of

relationship).

• ToR graphs of type D are obtained with the algorithm from Gao (2001) (using the implemen-

tation (LRIP)) and contain customer-provider edges, peer-to-peer edges, and sibling edges.

[INSERT TABLE 1 AROUND HERE]

All of the inference algorithms that we have used for the construction of ToR graphs are heuris-

tics. Thus, it is interesting to see how many edges between ASs are classified in the same way

by the different algorithms; this gives us a first idea of the similarity between the different ToR

graphs. In Table 1 the percentages of identically classified edges are given for all six combinations

of ToR graphs. For example, from all the edges that are classified in the ToR graphs of type A and

of type B from April 2001, 95.53% are classified in the same way, as is shown in the first entry of

the table. From this table we see that approximately 90% of all edges are classified the same.

Since computing the maximum number of vertex-disjoint paths and the minimum cut size for

all pairs of ASs would have yielded a huge number of instances (even when omitting vertices of

degree 1, the graphs still contain roughly 7,000 to 11,000 vertices), we confine our calculations to

approximately 1000 pairs of ASs per graph. For this reason, we select 47 ASs as representatives

and carry out the computations for all possible 1081 pairs of these ASs. We have selected the

ASs by taking 47 vertices among the vertices of largest degree in the biggest R component of the

undirected BGP graph of April 2002. (A partition of Internet graphs into P, Q, R and I components

was proposed in Vukadinović, Huang, and Erlebach (2002). The biggest R component is the biggest

connected component in the graph that is obtained after deleting all vertices of degree 1 and their

neighbors.) All of the 47 selected ASs are vertices in that component that have at least 7 neighbors
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within that component. Their AS numbers and descriptions are given in Table 2. The reason for

choosing ASs with large degree was that the values of both connectivity measures are bounded by

the degree of the nodes and thus ASs with small degree would lead to a much smaller (and less

interesting) range of values. Furthermore, many of the links that are missing from the available AS-

level topologies due to measurement problems are likely to be peer-to-peer links between smaller

ASs, and hence we expect the effect of missing links to be smaller when connectivity measures for

ASs of large degree are considered. As one can see, the ASs are geographically well spread—they

are from Europe, USA, and Asia. Furthermore, there are representatives of bigger and smaller

ISPs, telecom nodes (e.g. Japanese and Belgian telecom), well-connected universities and research

centers (e.g. University of Stanford, University of Oregon, and National Center for Supercomputing

Applications), exchange points (e.g. London and Hongkong Internet Exchange), etc. This means

that we have chosen well-connected ASs with diverse functionalities and good geographic coverage

while avoiding the highest-degree nodes in the Internet (which are neighbors of leaves) as well as

nodes with very small degree.

[INSERT TABLE 2 AROUND HERE]

6.2. Implementation issues

We have implemented the algorithms in C++ using CPLEX 9.0 to solve linear programs and the

LEDA library to process graphs. Our experiments were done on a Sun Fire 480R workstation with

two 900MHz processors (our code uses only one of them) and 4GB main memory.

For all computations we have removed vertices with degree 1, since they do not affect the number

of disjoint paths or the cut sizes for any other pair of ASs. After pruning the leaf vertices, the

graphs contain about 7,000 to 11,000 vertices and 20,000 to 30,000 edges.

For the computation of disjoint paths and cuts, we replaced each peer-to-peer edge {u, v} by two

edges (u,d) and (v, d), where d is a new dummy vertex. In this way the valley-free path policy is

preserved, while the graph consists of directed edges only.

At the start of the branch-and-price algorithm for computing the maximum number of disjoint

s-t paths, we do some additional preprocessing on the graphs. First, we delete all vertices (except

s and t) for which the indegree is equal to zero. These vertices can never belong to a valid path,

so removing them will not affect the solution we find. Next, we check whether s and t belong to

the same biconnected component of the underlying undirected graph. (A biconnected component

of an undirected graph G is a subgraph of G such that we can remove any vertex of this subgraph

without disconnecting it (Harary 1969).) If so, we can run the algorithm on this component only
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(which is usually much smaller than the original graph), and in this way we still get the optimal

solution. If s and t do not belong to the same biconnected component, the number of valid paths

between s and t will be either 0 or 1. So we check whether there exists a valid path from s to t,

in which case the number of vertex-disjoint paths is equal to one. If no valid s-t path exists, our

solution is equal to zero. The 47 ASs that we have selected for our experiments were all in the

same biconnected component of the undirected BGP graphs, so that the preprocessing alone was

never enough to solve the problem. Finally, we found that adding the valid inequalities discussed in

Section 3.1.3 actually slows down the branch-and-price algorithm. In fact, the number of branching

nodes needed to solve the problem decreases, as expected, but the time needed to process a single

node increases more heavily than the decrease in number of branching nodes, so the computational

results presented next are those obtained without using the additional valid inequalities.

For the minimum cut problem, we need to get a well-defined notion of minimum s-t cuts also

for adjacent vertices. We handle such vertex pairs as follows: we remove the direct edge (or pair

of edges, in the case of a sibling relationship between s and t) between the two vertices s and t,

compute the size of a minimum s-t cut in the graph without that edge, and add 1 to the result. We

do this in the undirected graphs as well as in the ToR graphs. Note that in the undirected model,

the number of disjoint paths between two vertices is equal to the size of a minimum cut separating

these two vertices. In ToR graphs, these values can differ.

6.3. Computational results

Next, we are interested in the number of disjoint paths and the minimum cut size between pairs

of ASs in the different graphs. Section 6.3.1 discusses the performance of the two exact algorithms

for solving the vertex-disjoint paths problem. In Section 6.3.2 we give results for the performance

of the algorithm for solving the minimum cut problem, and Section 6.3.3 deals with the results

from the approximation algorithms.

