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Abstract

We consider online coloring of intervals with bandwidth irsetting where colors have
variable capacities. Whenever the algorithm opens a newr,dbimust choose the capacity
for that color and cannot change it later. A set of intervals be assigned the same caloof
capacityC, if the sum of bandwidths of intervals at each point does noeesdC,,. The goal is
to minimize the total capacity of all the colors used. We ad#sthe bounded model, where all
capacities must be chosen in the raif@el], and the unbounded model, where the algorithm
may use colors of any positive capacity. For the absolutepeditive ratio, we give an upper
bound of14 and a lower bound of.59 for the bounded model, and an upper bound ahd
a matching lower bound of for the unbounded model. We also consider the offline version
of these problems and show that whereas the unbounded nsaalglynomially solvable, the
bounded model is NP-hard in the strong sense and admitsapproximation algorithm.

1 Introduction

Online interval coloring received much attention recenttythe basic problem, the nodes of an
interval graph arrive online, one by one, together with thiernval representation. The goal is
to find a proper vertex coloring (i.e., each pair of adjacemtiges, i.e. intersecting intervals, are
assigned distinct colors) with a minimum number of color&ie Toloring has to be determined
online, i.e., each new interval must be assigned a color aporal.

This problem has been studied by Kierstead and Trotter [T9jey constructed an online
algorithm which uses at mo8tv — 2 colors wherev is the maximum clique size of the interval
graph. They also presented a matching lower bourddef 2 on the number of colors in a coloring
of an arbitrary online algorithm. Note that the chromationter of interval graphs equals the size
of a maximum clique, which is equivalent in the case of irkégraphs to the largest number of
intervals that intersect any point (see [15, 14]). Many pagéudied the competitive ratio of First-
Fit for this problem [17, 18, 23, 5]. The latter paper showat the competitive ratio of First-Fit is
strictly worse than the competitive ratio of the algorithif19].
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Algorithm Theory(SWAT 2006), Lecture Notes in Computer Science 4059, SprirP06, pp. 29-40.
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Adamy and Erlebach [1] introduced the interval coloringhntandwidth problem and pre-
sented al95-competitive algorithm. In this problem each interval hasaadwidth requirement
in (0, 1]. The intervals are to be colored so that at each point, theafurandwidths of intervals
colored by a certain color does not excéed\ote that in this model two overlapping intervals can
receive the same color if their bandwidths sum up to at no3tis problem was studied also in
[22, 3], giving an improved competitive ratio @0, and in [10], showing a lower bound 812609
on the competitive ratio that can be achieved in this model.

We study a variant of this problem, where colors are not reazéyg of capacityl as in [1]. The
input arrives as in the previous model, but an algorithm may nse colors of arbitrary capacity.
In an online environment, the capacity of a color is deteadihy the algorithm when the color is
first used. The coloring is valid if for every colarthat is used with capacity,, at each point the
sum of bandwidths of intervals colored bydoes not exceed',. The cost of a coloring is the sum
of the capacities of the colors used. Note that the algoritiunst fix the capacity of a color when
it uses that color for the first time, and the capacity caneathmanged later.

We study two models. In thelnbounded Modelthere is no restriction on the capacities of
colors. In theBounded Modeglthe capacities cannot exceed the valueWe remark that the
bounded model is not equivalent to the interval coloringhwveiandwidth problem: In the bounded
model of our problem, the algorithm can fix the capacity ofheeclor at an arbitrary value in
(0, 1], whereas in the interval coloring with bandwidth probleexecolor has capacity equalto

1.1 Further related work

The interval coloring with bandwidth problem of Adamy anddbach [1] is a generalization of the
well known bin packing problem (see e.g. [27, 9, 16, 20, 8,5).4n that problem, items of size
in (0, 1] are to be partitioned into subsets of sum not exceetifithese subsets are called bins. In
the online problem the items are assigned one by one to bialbinput intervals intersect, we get
an input of the bin packing problem, where bins correspormbtors.

Our problem is related to variable sized bin packing (see 121 7, 24, 26]), but does not
generalize it. In the bin packing problem, allowing the wesagbins of any size (even if the sizes
are bounded by) leads to a simplé-competitive algorithm, which assigns every item a bin @f th
same size. In the variable sized bin packing problem, a sgifmfied bin sizes is set in advance,
and the algorithm can only use bins of this fixed set of sizes.

