
Variable sized online interval coloring with bandwidth∗

Leah Epstein† Thomas Erlebach‡ Asaf Levin§

Abstract

We consider online coloring of intervals with bandwidth in asetting where colors have
variable capacities. Whenever the algorithm opens a new color, it must choose the capacity
for that color and cannot change it later. A set of intervals can be assigned the same colora of
capacityCa if the sum of bandwidths of intervals at each point does not exceedCa. The goal is
to minimize the total capacity of all the colors used. We consider the bounded model, where all
capacities must be chosen in the range(0, 1], and the unbounded model, where the algorithm
may use colors of any positive capacity. For the absolute competitive ratio, we give an upper
bound of14 and a lower bound of4.59 for the bounded model, and an upper bound of4 and
a matching lower bound of4 for the unbounded model. We also consider the offline version
of these problems and show that whereas the unbounded model is polynomially solvable, the
bounded model is NP-hard in the strong sense and admits a3.6-approximation algorithm.

1 Introduction

Online interval coloring received much attention recently. In the basic problem, the nodes of an
interval graph arrive online, one by one, together with the interval representation. The goal is
to find a proper vertex coloring (i.e., each pair of adjacent vertices, i.e. intersecting intervals, are
assigned distinct colors) with a minimum number of colors. The coloring has to be determined
online, i.e., each new interval must be assigned a color uponarrival.

This problem has been studied by Kierstead and Trotter [19].They constructed an online
algorithm which uses at most3ω − 2 colors whereω is the maximum clique size of the interval
graph. They also presented a matching lower bound of3ω−2 on the number of colors in a coloring
of an arbitrary online algorithm. Note that the chromatic number of interval graphs equals the size
of a maximum clique, which is equivalent in the case of interval graphs to the largest number of
intervals that intersect any point (see [15, 14]). Many papers studied the competitive ratio of First-
Fit for this problem [17, 18, 23, 5]. The latter paper shows that the competitive ratio of First-Fit is
strictly worse than the competitive ratio of the algorithm of [19].

∗A preliminary version of this paper has appeared in theProceedings of the 10th Scandinavian Workshop on
Algorithm Theory(SWAT 2006), Lecture Notes in Computer Science 4059, Springer, 2006, pp. 29–40.

†Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il.
‡Department of Computer Science, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom.

te17@mcs.le.ac.uk. Corresponding author.
§Department of Statistics, The Hebrew University, Jerusalem, Israel.levinas@mscc.huji.ac.il.

1



Adamy and Erlebach [1] introduced the interval coloring with bandwidth problem and pre-
sented a195-competitive algorithm. In this problem each interval has abandwidth requirement
in (0, 1]. The intervals are to be colored so that at each point, the sumof bandwidths of intervals
colored by a certain color does not exceed1. Note that in this model two overlapping intervals can
receive the same color if their bandwidths sum up to at most1. This problem was studied also in
[22, 3], giving an improved competitive ratio of10, and in [10], showing a lower bound of3.2609
on the competitive ratio that can be achieved in this model.

We study a variant of this problem, where colors are not necessarily of capacity1 as in [1]. The
input arrives as in the previous model, but an algorithm may now use colors of arbitrary capacity.
In an online environment, the capacity of a color is determined by the algorithm when the color is
first used. The coloring is valid if for every colora that is used with capacityCa, at each point the
sum of bandwidths of intervals colored bya does not exceedCa. The cost of a coloring is the sum
of the capacities of the colors used. Note that the algorithmmust fix the capacity of a color when
it uses that color for the first time, and the capacity cannot be changed later.

We study two models. In theUnbounded Model, there is no restriction on the capacities of
colors. In theBounded Model, the capacities cannot exceed the value1. We remark that the
bounded model is not equivalent to the interval coloring with bandwidth problem: In the bounded
model of our problem, the algorithm can fix the capacity of each color at an arbitrary value in
(0, 1], whereas in the interval coloring with bandwidth problem, each color has capacity equal to1.

1.1 Further related work

The interval coloring with bandwidth problem of Adamy and Erlebach [1] is a generalization of the
well known bin packing problem (see e.g. [27, 9, 16, 20, 8, 6, 25]). In that problem, items of size
in (0, 1] are to be partitioned into subsets of sum not exceeding1. These subsets are called bins. In
the online problem the items are assigned one by one to bins. If all input intervals intersect, we get
an input of the bin packing problem, where bins correspond tocolors.