6.3.1. Vertex-disjoint paths. We have tested both the branch-and-price and the branch-

and-bound algorithm described in Section 3 to calculate the maximum number of vertex-disjoint

paths for any pair of ASs. In Tables 3 and 6 we give the results of these computations.

[INSERT TABLE 3 AROUND HERE]

Table 3 gives the computational results for both algorithms. The first two columns show the

graph type and date. The third column contains the value of the integer optimum. Next we give,

for both algorithms, four columns containing the computation times (in seconds), the number of

branching nodes needed to solve the problems, the percentage of problem instances that are solved
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in less than one second, and the percentage of instances that are solved in more than 10 seconds.

All values in this table are average values over the 1081 pairs of ASs, so Table 3 contains results of

over 20,000 problem instances. While we could run the branch-and-price algorithm to completion

on all pairs in all graphs, we had to terminate the branch-and-bound algorithm on a few pairs

(at most 10 out of 1081 pairs in each of the graphs) after several hours of computation time. The

running-time and the number of branching nodes shown for the branch-and-bound algorithm in

Table 3 are thus the averages over the pairs for which the algorithm could be run to completion.

From Table 3 we conclude that, on the average, both algorithms perform well on the selected pairs

of ASs. The running-times of the branch-and-bound algorithm are much more variable. On 71.78%

of all instances, the branch-and-bound algorithm was faster than the branch-and-price algorithm.

On the other hand, the branch-and-price algorithm could solve all instances in reasonable time

(the average running-time over all instances is 3.92 seconds, while the instance with the longest

running-time took slightly more than one hour), while the running-time of the branch-and-bound

algorithm increased drastically for a few instances, thus leading to a larger average running-time

on most graphs. The number of branching nodes needed to find the integer optimum is much

larger for the branch-and-bound algorithm in comparison to the branch-and-price algorithm. For

the branch-and-price algorithm, the average number of branching nodes is surprisingly small, since

in about 89% of the problem instances the solution to the LP-relaxation is integral and we do not

need to branch at all.

6.3.2. Minimum cuts. The algorithm described in Section 4 to calculate the size of a min-

imum cut for a pair of ASs has also been executed on the ToR graphs. The results of these

computations can be found in Table 4, and we compare these results with those from the undirected

models as well (see Table 7).

[INSERT TABLE 4 AROUND HERE]

Table 4 gives the results for the ToR graphs. The first two columns show the graph type and

the date, the third column contains the optimal value of the minimum cuts, and finally we give

the computation times (in seconds), the number of branching nodes needed to find the integer

optimum, the percentage of problem instances that are solved in less than one second, and the

percentage of instances that are solved in more than 10 seconds. Again, all values are average

values over all 1081 pairs of ASs for a specific graph type and date.

As can be seen from Table 4, the algorithm for finding the minimum cut sizes in ToR graphs

is very fast, also compared to the computation times for the algorithms for finding the maximum

number of vertex-disjoint paths. Again, the number of branching nodes needed to find the integer
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optimum is small, since the solution to the LP-relaxation is integral in 98.5% of the problem

instances.

6.3.3. Approximation algorithms. In Table 5 we give results for the 2-approximation algo-

rithms presented in Section 5. In the first two columns we show the graph types and the different

dates. Columns three to five contain information on the number of vertex-disjoint paths, namely

the optimal value, the value found by the approximation algorithm and the computation times,

and in the last three columns we give the same results for the sizes of minimum cuts. Again, all

values are average values over all 1081 problem instances for a specific graph type and date.

[INSERT TABLE 5 AROUND HERE]

From these results we conclude that both approximation algorithms perform really well. For the

problem of finding the maximum number of disjoint paths we find that in 41.14% of all instances we

get an optimal solution, and for 67.63% the difference between the optimal value and the value found

by the approximation algorithm is at most 1. For the problem of finding the minimum cut sizes,

90.82% of the instances are solved optimally, and in 97.63% of the instances the difference between

the optimum and the value of the approximation algorithm is at most 1. So, the heuristic for finding

the minimum cut sizes is extremely well suited for this type of instances. The computation times for

both algorithms are really fast: all problem instances for both problems are solved within less than

one second of computation time. Hence, in cases where the exact optimum is not needed, but one

is interested in fast algorithms that produce near-optimal results, the approximation algorithms

are a good choice.

6.3.4. Sensitivity to the Number of Edges. Finally, let us consider the sensitivity of our

methods to the number of edges in the graphs (for a fixed number of vertices). This is all the more

relevant since recent findings suggest that the methods that are used to discover Internet AS-level

topologies may miss a significant percentage of the existing links. For instance, Cohen and Raz

(2006) estimate that more than 50% of the links in the AS-level Internet may be missing from

currently available AS-level topologies. Therefore, if more accurate AS-level Internet topologies

become available in the future, our algorithms may need to deal with denser graphs than in the

experiments reported here. Let us now discuss to what extent the phenomenon of missing edges may

influence the outcomes of the computational experiments, or in other words, we comment on the

sensitivity of our algorithms to the number of edges. Of course, adding edges to the network yields

an increase of the number of variables in (P). However, since we use column generation to solve

the LP-relaxation, it follows that the work in a single iteration still amounts to solving a shortest
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path problem in a network with the same number of vertices (but containing more edges). Since

running times of methods for the shortest path problem scale linearly with the number of edges,

it is to be expected that the work in each iteration remains reasonable. Similarly, the separation

problem of (D) is a shortest-path problem and should thus scale linearly with the number of

edges. Our branch-and-bound algorithm for (P) solves a network flow problem in each branching

node; as there are network flow algorithms that scale linearly with the number of edges, one can

expect a very moderate increase of running-time on denser graphs. It is difficult to predict how the

number of branching nodes will change if more realistic topologies (with missing edges included)

are considered. However, many of the missing edges are likely to be peer-to-peer edges between

smaller ASs, and such edges can only be used by paths between a limited number of other ASs;

therefore, we do not expect that the addition of missing edges would lead to a significant increase

in the number of branching nodes.