1.2 Motivation

As mentioned in [1], the interval coloring with bandwidthopiem is motivated by applications,
mainly from the field of communication networks. We beliehattour problem, the variable sized
interval coloring with bandwidth problem, could have apgtions in networks with line topology.
Consider such a network consisting of links, where eachHamkchannels of constant capacity. A
connection request is from one network nad® another nodé and has a bandwidth associated
with it. The set of requests assigned to a channel must na&eexthe capacity of the channel
on any of the links on the patla, b]. The goal is to minimize the number of channels (colors)
used. In our problem, we can choose the capacity of the chaWweeassume that we pay a cost
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proportional to the capacity of the channel, rather thanedfisost, that is charged in the case of
unit capacity channels. A connection request froto b corresponds to an intervgl, b with the
respective bandwidth requirement and the goal is to mirerthiz sum of capacities of the channels
used to serve all requests. In our model, we allow differapacities since not all channels are
necessarily identical. We remark that studying the probi@ngeneral cost functions, where the
cost of a color is not necessarily equal to its capacity,dbel an interesting topic for future work.
For example, it may be natural to assume that buying a coltwioé the capacity is cheaper than
twice the cost of the original capacity.

Another potential application comes from scheduling. Auesied job has a starting time, a
duration, and a resource requirement during its execuflobs (intervals) arrive online and must
be assigned to a machine (color) immediately. It is possblg@ck a machine of any capability,
which is fixed when the machine is ordered. The cost of the madk proportional to its resource
capacity. The objective is to minimize the sum of the costhefmachines used.

1.3 Our results

We first consider the online problem. We give tight boundstfa unbounded model, showing
that the competitive ratio achieved by applying doubling,iand this is best possible. The ratio
can only be improved if we allow an additive constant: We gimealgorithm that gives a solution
of cost at mos{(2 + ¢)OPT + O(%). For the bounded model, we show that an adaptation of
the algorithm in [22] combined with doubling isti-competitive. We prove that no algorithm has
competitive ratio better thah59.

We further show that the offline unbounded problem can beesslalsing a simple polynomial
algorithm, while the bounded problem is NP-hard in the gireense. For that problem we design
an approximation algorithm with rati@ = 3.6.

2 Preliminaries

For an algorithmA, we denote its cost byl as well. The cost of an optimal offline algorithm
that knows the complete sequence of intervals is denoted BYy.OWe consider the absolute
competitive ratio and the absolute approximation ratiteca. For an online algorithm we use the
term competitive ratio whereas for an offline algorithm we tlse term approximation ratio. The
competitive ratio ofA4 is the infimumR such that for any inputd < R - OPT. If the competitive
ratio of an online algorithm is at moStwe say that it i°-competitive. The approximation ratio of
a polynomial time offline algorithrd is defined similarly to be the infimurR such that for any
input, 4 < R - OPT. If the approximation ratio of a polynomial time offlinkyarithm is at most
R we say that it is arR-approximation algorithm.

For a given set of requests, thead of a pointp is equal to the sum of the bandwidths of
the requests containing and themaximum loads the largest load of any point. Note that the
maximum load is always a lower bound on the cost of the optookring.

The following KT}, algorithm for the online interval coloring with bandwidtinobplem was
studied by Epstein and Levy [10, 11] (see also [22, 3]). Wegiven an upper bound on the



maximum bandwidth request. We are also given a value of angieal. The algorithm partitions
the requests into classes and then colors each class usikgrsh-Fit algorithm. The partition of
the requests is performed online so that a requissallocated to class:, wherem is the minimum
value so that the maximum load of the requests that wereadflddo classes, 2, . . ., m with the
additional new request is at most. For an intervab; that was allocated to classacritical point
of v; is a pointg in v; so that the set of all the intervals that were allocated tesdd , 2, ..., m—1
prior to the arrival ofv;, together withy;, has total load strictly larger tham: — 1)¢ in ¢ (i.e., q
prevents the allocation of to classn — 1). They proved the following lemmas.

Lemma 1 Given an intervab; that was allocated class:.. For the setA,, of intervals that were
allocated to classn, and for every critical poing of v; the total load ofA,, in ¢ is at most + /.
If all intervals have the same bandwidthand/ is divisible byb, this total load is at most.

Lemma 2 For everym, the setA,, of intervals that were allocated to class has a maximum
load of at mos®(b + /). If all intervals have the same bandwidth and/ is divisible byb, the set
A,, of intervals that were allocated to clags has a maximum load of at madt.

Lemma 3 The number of classes used by the algorithm is at Mﬂt wherew* is the maximum
load.