Our problem is related to variable sized bin packing (see [21, 12, 7, 24, 26]), but does not
generalize it. In the bin packing problem, allowing the usage of bins of any size (even if the sizes
are bounded by1) leads to a simple1-competitive algorithm, which assigns every item a bin of the
same size. In the variable sized bin packing problem, a set ofallowed bin sizes is set in advance,
and the algorithm can only use bins of this fixed set of sizes.

1.2 Motivation

As mentioned in [1], the interval coloring with bandwidth problem is motivated by applications,
mainly from the field of communication networks. We believe that our problem, the variable sized
interval coloring with bandwidth problem, could have applications in networks with line topology.
Consider such a network consisting of links, where each linkhas channels of constant capacity. A
connection request is from one network nodea to another nodeb and has a bandwidth associated
with it. The set of requests assigned to a channel must not exceed the capacity of the channel
on any of the links on the path[a, b]. The goal is to minimize the number of channels (colors)
used. In our problem, we can choose the capacity of the channel. We assume that we pay a cost

2



proportional to the capacity of the channel, rather than a fixed cost, that is charged in the case of
unit capacity channels. A connection request froma to b corresponds to an interval[a, b] with the
respective bandwidth requirement and the goal is to minimize the sum of capacities of the channels
used to serve all requests. In our model, we allow different capacities since not all channels are
necessarily identical. We remark that studying the problemfor general cost functions, where the
cost of a color is not necessarily equal to its capacity, could be an interesting topic for future work.
For example, it may be natural to assume that buying a color oftwice the capacity is cheaper than
twice the cost of the original capacity.

Another potential application comes from scheduling. A requested job has a starting time, a
duration, and a resource requirement during its execution.Jobs (intervals) arrive online and must
be assigned to a machine (color) immediately. It is possibleto pick a machine of any capability,
which is fixed when the machine is ordered. The cost of the machine is proportional to its resource
capacity. The objective is to minimize the sum of the costs ofthe machines used.

1.3 Our results

We first consider the online problem. We give tight bounds forthe unbounded model, showing
that the competitive ratio achieved by applying doubling is4, and this is best possible. The ratio4
can only be improved if we allow an additive constant: We givean algorithm that gives a solution
of cost at most(2 + ǫ)OPT + O(1

ǫ
). For the bounded model, we show that an adaptation of

the algorithm in [22] combined with doubling is14-competitive. We prove that no algorithm has
competitive ratio better than4.59.

We further show that the offline unbounded problem can be solved using a simple polynomial
algorithm, while the bounded problem is NP-hard in the strong sense. For that problem we design
an approximation algorithm with ratio18

5
= 3.6.

2 Preliminaries

For an algorithmA, we denote its cost byA as well. The cost of an optimal offline algorithm
that knows the complete sequence of intervals is denoted by OPT. We consider the absolute
competitive ratio and the absolute approximation ratio criteria. For an online algorithm we use the
term competitive ratio whereas for an offline algorithm we use the term approximation ratio. The
competitive ratio ofA is the infimumR such that for any input,A ≤ R · OPT. If the competitive
ratio of an online algorithm is at mostC we say that it isC-competitive. The approximation ratio of
a polynomial time offline algorithmA is defined similarly to be the infimumR such that for any
input,A ≤ R · OPT. If the approximation ratio of a polynomial time offline algorithm is at most
R we say that it is anR-approximation algorithm.

For a given set of requests, theload of a pointp is equal to the sum of the bandwidths of
the requests containingp, and themaximum loadis the largest load of any point. Note that the
maximum load is always a lower bound on the cost of the optimalcoloring.

The following KTℓb algorithm for the online interval coloring with bandwidth problem was
studied by Epstein and Levy [10, 11] (see also [22, 3]). We aregiven an upper boundb on the

3



maximum bandwidth request. We are also given a value of a parameterℓ. The algorithm partitions
the requests into classes and then colors each class using the First-Fit algorithm. The partition of
the requests is performed online so that a requestj is allocated to classm, wherem is the minimum
value so that the maximum load of the requests that were allocated to classes1, 2, . . . , m with the
additional new request is at mostmℓ. For an intervalvi that was allocated to classm acritical point
of vi is a pointq in vi so that the set of all the intervals that were allocated to classes1, 2, . . . , m−1
prior to the arrival ofvi, together withvi, has total load strictly larger than(m − 1)ℓ in q (i.e., q
prevents the allocation ofvi to classm − 1). They proved the following lemmas.