The main part of the running-time of the approximation algorithms is a max-flow or min-cut

computation in an ordinary directed graph. Therefore, one can expect again that the increase in

running-time for denser graphs is very moderate for these algorithms.

6.4. Interpretation of the results

In this section we describe how the results that we obtained can be interpreted. In Section 6.4.1 we

discuss the connectivity of the Internet as measured by the number of disjoint paths and minimum

cut sizes. Then, in order to gain more insight into the AS hierarchy produced by the different

inference algorithms, we computed, in all four types of ToR graphs, the fraction of pairs of ASs

that are connected with directed customer-provider paths (Section 6.4.2) as well as the number of

edges that are contained in directed customer-provider cycles (Section 6.4.3).

6.4.1. Connectivity measures for the Internet. In Table 6 we compare the number of

vertex-disjoint paths for the different types of ToR graphs, the undirected BGP graphs and the

CAIDA graph. In the second column we give the average number of vertex-disjoint paths, averaged

over all pairs of ASs and all dates of the specified graph type. The third column gives the minimum

number of vertex-disjoint paths found, and the last column shows the maximum number of vertex-

disjoint paths (the CAIDA graph is available only for one date, and 3 of our 47 selected ASs are

missing from that graph; AS pairs involving a missing AS node were thus ignored for the CAIDA

graph).

[INSERT TABLE 6 AROUND HERE]
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In Table 7 we compare the size of the minimum cuts in ToR graphs with results from the

undirected models, and for all graph types we give the average over all pairs and dates, the minimum

value of a minimum cut, and the maximum value. For the undirected BGP graphs and the CAIDA

graph, these values are the same as for the vertex-disjoint paths problem, since the max-flow

min-cut equality holds for the undirected graphs.

[INSERT TABLE 7 AROUND HERE]

If we compare the connectivity of the ToR graphs with the undirected models, we see a big

difference (see Tables 6 and 7). The number of disjoint paths, and the cut sizes, are much larger in

the undirected models. For about 72% of all pairs, the number of disjoint paths (and the minimum

cut size) is at least 1.5 times bigger in the undirected models, as compared to the ToR graphs, and

for approximately 44%, these values in the undirected models are at least twice as large as in the

ToR graphs.

When we look at the differences in connectivity between the four different ToR graphs we see

that there is no striking difference between the number of disjoint paths and the sizes of minimum

cuts. Generally speaking, graphs of type B have the highest connectivity and graphs of type C

have the lowest connectivity (see third column of Tables 3 and 4). However, the connectivity of

the different ToR graphs seems to be similar.

In Figure 6, the four types of ToR graphs are represented together with the undirected BGP

graph and the CAIDA graph, all graphs taken from April 2002. We obtained similar results for

the other four dates, but since we had the CAIDA graph only for April 2002, we chose to use this

date for the illustration. The number of disjoint paths and the minimum cut size are shown for

each of the 1081 AS pairs in all six graphs. The values are sorted in order of non-decreasing values

in the undirected BGP graph. As the figure shows, there is no striking difference among the ToR

graphs. The values for the undirected BGP graph, however, are significantly higher than those for

the ToR graphs. This clear difference between the undirected and ToR models confirms that, in

order to get an accurate picture of the Internet structure and connectivity, it is important to take

routing policies into account.

The values for the CAIDA graph, which has about 6% more edges than the undirected BGP

graph, are somewhat incomparable to those of the undirected BGP graph. For about 35% of the

AS pairs, the CAIDA graph has more disjoint paths (up to 100 more paths for one pair), and for

about 59% of the pairs, the undirected BGP graph has more disjoint paths (up to 69 more paths

for one pair). This indicates that some parts of the Internet are denser (higher number of edges)

in the CAIDA graph, while other parts are denser in the undirected BGP graph.
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[INSERT FIGURE 6 AROUND HERE]

Let us now discuss trends over time. The trends for the number of disjoint paths between the

different time periods are shown in Figure 7 for each of the four types of ToR graphs and for the

undirected BGP graphs. There are four plots, each of them corresponding to a particular time

period. In each plot, there is a bar for each of the five graph types. The white part of the bar

represents the number of pairs of ASs for which the number of disjoint paths increased in this time

period; the shaded part of the bar corresponds to the number of pairs for which the number of

disjoint paths stayed the same, and the black part is the number of pairs for which the number of

paths decreased in this time period. The results for the minimum cut sizes are similar, so we omit

them here.

The figure shows that the ToR graphs behave similarly for all time periods. In the first two

time periods, the AS pairs with increasing connectivity form the majority. Then, in the third time

period, more than half of the AS pairs display decreasing connectivity. Finally, in the fourth time

period, the ToR graphs have roughly the same number of AS pairs with increasing and decreasing

connectivity, respectively, while about 70% of the AS pairs display increasing connectivity in the

undirected BGP graphs.

[INSERT FIGURE 7 AROUND HERE]

When we study the differences between the number of disjoint paths and the cut size in ToR

graphs, we find that these numbers are equal for about 99% of all AS pairs in each of the ToR

graphs (see third column of Tables 3 and 4). The absolute difference between the minimum cut

size and the number of disjoint paths was never larger than 2 for any of the AS pairs in any of the

ToR graphs. Thus, the minimum cut size does not differ significantly from the maximum number

of disjoint valid paths in our ToR graphs. Notice that this difference could be as large as a factor

of 2 in general graphs (Erlebach et al. 2005).

Summarizing, the connectivity of the different ToR graphs is similar, and behaves similarly over

time; connectivity of undirected graph models overestimates the connectivity: for about half of the

pairs of ASs, the connectivity is twice as large when compared to the ToR graphs.