3 Online algorithms

3.1 The unbounded model

Our algorithm for the unbounded model simply uses standautbithg (see [4, 2]). l.e., we keep a
current “guess” of the maximum load of the complete sequenbeh is actually a lower bound
on the load, and a single active color. On the arrival of thet fitterval, we initialize the guess
to be the largest power &f (with negative exponent) that is strictly smaller than tlaadwidth
requirement of the interval. We open the first color with @jyawhich is twice the guess. Each
time an interval arrives we color it with the active (i.e.st@pened) color if possible. If a new
interval arrives that cannot be colored with the active cdlos means that the maximum load is at
least twice larger than the current guess. We thereforetaplda guess to equal twice the current
guess, and open a new color with its capacity equal to twieadhw value of the guess. Repeat this
process until the interval can be colored with the most riégg@pened color. This color becomes
active.

Theorem 4 The competitive ratio of the above algorithmtis

Proof. If there is a single color used by the algorithm, then its cé#pas at most twice the largest

load, and the competitive ratio is boundedZyOtherwise, consider the last time a new color was
opened by the algorithm. The valiiethat is the current guess of the maximum load at this time is
a lower bound on OPT. The new color has capazityand since each time a new color is opened



its capacity is at least twice the previous capacity, we katecthat the total cost of the algorithm
isatmosRL + L+ L +...+ L 4+... <4L <4OPT.m

Given a non-negative small valile< ¢ < ¢, we next describe a modified procedure whose
asymptotic competitive ratio &+ <. The algorithm runs th& T}, algorithm with “unit” capacity
that is set toi;. In order to use the algorithm with unit capacities, we npljtthe bandwidth of all
input intervals bye. In this way we geb = = and therefore we can uge= 1 — ¢, so that each
class of the algorithm can be packed using one color. Theidigohas the following performance
guarantee:

Theorem 5 There is an online algorithm that for each input sequencevipies a solution with
cost at mosf2 + ¢)OPT+ O(2).

Proof. By Lemma 3, the number of colors that our algorithm uses is @strf>-|. Each of
them costsg, and1 after scaling, where* is the maximum load of the scaled input. Note that
w* < OPT- ¢ (due to the scaling) and therefore the cost of the solutidhehlgorithm is at most
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where the last inequality holds fer< % By scalinge before the application of the algorithm we
obtain an online algorithm that uses colors of total cost@stf2 + <)OPT+ ¢ as claimed.m

Let us briefly discuss an algorithm for the special case optbblem where all given intervals
have the same bandwidth > 0. We apply the algorithnk'T}, with / = b = 3 to assign each
request to a class, and we color each class with a single obleaipacity23. The coloring is
feasible because every class has maximum load at2pdst Lemma 2. By Lemma 3, the number
of classes is at most the maximum loat of all requests divided by. The cost of the solution
produced by the algorithm is at mdfgi <20 = 2w* < 2-0PT, so the algorithm ig-competitive
for this special case.

3.2 The bounded model

Our algorithm for this case is the following adaptation af #igorithm of Narayanaswamy [22] for
the online interval coloring problem with bandwidth. We fiaon the requests into three groups.
Large requestsre requests with bandwidth in the inter\(él, 1], medium requestare requests
with bandwidth in the interva(1, |, andsmall requestsire requests with bandwidth at mdst
We use disjoint colors for coloring requests of distinctugrs. Our algorithm is different from the
algorithm of [22] mainly in the procedure for coloring the alirequests.

For packing large requests we use unit capacity colors, acklihese requests using Kierstead
and Trotter’s algorithm [19] for online interval coloringvithout bandwidth). This is equivalent
to using the algorithm in Section 2 with= 1 and ignoring bandwidth requirements. In this case
the total load of a class is at most two requests at each @oidtas explained in [19], each class

requires at most three colors.

Lemma 6 The total cost of the colors used by the large requests is atndOPT.
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Proof. Denote byL the maximum number of large requests that have a common, p@ntthe
largest clique of large requests consistd.afarge requests. Note that the total load of the large
requests is larger thaéq Hence OPT> g The algorithm uses three colors, each of unit capacity,
to pack each class of Kierstead and Trotter’s algorithm.[I%je number of classes used by the
algorithm isL, and therefore the cost of the colors used by the large réegjiseat mos8L, and
therefore at mosi - OPT. m

For packing medium requests we again use unit capacitys;a@od pack these requests using
the algorithm in Section 2, giving each interval bandwidth oThis is similar to using Kierstead
and Trotter’'s algorithm for online interval coloring (wdht bandwidth). Each class is packed
using one color (and not three colors). This packing of edabsds feasible by Lemma 2, since
weuseh=/(=1

Lemma 7 The total cost of the colors used by the medium requests isstdrnOPT.