Lemma 1 Given an intervalvi that was allocated classm. For the setAm of intervals that were
allocated to classm, and for every critical pointq of vi the total load ofAm in q is at mostb + ℓ.
If all intervals have the same bandwidthb, andℓ is divisible byb, this total load is at mostℓ.

Lemma 2 For everym, the setAm of intervals that were allocated to classm has a maximum
load of at most2(b + ℓ). If all intervals have the same bandwidth,b, andℓ is divisible byb, the set
Am of intervals that were allocated to classm has a maximum load of at most2ℓ.

Lemma 3 The number of classes used by the algorithm is at most⌈ω∗

ℓ
⌉, whereω∗ is the maximum

load.

3 Online algorithms

3.1 The unbounded model

Our algorithm for the unbounded model simply uses standard doubling (see [4, 2]). I.e., we keep a
current “guess” of the maximum load of the complete sequence, which is actually a lower bound
on the load, and a single active color. On the arrival of the first interval, we initialize the guess
to be the largest power of2 (with negative exponent) that is strictly smaller than the bandwidth
requirement of the interval. We open the first color with capacity which is twice the guess. Each
time an interval arrives we color it with the active (i.e., last opened) color if possible. If a new
interval arrives that cannot be colored with the active color, this means that the maximum load is at
least twice larger than the current guess. We therefore update the guess to equal twice the current
guess, and open a new color with its capacity equal to twice the new value of the guess. Repeat this
process until the interval can be colored with the most recently opened color. This color becomes
active.

Theorem 4 The competitive ratio of the above algorithm is4.

Proof. If there is a single color used by the algorithm, then its capacity is at most twice the largest
load, and the competitive ratio is bounded by2. Otherwise, consider the last time a new color was
opened by the algorithm. The valueL that is the current guess of the maximum load at this time is
a lower bound on OPT. The new color has capacity2L, and since each time a new color is opened

4



its capacity is at least twice the previous capacity, we conclude that the total cost of the algorithm
is at most2L + L + L

2
+ · · ·+ L

2i + · · · ≤ 4L ≤ 4OPT.
Given a non-negative small value0 < ε < 1

6
, we next describe a modified procedure whose

asymptotic competitive ratio is2 + ε. The algorithm runs theKTℓb algorithm with “unit” capacity
that is set to1

ε
. In order to use the algorithm with unit capacities, we multiply the bandwidth of all

input intervals byε. In this way we getb = ε and therefore we can useℓ = 1
2
− ε, so that each

class of the algorithm can be packed using one color. The algorithm has the following performance
guarantee:

Theorem 5 There is an online algorithm that for each input sequence provides a solution with
cost at most(2 + ε)OPT+ O(1

ε
).

Proof. By Lemma 3, the number of colors that our algorithm uses is at most
⌈

ω∗

ℓ

⌉

. Each of
them costs1

ε
, and1 after scaling, whereω∗ is the maximum load of the scaled input. Note that

ω∗ ≤ OPT · ε (due to the scaling) and therefore the cost of the solution ofthe algorithm is at most
⌈

ω∗

ℓ

⌉

·
1

ε
≤

(

εOPT
ℓ

+ 1

)

·
1

ε
=

OPT
1
2
− ε

+
1

ε
=

2 · OPT
1 − 2ε

+
1

ε
≤ 2(1 + 3ε) · OPT+

1

ε
,

where the last inequality holds forε < 1
6
. By scalingε before the application of the algorithm we

obtain an online algorithm that uses colors of total cost at most(2 + ε)OPT+ 6
ε

as claimed.
Let us briefly discuss an algorithm for the special case of theproblem where all given intervals

have the same bandwidthβ > 0. We apply the algorithmKTℓb with ℓ = b = β to assign each
request to a class, and we color each class with a single colorof capacity2β. The coloring is
feasible because every class has maximum load at most2β by Lemma 2. By Lemma 3, the number
of classes is at most the maximum loadω∗ of all requests divided byβ. The cost of the solution
produced by the algorithm is at mostω∗

β
· 2β = 2ω∗ ≤ 2 · OPT, so the algorithm is2-competitive

for this special case.