6.4.2. The depth of the provider hierarchy in ToR graphs. In order to examine the

nature of AS paths in the different ToR graphs, we investigated how many pairs of vertices can be

connected by directed paths, i.e., by paths going “only up” or “only down.” A path AS1, . . . ,ASk

between two ASs AS1 and ASk such that each ASi is a customer of ASi−1, for 2≤ i≤ k, is called

a customer chain. As described in Section 1.2 this is of interest since routing through a customer
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brings profit, routing through a peer is neutral, and routing through a provider incurs costs for the

sender (see Spring et al. (2003)).

In our experiments, we check for all pairs of ASs in ToR graphs (except the pairs involving leaf

vertices) whether one of the two ASs is connected to the other via a customer chain. Thus, for

such a pair of vertices, it is possible to use a path only through customers (at least in one of the

two directions) and thus take advantage of the “customer-preference” policy.

The statistics about customer chains in all four types of ToR graphs are given in Table 8. This

table shows for each of the five dates the percentages of pairs of ASs that are connected by customer

chains in all our types of ToR graphs.

[INSERT TABLE 8 AROUND HERE]

About 6–10% of all pairs in type A graphs and 13–15% of all pairs in type B graphs are connected

by customer chains. For graphs of type C and D the number is significantly smaller, namely below

1%. This is caused by the fact that ToR graphs of type C and type D contain substantially more

edges that are not customer-provider edges. This finding indicates that in graphs of type A and

B, the hierarchy seems to be similar and tends to be deep, whereas in type C and D graphs, the

hierarchy seems to be wider, as there are many more pairs that are connected only through paths

going “up and then down”. Concluding, the types of paths that exist between a pair of ASs depend

on the inference algorithm used. When using AS-level Internet graphs for retrieving information

about the types of paths that exist, and their corresponding profitability, it matters which of the

inference algorithms is used.

6.4.3. Directed customer-provider cycles: detecting misclassifications. We call a

directed cycle (as defined in Section 2) in a ToR graph a customer-provider cycle if it contains only

customer-provider edges. If the Internet was a strictly hierarchical network (i.e., if levels can be

assigned to the ASs in such a way that, in any customer-provider relationship, the customer is on a

lower level than the provider), one would expect that there are no customer-provider cycles in ToR

graphs at all. Therefore, one might use the existence of such cycles as a sign of a misclassification.

We check the existence of such cycles in each of the ToR graphs as follows. First, we remove all

sibling edges and peer-to-peer edges from the graph. Then, for each customer-provider edge from

ASi to ASj , we calculate a shortest directed path (i.e, a path with the smallest number of edges)

from ASj to ASi. Such a path exists if and only if the edge from ASi to ASj is contained in at least

one directed cycle. If such a path is found, it gives us a shortest customer-provider cycle containing

the edge.
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We find that there are no customer-provider cycles in the ToR graphs of type C, except in the

graph for 09.01.2003; for the latter date, the type C graph contains a single customer-provider

cycle with four nodes (AS11563, AS19035, AS17819, AS1668). In Table 9, we give the results that

we obtained for ToR graphs of type A, B and D. For each of the graphs, we show the total number

of customer-provider edges that are contained in cycles, the minimum length of the shortest cycle

containing a customer-provider edge, and the maximum length of the shortest cycle containing a

customer-provider edge. We find that type B graphs have the largest number of customer-provider

cycles, type A graphs have about half as many, and type D graphs have much fewer cycles than

both A and B graphs.

[INSERT TABLE 9 AROUND HERE]

As the ToR graphs of type A and B contain no sibling edges and either no or very few peer-to-

peer edges, a larger number of customer-provider cycles could be expected in these graphs. Table 9

confirms that significantly more edges are contained in customer-provider cycles in these graphs.

Most of the cycles in the graphs of type A and B are caused by edges classified as customer-provider

in A or B graphs, but classified in D graphs as peer-to-peer, sibling or provider-customer edges.

In the A graph from 18.04.2001, there are 2571 edges contained in cycles. Each of these edges

is contained in a shortest cycle. Among these 2571 shortest customer-provider cycles (we consider

a cycle multiple times if it is the shortest customer-provider cycle of several edges), 1909 have

an edge classified as peer-to-peer in the corresponding D graph, 574 of the remaining ones have

an edge classified as sibling edge in the D graph, and 67 of the remaining ones have an edge

classified as provider-customer edge in D. Only 21 of the 2571 cycles are also present in the D

graph. Qualitatively similar results are obtained for all dates for the A and B graphs.

Analyzing the directed cycles in the D graphs, we found that all customer-provider cycles can

be eliminated by deleting a very small number of edges (12, 4, 3, 8, and 11 edges, respectively, in

the five D graphs from 18.04.2001 to 10.02.2004).

We checked manually 10 edges that were contained in more than 50 discovered cycles (up to

348 cycles) in the D graph from 10.02.2004, using the Nemecis tool (NEMECIS) to access data

from Internet Routing Registries. For three of these edges there was no information in the Internet

Registries, 6 of them were classified as peer-to-peer edges (i.e., at least one of the two ASs regis-

tered this particular edge as peer-to-peer) and only one edge was registered as customer-provider

(confirming its classification in the D graph).

Concluding, directed customer-provider cycles are a good starting point for the detection of

misclassifications, in particular if their analysis is combined with a comparison between the different
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ToR graphs and checking entries in Internet Registries. Such cycles can be used to introduce peer-

to-peer edges and sibling edges into the ToR graphs of type A and B, which contain essentially

only customer-provider edges (in our type B graphs, the only peer-to-peer edges are those that

were left unclassified by the algorithm from Di Battista, Patrignani, and Pizzonia (2003)).