Proof. Denote byL the maximum number of medium requests that have a common (ploare
is a clique of L medium requests). Note that the total load of the mediumesigus at Ieasg.
Hence OPT> § The algorithm uses one unit capacity color to pack eacls déKierstead and
Trotter’s algorithm [19]. The number of classes used by tgerghm is L, and therefore the cost
of the colors used by the medium requests is at mpsaind therefore at modt- OPT. m

It remains to describe the packing of the small requests. &tipn the small requests into
type 1 requests and type 2 requestsype lrequestis a request such that upon its arrival, for each
point within the request the total load of previously prdedriype 1 requests, plus the load of the
new request, is at moét A type 2(small) request is a small request that is not a type 1 request

We use separate sets of colors for type 1 small requests ppd2tgmall requests. The type
1 small requests are packed using the doubling proceduzilbled for the unbounded model
(Section 3.1). Recall that in that procedure, the capadigach color that we use is an integer
power of 2. Therefore, the last opened color that we use fatlssyuests of type 1 has a capacity
of at most?.

The packing of type 2 small requests uses only colors withaapacity and is carried out by
applying algorithmK Ty, for ¢ = 1 andb = 1. More precisely, we apply algorithdi T, to all
small requests, but the requests that are assigned to theviirslasses by<Ty, are actually the
type 1 small requests that are handled as explained above.

The purpose of this partition into types is that if the loadszd by the small intervals is very
low, then opening a color of capacityright away might be an overkill for the small intervals.
Specifically, we want to show an absolute competitive ratid,avhich would be impossible if a
unit capacity color was opened immediately.

Lemma 8 The total cost of the colors used by the small requests is atm@OPT.

Proof. If there is no type 2 small request, then the claim holds stheedoubling procedure is
a 4-competitive algorithm. Thus, we can assume that theag¢ lsast one type 2 small request.
Note that in this case all colors that we use to color type llsmguests have a total cost that is
at most 1. Consider the execution of the algorithiity, for ¢ = i andb = i on the complete



input (i.e., already starting at the first interval). Allémnvals of the first two classes that would have
been opened by T}, are colored in our algorithm by the set of colors which aregieapacities
smaller thanl. To see this last property note that by the definitionkafy,, the first two classes
of the algorithm contain only intervals whose total loadtisn@st2/ = % All these intervals are
by definition type 1 small requests. Therefore, if we dengtebthe maximum total load of the
small requests, then OP¥ w* and the number of unit capacity colors that the algorithnsuise
order to pack the type 2 small requests is at mest — 2 < 4w* + 1 — 2 = 4w* — 1. Since the
total cost of the type 1 small requests is 1, we conclude bigaalkgorithm packs the small requests
using colors with total cost that is at malst* < 4 - OPT. m

Using Lemmas 6, 7 and 8, we establish the following theorem.

Theorem 9 There exists da4-competitive online algorithm for the bounded model.

Again, let us consider the special case of the problem wHegivan intervals have the same
bandwidths € (0,1]. If g < % we can apply the algorithm from the end of Section 3.1 thasus
colors of capacit and is2-competitive. Ifg > % the problem is essentially equivalent to online
interval coloring (without bandwidth). We use colors of aaity 3, ignore the bandwidths of the
requests, and apply Kierstead and Trotter’s algorithm fidine interval coloring [19]. If the clique
size of the interval graph corresponding to the given retguss (and thus the maximum load is
w/3), the cost of the solution produced by the algorithm is attnigs — 2)3 < 30PT — 23, and
this is easily seen to be best possible in this case.

4 Lower bounds

4.1 The unbounded model

We next show that the competitive ratio of our algorithm fog inbounded model is best possible.
To prove the lower bound, we again apply methods similar ;o [4

Theorem 10 Any online algorithm for the unbounded model has a competrttio of at least.

Proof. Before we construct the lower bound we note that we assunmeafie of presentation that
bandwidth requirements can be numbers larger th&iearly, the unbounded model is equivalent
to any model where the bandwidths are bounded by some corfst@mecessarily 1). Before
presenting the sequence, we can compute a bound on thet laagesvidth needed for the proof,
and thus our lower bound satisfies the model.