3.2 The bounded model

Our algorithm for this case is the following adaptation of the algorithm of Narayanaswamy [22] for
the online interval coloring problem with bandwidth. We partition the requests into three groups.
Large requestsare requests with bandwidth in the interval

(

1
2
, 1
]

, medium requestsare requests
with bandwidth in the interval

(

1
4
, 1

2

]

, andsmall requestsare requests with bandwidth at most1
4
.

We use disjoint colors for coloring requests of distinct groups. Our algorithm is different from the
algorithm of [22] mainly in the procedure for coloring the small requests.

For packing large requests we use unit capacity colors, and pack these requests using Kierstead
and Trotter’s algorithm [19] for online interval coloring (without bandwidth). This is equivalent
to using the algorithm in Section 2 withℓ = 1 and ignoring bandwidth requirements. In this case
the total load of a class is at most two requests at each point,and as explained in [19], each class
requires at most three colors.

Lemma 6 The total cost of the colors used by the large requests is at most6 · OPT.

5



Proof. Denote byL the maximum number of large requests that have a common point, i.e., the
largest clique of large requests consists ofL large requests. Note that the total load of the large
requests is larger thanL

2
. Hence OPT> L

2
. The algorithm uses three colors, each of unit capacity,

to pack each class of Kierstead and Trotter’s algorithm [19]. The number of classes used by the
algorithm isL, and therefore the cost of the colors used by the large requests is at most3L, and
therefore at most6 · OPT.

For packing medium requests we again use unit capacity colors, and pack these requests using
the algorithm in Section 2, giving each interval bandwidth of 1

2
. This is similar to using Kierstead

and Trotter’s algorithm for online interval coloring (without bandwidth). Each class is packed
using one color (and not three colors). This packing of each class is feasible by Lemma 2, since
we useb = ℓ = 1

2

Lemma 7 The total cost of the colors used by the medium requests is at most4 · OPT.

Proof. Denote byL the maximum number of medium requests that have a common point (there
is a clique ofL medium requests). Note that the total load of the medium requests is at leastL

4
.

Hence OPT≥ L
4
. The algorithm uses one unit capacity color to pack each class of Kierstead and

Trotter’s algorithm [19]. The number of classes used by the algorithm isL, and therefore the cost
of the colors used by the medium requests is at mostL, and therefore at most4 · OPT.

It remains to describe the packing of the small requests. We partition the small requests into
type 1 requests and type 2 requests. Atype 1request is a request such that upon its arrival, for each
point within the request the total load of previously presented type 1 requests, plus the load of the
new request, is at most1

2
. A type 2(small) request is a small request that is not a type 1 request.

We use separate sets of colors for type 1 small requests and type 2 small requests. The type
1 small requests are packed using the doubling procedure described for the unbounded model
(Section 3.1). Recall that in that procedure, the capacity of each color that we use is an integer
power of 2. Therefore, the last opened color that we use for small requests of type 1 has a capacity
of at most1

2
.

The packing of type 2 small requests uses only colors with unit capacity and is carried out by
applying algorithmKTℓb for ℓ = 1

4
andb = 1

4
. More precisely, we apply algorithmKTℓb to all

small requests, but the requests that are assigned to the first two classes byKTℓb are actually the
type 1 small requests that are handled as explained above.

The purpose of this partition into types is that if the load caused by the small intervals is very
low, then opening a color of capacity1 right away might be an overkill for the small intervals.
Specifically, we want to show an absolute competitive ratio of 4, which would be impossible if a
unit capacity color was opened immediately.

Lemma 8 The total cost of the colors used by the small requests is at most4 · OPT.