7. Conclusions

We have studied the maximum number of disjoint valid paths and the minimum cut size for

selected AS pairs. Since both problems are NP-hard, we have designed and implemented several

algorithms based on branch-and-bound or branch-and-price paradigms. We have shown that the

algorithms make it possible to compute optimal values for these connectivity measures on real AS-

level Internet graphs. For the problem of finding the maximum number of disjoint paths between

any pair of ASs, we have implemented two exact algorithms, the first one being a branch-and-price

algorithm based on an integer programming formulation of the problem, and the second one being

a branch-and-bound algorithm in which we perform a max-flow calculation in each node of the

search tree. From the results we conclude that the latter algorithm is often faster than the first

but may require excessive computation times on certain inputs, while the computation times for

the branch-and-price algorithm are always acceptable and do not display such a variability. For

the problem of finding the minimum cut sizes, we have implemented a branch-and-cut algorithm

that performs really well, with average computation times around one to two seconds for instances

with up to 11,000 nodes and 30,000 edges (after pruning nodes of degree one).

The results of these algorithms allow us to quantify the differences in connectivity between ToR

graphs and the traditional undirected model of the Internet, which ignores routing policies. We

find that about 44% of the selected AS pairs have more than twice as many disjoint paths in the

undirected model than in the ToR graphs, which confirms that the use of ToR graphs is crucial

for Internet analysis and simulations that are sensitive to connectivity properties, e.g. in studies

concerning topological robustness, multi-path routing, etc. We have also investigated the increase

of connectivity over time and found that the number of disjoint paths between ASs seems to grow

for fewer AS pairs in the ToR graphs than in the undirected graph model.

Using our new algorithms, we have compared different types of graphs with inferred AS relation-

ships (ToR graphs) regarding connectivity measures as well as other path characteristics. Com-

paring the ToR graphs with each other, we find that on the average they do not differ much with

respect to the number of disjoint paths and the minimum cut sizes between AS pairs. On the other

hand, concerning the hierarchy (observed indirectly by counting the number of AS pairs connected
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through customer chains) it turns out that A and B graphs are relatively similar to each other,

but different from C and D graphs—their hierarchy appears to be deeper than that of C and D

graphs. In addition, we find that the investigation of short directed customer-provider cycles in

the ToR graphs can help to detect misclassifications and may lead to new approaches for introduc-

ing peer-to-peer or sibling relationships into A and B graphs, which can make these models more

realistic.

While our investigations provide some insight into the properties of the ToR graphs produced

by the different available inference algorithms, it is not possible for us to identify one of these

algorithms as better than the others. Researchers who employ ToR graphs in their research should

be aware of the differences in the ToR models produced by different algorithms and make sure

that their conclusions are not biased by the choice of ToR graph. Our findings can help in making

informed decisions about the choice of a ToR graph model: If only connectivity-related aspects

of the ToR graph are important, all four types of ToR graphs are similarly well suited. However,

if the presence of customer-provider cycles or the number of peer-to-peer edges is important, one

needs to be aware of the fact that different ToR graphs are very different with respect to these

characteristics.

Furthermore, our approach of adapting the classical connectivity measures, maximum number

of disjoint paths and minimum cut size, to valley-free paths in ToR graphs can be useful in further

research on robustness issues in the Internet. Besides, it may be possible to adapt our branch-and-

price approach to incorporate other types of constraints on valid paths, thus allowing the analysis

of connectivity properties of other networks with special routing constraints as well.

The known algorithms for inferring AS relationships (see Gao (2001), Subramanian et al. (2002),

Di Battista, Patrignani, and Pizzonia (2003), Erlebach, Hall, and Schank (2002)) all need data

from BGP routing tables as input. As the data from BGP routing tables is not always complete or

accurate (the impact of this is demonstrated convincingly by the huge difference in the number of

disjoint paths for certain AS pairs in the undirected BGP graph and the CAIDA graph, see Figure

6), it would be an interesting question whether BGP routing tables are a necessary input of any

algorithm inferring AS relationships. An inference algorithm not based on BGP routing tables (but

for instance based on (artificial) AS-properties) could be used in synthetic graph models obtained

from Internet topology generators. A different approach in the latter direction has been explored in

Chang, Jamin, and Willinger (2003b), where a new optimization-driven model for Internet growth

is presented that allows the generation of synthetic AS graphs containing only customer-provider

relationships.

Finally, let us summarize our findings by answering the research question posed in Section 1.
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• We obtain optimal solutions to the problems of finding the maximum number of vertex-

disjoint paths and minimum cut sizes, using the new exact algorithms proposed in this paper. The

algorithms all require a small amount of time to find these optimal values.

• The performance of the approximation algorithms is reasonable. Especially for the problem of

finding minimum cut sizes, the approximation algorithm performs really well. Both these algorithms

are much faster than the exact algorithms.

• The impact of BGP policies on Internet routing has been observed in a number of other

contexts, and our results confirm the importance of considering ToR graphs instead of undirected

graph models when studying robustness issues of the AS-level Internet. More importantly, our

results allow us to quantify the difference in connectivity of undirected and ToR graph models.

• The different heuristics (see Gao (2001), Subramanian et al. (2002), Di Battista, Patrignani,

and Pizzonia (2003), Erlebach, Hall, and Schank (2002)) used for constructing a topology do not

differ much with respect to the connectivity measures. On the average, they all have a similar

number of disjoint paths and minimum cut size between pairs of ASs. The constructed topologies

do, however, differ with respect to the types of paths that exist between a given pair of ASs. Graphs

of type C and D have much less customer chains than graphs of type A and B. This is relevant

since different types of paths may yield different profits for an individual AS. Finally, since graphs

of type A and B do not have sibling edges and no or very few peer-to-peer edges, a relatively large

number of customer-provider cycles exists in these graphs. Directed customer-provider cycles in

ToR graphs can be useful for the detection of misclassified edges.
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Laboratory at ETH Zürich. Danica Vukadinović was supported in DICS-Project No. 1838, Robustness of

the Internet at the Topology and Routing Level, by the Hasler Foundation. We thank the referees for their

comments which improved the presentation of the paper, and we thank Maciej Kurant for pointing out an

error in the original version of the manuscript.