Our construction of the lower bound for the unbounded maslbbised on instances in which
OPT equals the maximum load, whereas the algorithm tries¢sgan upper bound on the max-
imum load, and pays the sum of all its guesses. We considat sgguences with the following
structure. The first interval i), 1] with a unit bandwidth request. Given an arbitrary prefix of in
tervals for which the algorithm opened the set of colors withacities; < ¢, < --- < ¢, the next
interval is disjoint to all the previous intervals with banidth request;. + ¢ for a sufficiently small
value ofe. Then, the algorithm needs to open another color with cépatieastc;,; > ¢ + ¢.



Note that at this step OP¥ ¢, + ¢ as all the intervals are disjoint and therefore they all fiv ia
common color with capacity, + ¢, whereas the algorithm pa{j’Cle

Given a fixed value op that is strictly smaller than, we will show that if our input sequence
is long enough an online algorithm cannot pay at each stafpmosty times the cost of OPT at
this step (the sequence can be stopped at any point, pregeaitifuture intervals from arriving).
Assume that this does not hold, and that theregdscampetitive online algorithm with = 4 — ¢
for somed > 0. Denote this algorithm byl. Assume that given the above input sequence for the
value ofe that SatISer%— = 1 — 62, A opens colors with capacities < c, < -+~ < ¢, < ---.
Then, sinceA is p-competitive the following inequalities must hold:

k+1
Z ¢; < ple +¢) ande; < p.

J=1

Letrp,, =4—0 — ZJ: 1, for k > 1. The inequality above |mpI|e§’“— < r.41. Note that
if .1 < 1, A cannot open a color of sufficient capacity in step- i W|thout violating the
assumption that its competitive ratiogs We will show that the values, ., for k = 1,2, ... form
a decreasing sequence so that; must be strictly less thanfor some large enough value bf
(depending only om). This is a contradiction to,.; > 1 and shows that such a sequence, s
cannot exist, hence no algorithm can achieve competitive 4a- 6 for anys > 0.
First, we observe that =4 — 0 — S <4- 5. Next, we will show thaty, o < 71 /(1+7)

forall k > 1 (as long as.; > 1), wherey > 0 is a constant. Assuming that,; < 4 — § was
shown by induction, we can boung, ; as follows.

k+1 k
Tk+2 = 4—5-@24_5_21':1%_ cp +¢€ Gk
Ck+1+€ Ck+E Chpr+E  Cpy1te€
- 4_5_(4—6—Tk+1) Ck+€ _ Ck+1
Ck+1+€  Cpy1+€
cpt+ ¢ 1
< A5 (4= 06— 1) B
< ( k1) I el pras
Cp+ € 1
< A5 (4= 06— 1) B
>~ ( k+1) (Tk+1+8)<ck—|—5) 112
1 1
= 4-0—-4-0—r : _
( k1) e 1ic
1 1
= 4-6—(4-9)- Te+1
Tht1+€ T t+e  ld4e
1 4-6 1 41—
< 5-0- - <5-6— _
1+e rppate 1+e ma(l+e)
We claim that 1 s
5—0— — < Tht1 )

l+e rma(l+e) ~ 147



where~ is chosen in such a way tha% > 4 — §% is satisfied. We see that (1) is equivalent to

1
1+~

1 4—4
M = (0= 0= e + 0 20

As this is a quadratic inequality of the form? + bx + ¢ > 0 with a > 0, it suffices to show that
the discriminant? — 4ac is negative. Fod < 0.1 we can calculate as follows.

1 ¥ 4  4-5
1+¢ 14+ 1+¢
= 0% =36 — 76 +296% — 46 < 0.00016 +2.96 — 46 < -6 < 0

V¥ —4ac = (5-0— <A—=0+0)—A4—-6H4-601-0

Hence, (1) holds, and the proof is compleke.

4.2 The bounded model

In order to construct the lower bound, we use as a black bojother bound of Kierstead and
Trotter [19] given originally for the standard online intal coloring problem. They designed
for any integerk a lower bound sequence where the clique size is at loshereas any online
algorithm is forced to us&k — 2 colors. In [10] it was shown that this construction can bepaeld
to the case where the valéeor bounds on it are known in advance to the algorithm.

Theorem 11 Any online algorithm for the bounded model has a competititie of at least4.5.

Proof. Let k be a large enough integer. We are going to have at most twocsmstructions, where
there is no overlap between the intervals of the two constm. Let= > 0 be a small value, such
that P = % is an integer. We start with such a construction where adiridls have bandwidth
% + . Since the largest capacity of a color canlb@o two overlapping intervals can receive the
same color, and therefore the algorithm is forced todise 2 colors, whereas an optimal offline
algorithm can use at mostcolors, each of capacity + «.