References

Ahuja, A., T.L. Magnanti, J.B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications. Prentice-

Hall, Englewood Cliffs, N.J.

Akella, A., S. Chawla, A. Kannan, S. Seshan. 2003a. Scaling properties of the internet graph. ACM PODC

2003 .



Erlebach et al.: Connectivity Measures for Internet Topologies
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 33

Akella, A., B. Maggs, S. Seshan, A. Shaikh, R. Sitaraman. 2003b. A measurement-based analysis of multi-

homing. SIGCOMM 2003 .

Barnhart, C., E. Johnson, G. Nemhauser, M. Savelsbergh, P. Vance. 1998. Branch-and-price: column gener-

ation for solving huge integer programs. Operations Research 46(3) 316–329.

BGPSAT. Project webpage of G. Di Battista, M. Patrignani and M. Pizzonia. Computing the types of the

relationships between autonomous systems. http://www.dia.uniroma3.it/∼compunet/relationships/.

Caesar, M., J. Rexford. 2005. BGP routing policies in ISP networks. IEEE Network Magazine, special issue

on Interdomain Routing .

CAIDA, The Cooperative Association for Internet Data Analysis. Internet Topology Data Kit #0204. Data

collected as part of CAIDA’s skitter initiative. http://www.caida.org/tools/measurement/skitter/.

Support for skitter is provided by DARPA, NSF, and CAIDA sponsorship.

Chang, H., R. Govidan, S. Jamin, S.J. Shenker, W. Willinger. 2004. Towards capturing representative

AS-level Internet topologies. Computer Networks Journal 44(6) 737–755.

Chang, H., S. Jamin, Z.M. Mao, W. Willinger. 2005. An empirical approach to modeling inter-as traffic

matrices. Proceedings of Internet Measurement Conference.

Chang, H., S. Jamin, W. Willinger. 2003a. Internet connectivity at the as-level: An optimization-driven

modeling approach. SIGCOMM ’03 .

Chang, H., S. Jamin, W. Willinger. 2003b. What causal forces shape Internet connectivity at the AS-level?

Tech. Rep. CSE-475-03, EECS Department, University of Michigan.

Chang, H., S. Jamin, W. Willinger. 2006. To peer or not to peer: Modeling the evolution of the Internet’s

AS-level topology. Proceedings of INFOCOM ’06 .

CIMVP. Project webpage of S. Agarwal, L. Subramanian, J. Rexford and R.H. Katz. Characterizing the Inter-

net hierarchy from multiple vantage points. http://www.cs.berkeley.edu/∼sagarwal/research/BGP-

hierarchy/.

Cohen, R., D. Raz. 2006. The Internet dark matter – On the missing links in the AS connectivity map.

Proceedings of INFOCOM ’06 .

Di Battista, G., M. Patrignani, M. Pizzonia. 2003. Computing the types of the relationships between

autonomous systems. Proceedings of INFOCOM ’03 .
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Figure 1 Gap between number of disjoint paths and minimum cut size.
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Figure 2 The 2-layer graph of the ToR graph depicted in Figure 1.
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Figure 3 Pseudo-code of the branch-and-price algorithm.

Branch-and-Price Algorithm VertexDisjointPaths

1. Calculate an initial solution consisting of a set of paths P ′ with value VP′ using the iterated

breadth-first search, and let V ∗ = VP′ . Create a list L and add to L a branching node corresponding

to the input graph G.

2. L = ∅?

YES: STOP. An optimal solution is found with value V ∗.

NO: Select the next branching node G from L (i.e., the branching node that was added most

recently to L), remove it from L, calculate a set P ′ of edge-disjoint s-t paths in G using iterated

breadth-first search, and continue with step 3.

3. Solve the LP-relaxation using only those variables that correspond to a path in P ′.

4. Solve the pricing problem. Is there a variable (a path) with negative reduced costs?

YES: Add this variable to P ′ and go to step 3.

NO: An optimal solution to the LP-relaxation is found with value VLP . Continue with step

5.

5. VLP > V ∗?

YES: Continue with step 6.

NO: Go to step 2.

6. Is the solution to the LP-relaxation integral?

YES: V ∗ = VLP . Go to step 2.

NO: Select a fractional vertex v. For each possible way of deleting all edges incident to v

except for two edges that could lie consecutively on some valid path, create a new branching node

(i.e., the graph obtained by deleting the respective edges) and add it to L. Go to step 2.
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Figure 4 Pseudo-code of the branch-and-bound algorithm.

Branch-and-Bound Algorithm VertexDisjointPaths

1. Calculate an initial solution consisting of a set of paths P ′ with value VP′ using iterated

breadth-first search, and let V ∗ = VP′ . Create a list L and let L = ∅.

2. Construct the 2-layer graph H, and add to L a branching node corresponding to H.

3. L = ∅?

YES: STOP. An optimal solution is found with value V ∗.

NO: Select the next node H from L (i.e., the branching node that was added most recently

to L), remove this node from L and continue with step 4.

4. Calculate a maximum flow MF with value VMF in the 2-layer graph H.

5. VMF > V ∗?

YES: Continue with step 6.

NO: Go to step 3.

6. Does the maximum flow MF in H correspond to vertex-disjoint paths in G?

YES: V ∗ = VMF . Go to step 3.

NO: Select a vertex v that is used more than once in MF . Create two new branching nodes

as follows:

i. Delete copy v1 of v from the 2-layer graph.

ii. Delete all incoming edges of copy v2 of v from the 2-layer graph, except for the edge

(v1, v2).

Add the branching node corresponding to each of these two branches to L. Go to step 3.
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Figure 5 Pseudo-code of the branch-and-cut algorithm.