The second construction will use intervals of bandwiglth je for some2 < j < P. In this
construction as well the algorithm is forced to iée- 2 colors of capacity at Iea§t+je, whereas
the construction i-colorable. An optimal offline algorithm uséscolors of capacit)é + je each,
and these colors are used to color all intervals of the finsstaction as well. Consider thig — 2
colors with largest capacity opened by the algorithm forfits¢ construction. Let be the number
of colors out of these colors whose capacity is strictly ﬂ;anahan% + je. The algorithm has to
open at least new colors of capacit)]g + JE.

Already in the first construction, the algorithm only neeal®pen colors whose capacities are
inthe set{% +e, % +2¢, ..., % + Pe = 1}. Consider only thék — 2 colors of largest capacities that
are opened for the first construction. L¥f for 1 < j < P be the number of colors of capacity
1+ je.

i Let C' be the competitive ratio. The cost of the algorithm for thstfaonstruction is at least

P
Jj=1

P
(3 + je)X;. Note that according to the definition of the valu€gs ZlXj = 3k — 2, therefore
j:
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P
we can write this lower bound on the costiis- 1 +¢ Y jX;. Since the optimal cost i + )k
j=1

P
we getd —1+¢ > jX; < C(4 +¢)k. Thisis equivalent to
=1

P
> jX; < CP(1+2e)k —3kP +2P . (2)

j=1

For every2 < j < P we get a lower bound on the cost of the algorithm for the second
construction of

P

Z(;+25)X +(3k:—2—ZX 1+j5)

=1 =7

.
_ 3k;2+SZiXi+3k;2+js(3k—2 ——ZX ]gZX

7j—1

= (3k—2)(1+je) +5ZZX +5Z i_%ZXi'
=

=]

Therefore,
j—1 1 P
(3k — 2)(1 + je) +522X +5Z 7)Xi —§ZX <Ck( + je),
=7 =]
or
7j—1
2P(3k — 2)(1+ je) + Y iX; +Zz— )X; — PZX <2PC/<;( + je) = PCk + jCk .
=1 =7 =7
We get
j—1 P P
Y iXi+ ) (i—)X;—PY X; < P(C—6)k+4P +j(C —3)k+2j . (3)

1=1 1=j i=j

For eachl < ;7 < P, we multiply the inequality forj by the coefficient:;, and add up the
resulting inequalities. The values of the coefficientsiare- £ (for equation (2)), and fof > 1,
Clj =1.

Next, we compute the coefficient of each valiig 1 < ¢ < P, in the resulting inequality.
Given a valueX;, its coefficient in the inequality (2) i& Its coefficient in the inequality (3) for
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j>iisiandforj <iisi— j — P. Therefore, we get

Criesams=pe 3 omi (Bt p ) —pumn- (12 )

2 : Z
j= g=i+l
iP 2 P42
Py i1 (P >0.
g Tg oot g g t1z2(P—i)—=2=

Therefore the left hand side of the resulting inequalityasimegative. Next, consider the right
hand side. Itis equal to

%(CP(l +2e)k — 3kP +2P) + XP:(P(C —6)k +4P 4 j(C — 3)k + 2j)
j=2
= E(013(1 +2)k —3kP+2P) + (P —1)(P(C —6)k+4P)
+ ((C—3)k+2)(@ -1).
Letting £ tend to infinity, we get the following inequality ari.
0< (P4 PO +9) - D+ (P - P(C—6)+ (€ -3 L2

Next, we letP tend to infinity and get < <2 + (C' — 6) + &2 = 2C — 9. This gives a lower
bound of4.50nC. =

Remark 12 Running a linear program using Matlab far = 400 we can get a lower bound of
4.591 onC.

5 Offline problems

In this section we show that the unbounded model is polynityrsalvable (offline) whereas the
bounded model is NP-hard and we provide a 3.6-approximatgorithm for it.

5.1 The unbounded model

In the unbounded model, the problem is clearly polynomistiivable. The algorithm computes
the maximum load, and then opens a single color with capagtyal to the maximum load.

Clearly, all the intervals can be colored using this colad &ve obtain a feasible solution whose
cost equals the maximum load, which is a lower bound on thiengptost. Hence, we conclude
the following:

Proposition 13 The offline problem of the unbounded model is polynomialiyasde.
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5.2 The bounded model
We first show that the resulting offline problem for the bouhdedel is NP-hard.