Branch-and-Cut Algorithm MinCut

1. Let V ∗ = ∞. Create a list L and add to L a branching node corresponding to an empty set

of inclusion/exclusion constraints.

2. L = ∅?

YES: STOP. An optimal solution is found with value V ∗.

NO: Select the next node C from L (i.e., the branching node that was added most recently

to L), remove this node from L, calculate a set of vertex-disjoint s-t paths P ′ using iterated

breadth-first search, and continue with step 3.

3. Solve the LP-relaxation using only the constraints that correspond to a path in P ′ and the

inclusion/exclusion constraints from C.

4. Solve the separation problem. Is there a variable (a path) with negative reduced costs?

YES: Add this variable to P ′ and go to step 3.

NO: An optimal solution to the LP-relaxation is found with value VLP . Continue with step

5.

5. VLP < V ∗?

YES: Continue with step 6.

NO: Go to step 2.

6. Is the solution to the LP-relaxation integral?

YES: V ∗ = VLP . Go to step 2.

NO: Select a vertex v such that yv is fractional. Create two new branching nodes as follows:

i. In the first node, add the exclusion constraint yv = 0 to C.

ii. In the second node, add the inclusion constraint yv = 1 to C.

Add these two nodes to L.



Erlebach et al.: Connectivity Measures for Internet Topologies
42 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Figure 6 Comparison of ToR and undirected graphs.
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Figure 7 Trends over time for ToR and undirected BGP graphs.
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Table 1 Comparison of edge classifications.

ToR Graphs Percentages of identically classified edges

18.04.2001 04.02.2002 06.04.2002 09.01.2003 10.02.2004

A vs. B 95.53 95.41 95.40 95.88 95.08

A vs. C 91.70 91.57 92.21 92.24 91.02

A vs. D 90.96 91.43 91.67 93.16 91.23

B vs. C 89.71 90.30 90.55 90.40 90.28

B vs. D 89.37 90.46 90.59 91.50 90.24

C vs. D 89.60 90.55 90.72 91.35 90.75
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Table 2 The 47 selected ASs with AS numbers and short descriptions obtained from Internet registries.

AS Description AS Description

32 Stanford University 5413 GX Networks

237 Merit Network Inc.(USA) 5459 LINX-AS,London Internet Exchange Ltd.

600 OARnet(USA) 6079 RCN Corporation (USA)

680 DFN-IP service G-WiN 6402 One Call Communications, Inc.(USA)

1136 KPN Telecom OVN IO 6774 BELBONE BELGACOM

1237 Korea Institute of Science and Technology Information 6830 UPC Distribution Services european broadband ISP services

2500 Japan Network Information Center WIDE Project 7091 ViaNet Communications (USA)

2514 NTT PC Communications, Inc., Japan 7623 HPCNET-AS High Performance Computing NETwork(HPCNET)Korea

2518 C&C Internet Service mesh(NEC Corporation), Japan 7660 APAN-JP Asia Pacific Advanced Network - Japan

2647 SITA France 7679 QTNET Kyushu Telecommunication Network Co.,Inc.

2687 IBM, NH USA 8426 CLARANET-AS ClaraNET UK AS of European ISP

2818 BBC Internet Services, UK 8553 AVENSYS Avensys Networks Ltd UK

3112 OARnet(USA) 9270 APAN-KR-AS Asia Pacific Adv. Netw. Korea Consort. Net. Oper.Center

3304 KPN Belgium 9335 CIP-JAPAN-AS-AP ATT IPlus Asia and Pacific IP Network

3333 RIPE NCC Operations 9497 DIGITELONE Digital Telecommunications Philippines Inc.

3491 CAIS Internet(USA) 10099 HKUNICOM1-AP Voice over IP, ISP

3557 Internet Systems Consortium, Inc. (USA) 10764 National Center for Supercomputing Applications

3582 University of Oregon 11854 Internap Network Services (USA)

3754 NYSERNet(USA) 12359 INTELIDEAS Intelideas Autonomous System Madrid, Spain

4197 ERX-GLOBALONLINE, Japan 12457 ONO-SERVICE-PROVIDER, Spain

4635 Hong Kong Internet Exchange–Route Server 1 13129 Global Access Telecommunications, Inc.

4725 ODN JAPAN TELECOM CO.,LTD. 13646 Cignal Global Communications, Inc. (USA)

5000 Internet Online Services (USA) 14390 Core Communications, Inc (USA)

5056 Iowa Network Services (USA)
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Table 3 Results for vertex-disjoint paths problem in ToR graphs.