Theorem 14 The offline problem of the bounded model is NP-hard in thengtsense.

Proof. We show a reduction from the 3-Partition problem defined Bsvis (see problem [SP15]
in [13]): We are given a set &fm positive numbers, s,, .. ., s3,, such thathi”1 s; = mB and
eachs; satisfies% < s < %. The goal is to find out whether there exists a partition ofrthiabers
into m sets such that the sum of elements of each set is ex&ctlyhe 3-Partition problem is
known to be NP-hard in the strong sense.

Given such an instance of the 3-Partition problem we defin@stance of the variable sized
interval coloring problem as follows: We are given a setdhtervals each with bandwidth request
1 and all of them are the intervil, 1]. Moreover, we are given another set3of intervals|2, 3],
where thei-th interval of this set has a bandwidth requé&st We claim that there is a feasible
solution to this variable sized interval coloring problefncost at mostn if and only if the 3-
Partition instance is a YES instance.

To see this last claim first note that the variable sized watleroloring problem must color with
distinct colors the intervals of the first set (since we anmestaering the bounded model), and we
can color with the same color intervals from the second sktragsas their total bandwidth request
is at most 1. l.e., there is a solution to the variable sizéghvual coloring of cost at most, if and
only if the intervals of the second set (the intervalgDf3]) can be partitioned intan sets such
that the total bandwidth request of the intervals of a set m@st 1. This means that the sum of
elements of each such set is at mBsi.e., the 3-Partition instance is a YES instanme.

Because of the fact that the bounded model problem is NP-artlirn our focus to designing
an approximation algorithm for this problem. We definsraall requesto be a request with
bandwidth that is at mo%t, and alarge requesto be a request whose bandwidth is strictly larger
thani. Our algorithm uses disjoint sets of colors to color the $negjuests and the large requests.

For small requests we sort the intervals in non-decreagsiter @f their left end-point. Then,
we use colors with maximum capacity 1 and color the intergat®rding to the First-Fit algorithm.
After we color all the small requests, we compute the maxiraad of the last color that is opened
and we change its capacity to be this value of the maximum load

Lemma 15 The cost of colors that our algorithm uses to color the snejlrests is at mo3tOPT.

Proof. Assume that the algorithm usegolors to color the small requests and that the maximum
load in the last color equals Then, the cost of the colors that our algorithm uses to dbler
small requests is — 1 + a. Note that ifc = 1 then this cost is at most the maximum load (which
equals the maximum load of the small requests) and therefar©PT. So we assume that> 2.
Consider the leftmost point in which the load of the last caoa, and denote this point by.
Then,p is the left end-point of an interval that our algorithm calevith the last color. Denote by

I this interval, and recall that the bandwidth request &f at most%. Since our algorithm decided
not to placel in the firstc — 1 colors we conclude that the load of each of these colors ipdi

pis at Ieas% (this is so because the intervals are sorted from left ta)igtnerefore, the total load
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of all the small requests at poiptis at least5* + a. Therefore, OPT> <1 + ¢ > <114, Since
the algorithm pays at most— 1 + «, this costis at most- OPT. m

It remains to consider the large requests. Before preggotim algorithm, we consider the
following algorithm. We sort the large requests in non-dasing order of their left end-point.
Then, we use colors with capacity 1 and color the intervats@ting to the First-Fit algorithm. We
note that using First-Fit minimizes the number of colord tr@ used to color the large requests
(when the intervals are sorted) and since the capacity df ealor is 1 whereas in the optimal
solution the capacity of each color is at Ieéstwe conclude that this algorithm uses colors with
total cost of at most - OPT.

Lete > 0 be a given constant such that= 2_15 — lis aninteger to be selected afterwards. Our
algorithm for the large requests computes 1 solutions and picks the cheapest solution among
these. The first solution is to pack all the large requestis avininimum number of unit capacity
colors (using First-Fit on the sorted list of large requestsor eachj = 1,2,...,k we define
a; = %Jrjs and our(j+1)-th solution is constructed as follows. We partition thg&arequests into
two classes: the first class consists of all large requeskshandwidth at mosi;, and the second
class consists of all the remaining large requests. Easls @gacked separately using its own set
of colors. The capacity of the colors that are used for thedless isa;, whereas the capacity of
the colors that are used for the second class is 1. Each slpasked optimally using the minimum
number of colors (using First-Fit on the sorted list of inds from this class). We next show that

the cheapest solution among the- 1 solutions has a cost of at mast + O(¢)) - OPT.

Lemma 16 The cheapest solution among the- 1 solutions has a cost of at mogt%) - OPT.

Proof. We prove that the algorithm colors the large requests withl timst of at mos% -OPT
and the approximation ratio of the algorithm is at me$g-. Letay =  anday; = 1. Let
p be the competitive ratio of the algorithm, we prove that % Denote byX; the number
of colors that OPT opens with capacity in the interé@|, a;.1], for j = 0,1,2,..., k. Then,
OPT > Zf:o a; - X;. We assume that the cheapest solution among thel solutions costs at
leastp - OPT.

Since two intersecting large requests cannot be coloretidogame color in any solution, we
can compute upper bounds on the number of colors of eachitapaed by the algorithm in each
one of the cases. Note that our first solution can pack alldtygelrequests using at m@szo X;

colors and therefore the cost of this solution is at @§;0 X,. Since we assume that the cheapest

solution among thé + 1 solutions costs at leagt: OPT, we conclude th@fzo X; > p-OPT.
Next, consider thé; + 1)-th solution for; > 1. The intervals of the first class can be colored
using at mosgfzo X, colors each with capacity; (since this amount of colors suffices to color

all the large requests). The intervals of the second clasbea@olored using at moif:j X, unit

capacity colors. Therefore, the cost of the- 1)-th solution is at mosi; - (Zf:o XZ-) + Zf:j X;.
Since we assume that the cheapest solution among thé solutions costs at leagt- OPT, we
conclude that;; - (Zf:o Xi> + Zf:j X; > p-OPT.
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We next consider the following set of inequalities (thessumalities hold by our assumption):

k
OPT >  a;-X; (4)
j=0
k
S"X;, > p-OPT (5)
=0

k k
i=0 =]

We construct the following inequality: we multiply (5) by = a¢ — Zle(ai —a;_1) - a;, and for
eachj = 1,2, ..., kwe multiply thej-th constraint of (6) by, = a; —a;_; = ¢, and we add up all
the resulting inequalities. The left hand side of the résglinequality is exactIny:O a;-X;. This

is so because the coefficient®f in the resulting inequality i§0+2{:1 yi(ai+1)+2f:j+1 Yia; =

ay — Zle(ai —a;_1)-a;+ Zle(ai —a;_1)a; + Zle(ai —a;_1) = a;. By (4), we conclude that
the left hand side of the resulting inequality is at most ORTe right hand side of the resulting
inequality isp - OPT - Zf:o y;. We note also that the coefficienisare non-negative. To see this
last claim note that foj > 1, y; = ¢ > 0 and forj = 0, yo = ap — Zle(ai —aj_1) - a; =
Lo (i) =L —2nt =g o2 M) > a2 L L5,
Therefore, the inequality OPF Z?:o a; - X; > p-OPT- Zf:o y; holds. Therefore,

Sioui 1_2&—62-@+k:5_1+/€8—k(k+1)52
2 8

1+1-c—(I-5) 5-2"

This completes the proom

By Lemma 16, we obtain a solution that colors the large retguggh colors of total cost at
most (% + O(e)) - OPT. We would like to argue that by pickingas an infinitesimally small
positive number we obtain ghapproximation algorithm. However, picking such a value wiill
increase dramatically the time complexity of our algorithfo avoid these bad consequences we
note the following lemma.

Lemma 17 There is a polynomial time algorithm that emulates the sofuteturned by our pre-
vious algorithm for infinitesimally small value of

Proof. Our previous algorithm constructs solutions by partitngnthe set of large intervals into
two classes, and then solving the minimum coloring of eaabscby itself. The cost of each color
of each class is bounded by the largest bandwidth requestest/als of this class (and this bound
can be better than the bound we used in the proof of Lemma 183e e partitioning into two
classes is done by deciding upon a threshold valaad all requests smaller tharare assigned
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to the first class and all other requests are assigned to tbaedelass, we conclude that even for
infinitesimally small value of we have to consider at mostways to partition the large intervals,
wheren is the total number of large intervals. Therefore, we carcetethe algorithm for an
infinitesimally small value ot by computing at most solutions, and this is a polynomial time
algorithm whose running time is independentofm

The following corollary is a direct consequence of Lemmasié 17.

Corollary 18 There is a polynomial time algorithm that colors the largguests with colors of
total cost at mos§ - OPT.

We can now combine the results for small requests and lagyeests.

Theorem 19 There is an approximation algorithm with rati& = 3.6 for the variable sized
interval coloring problem in the bounded model.
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