Type Date OPT Branch&Price Branch&Bound

Time BN %≤1 %>10 Time BN %≤1 %>10

A 18.04.2001 6.38 0.83 1.96 98.06 0.65 9.44 34.42 94.26 1.11

04.02.2002 7.88 1.26 2.02 94.36 1.30 2.63 10.84 88.99 2.59

06.04.2002 8.66 2.61 4.55 93.15 1.85 4.40 16.25 87.60 3.61

09.01.2003 7.35 0.80 1.58 94.91 0.65 2.28 5.31 94.63 1.85

10.02.2004 8.10 6.26 6.77 86.12 3.79 15.40 32.86 86.96 4.44

B 18.04.2001 6.42 3.34 7.59 91.77 3.15 2.16 10.45 83.44 3.33

04.02.2002 8.49 7.61 11.21 81.41 5.46 25.62 71.69 71.14 8.33

06.04.2002 9.39 10.69 10.94 78.08 7.77 42.63 115.76 68.55 12.86

09.01.2003 7.52 2.82 5.06 86.40 3.61 11.62 33.28 82.79 3.05

10.02.2004 8.44 12.12 10.90 79.19 5.64 18.13 40.19 72.34 8.97

C 18.04.2001 6.14 1.25 2.29 94.54 1.30 3.81 11.02 86.12 4.53

04.02.2002 7.98 2.04 2.76 86.86 2.68 18.50 43.59 69.29 6.94

06.04.2002 8.46 2.96 3.71 86.77 2.41 4.28 10.68 69.47 3.33

09.01.2003 6.61 0.88 1.57 93.06 0.83 1.73 4.38 84.55 2.59

10.02.2004 7.80 1.94 1.97 80.48 2.50 70.27 133.88 71.14 10.73

D 18.04.2001 6.34 2.63 3.06 83.63 4.26 30.43 67.72 71.51 9.44

04.02.2002 8.01 2.20 2.42 85.38 3.70 47.57 116.08 73.64 9.90

06.04.2002 8.69 5.96 4.31 81.41 3.98 45.04 88.61 58.19 13.97

09.01.2003 7.30 1.80 2.20 88.53 2.41 14.20 31.43 79.56 5.00

10.02.2004 7.92 8.36 4.16 73.64 4.81 59.74 79.00 66.51 16.37
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Table 4 Results for the minimum cut problem in ToR

graphs.

Type Date OPT Time BN %≤1 %>10

A 18.04.2001 6.38 0.69 1.03 94.73 0.09

04.02.2002 7.88 0.95 1.01 77.15 0.00

06.04.2002 8.66 1.04 1.02 67.07 0.09

09.01.2003 7.35 1.01 1.01 70.68 0.19

10.02.2004 8.11 1.90 1.06 49.68 0.74

B 18.04.2001 6.43 0.82 1.11 89.18 0.46

04.02.2002 8.52 1.86 1.33 59.85 2.41

06.04.2002 9.42 1.85 1.16 47.92 2.22

09.01.2003 7.53 1.23 1.03 60.13 0.09

10.02.2004 8.44 1.83 1.05 41.81 1.11

C 18.04.2001 6.15 1.02 1.06 81.22 0.37

04.02.2002 7.99 1.43 1.07 60.22 0.46

06.04.2002 8.47 1.58 1.12 57.45 0.93

09.01.2003 6.61 1.14 1.02 65.22 0.09

10.02.2004 7.81 2.15 1.14 34.97 1.39

D 18.04.2001 6.35 1.26 1.17 71.42 0.74

04.02.2002 8.02 1.34 1.05 63.74 0.28

06.04.2002 8.70 3.04 1.32 49.58 1.02

09.01.2003 7.30 1.22 1.01 50.32 0.09

10.02.2004 7.93 2.08 1.11 27.10 1.76
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Table 5 Results for approximation algorithms.

Type Date Disjoint paths Cut sizes

OPT APPROX Time OPT APPROX Time

A 18.04.2001 6.38 5.32 0.18 6.38 6.40 0.19

04.02.2002 7.88 6.61 0.23 7.88 8.03 0.24

06.04.2002 8.66 7.23 0.24 8.66 8.84 0.25

09.01.2003 7.35 6.36 0.26 7.35 7.41 0.28

10.02.2004 8.10 6.86 0.32 8.11 8.23 0.34

B 18.04.2001 6.42 5.28 0.18 6.43 6.53 0.19

04.02.2002 8.49 6.82 0.24 8.52 8.70 0.25

06.04.2002 9.39 7.45 0.26 9.42 9.57 0.27

09.01.2003 7.52 6.18 0.28 7.53 7.66 0.30

10.02.2004 8.44 6.93 0.35 8.44 8.66 0.37

C 18.04.2001 6.14 5.18 0.22 6.15 6.19 0.23

04.02.2002 7.98 6.70 0.27 7.99 8.14 0.28

06.04.2002 8.46 7.08 0.28 8.47 8.64 0.29

09.01.2003 6.61 5.79 0.29 6.61 6.70 0.31

10.02.2004 7.80 6.71 0.37 7.81 8.01 0.41

D 18.04.2001 6.34 5.19 0.22 6.35 6.49 0.23

04.02.2002 8.01 6.57 0.27 8.02 8.09 0.27

06.04.2002 8.69 7.20 0.27 8.70 8.97 0.28

09.01.2003 7.30 6.24 0.28 7.30 7.37 0.30

10.02.2004 7.92 6.74 0.35 7.93 8.08 0.38



Erlebach et al.: Connectivity Measures for Internet Topologies
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 49

Table 6 Vertex-disjoint paths in ToR and undi-

rected graphs.

Graph Type avg VDP min VDP max VDP

A 7.67 1 55

B 8.05 1 65

C 7.40 0 60

D 7.65 1 48

undirected BGP 13.46 2 107

CAIDA 12.74 6 108
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Table 7 Minimum cut sizes in ToR and

undirected graphs.

Graph Type avg CS min CS max CS

A 7.68 1 56

B 8.07 1 65

C 7.40 0 60

D 7.66 1 48

undirected BGP 13.46 2 107

CAIDA 12.74 6 108
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Table 8 Percentage of pairs of ASs con-

nected by customer chains.

Date A B C D

18.04.2001 10.01% 14.93% 0.52% 2.25%

04.02.2002 7.52% 14.03% 0.56% 0.67%

06.04.2002 7.02% 14.05% 0.53% 0.59%

09.01.2003 6.84% 13.62% 0.47% 0.84%

10.02.2004 7.60% 14.65% 0.53% 1.42%
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Table 9 Results for directed customer-provider cycles.

Date Type Total Min Max Type Total Min Max Type Total Min Max

18.04.2001 A 2571 3 9 B 4046 3 8 D 318 3 20

04.02.2002 A 2441 3 9 B 4710 3 8 D 16 3 5

06.04.2002 A 2278 3 10 B 4825 3 9 D 9 3 3

09.01.2003 A 2182 3 10 B 4858 3 9 D 69 3 11

10.02.2004 A 3453 3 8 B 6802 3 9 D 428 3 14