Proof. If there is no type 2 small request, then the claim holds sincethe doubling procedure is
a 4-competitive algorithm. Thus, we can assume that there isat least one type 2 small request.
Note that in this case all colors that we use to color type 1 small requests have a total cost that is
at most 1. Consider the execution of the algorithmKTℓb for ℓ = 1

4
andb = 1

4
on the complete

6



input (i.e., already starting at the first interval). All intervals of the first two classes that would have
been opened byKTℓb are colored in our algorithm by the set of colors which are given capacities
smaller than1. To see this last property note that by the definition ofKTℓb, the first two classes
of the algorithm contain only intervals whose total load is at most2ℓ = 1

2
. All these intervals are

by definition type 1 small requests. Therefore, if we denote by ω∗ the maximum total load of the
small requests, then OPT≥ ω∗ and the number of unit capacity colors that the algorithm uses in
order to pack the type 2 small requests is at most

⌈

ω∗

ℓ

⌉

− 2 ≤ 4ω∗ + 1 − 2 = 4ω∗ − 1. Since the
total cost of the type 1 small requests is 1, we conclude that the algorithm packs the small requests
using colors with total cost that is at most4ω∗ ≤ 4 · OPT.

Using Lemmas 6, 7 and 8, we establish the following theorem.

Theorem 9 There exists a14-competitive online algorithm for the bounded model.

Again, let us consider the special case of the problem where all given intervals have the same
bandwidthβ ∈ (0, 1]. If β ≤ 1

2
, we can apply the algorithm from the end of Section 3.1 that uses

colors of capacity2β and is2-competitive. Ifβ > 1
2
, the problem is essentially equivalent to online

interval coloring (without bandwidth). We use colors of capacity β, ignore the bandwidths of the
requests, and apply Kierstead and Trotter’s algorithm for online interval coloring [19]. If the clique
size of the interval graph corresponding to the given requests isω (and thus the maximum load is
ωβ), the cost of the solution produced by the algorithm is at most (3ω − 2)β ≤ 3OPT− 2β, and
this is easily seen to be best possible in this case.

4 Lower bounds

4.1 The unbounded model

We next show that the competitive ratio of our algorithm for the unbounded model is best possible.
To prove the lower bound, we again apply methods similar to [4].

Theorem 10 Any online algorithm for the unbounded model has a competitive ratio of at least4.

Proof. Before we construct the lower bound we note that we assume forease of presentation that
bandwidth requirements can be numbers larger than1. Clearly, the unbounded model is equivalent
to any model where the bandwidths are bounded by some constant (not necessarily 1). Before
presenting the sequence, we can compute a bound on the largest bandwidth needed for the proof,
and thus our lower bound satisfies the model.

Our construction of the lower bound for the unbounded model is based on instances in which
OPT equals the maximum load, whereas the algorithm tries to guess an upper bound on the max-
imum load, and pays the sum of all its guesses. We consider input sequences with the following
structure. The first interval is[0, 1] with a unit bandwidth request. Given an arbitrary prefix of in-
tervals for which the algorithm opened the set of colors withcapacitiesc1 ≤ c2 ≤ · · · ≤ ck the next
interval is disjoint to all the previous intervals with bandwidth requestck +ε for a sufficiently small
value ofε. Then, the algorithm needs to open another color with capacity at leastck+1 ≥ ck + ε.

7



Note that at this step OPT= ck + ε as all the intervals are disjoint and therefore they all fit into a
common color with capacityck + ε, whereas the algorithm pays

∑k+1
j=1 cj.

Given a fixed value ofρ that is strictly smaller than4, we will show that if our input sequence
is long enough an online algorithm cannot pay at each stepk at mostρ times the cost of OPT at
this step (the sequence can be stopped at any point, preventing all future intervals from arriving).
Assume that this does not hold, and that there is aρ-competitive online algorithm withρ = 4 − δ
for someδ > 0. Denote this algorithm byA. Assume that given the above input sequence for the
value ofε that satisfies 1

1+ε
= 1 − δ2, A opens colors with capacitiesc1 < c2 < · · · < ck < · · · .

Then, sinceA is ρ-competitive the following inequalities must hold:

k+1
∑

j=1

cj ≤ ρ(ck + ε) andc1 ≤ ρ.

Let rk+1 = 4 − δ −
Pk

j=1
cj

ck+ε
, for k ≥ 1. The inequality above impliesck+1

ck+ε
≤ rk+1. Note that

if rk+1 < 1, A cannot open a color of sufficient capacity in stepk + 1 without violating the
assumption that its competitive ratio isρ. We will show that the valuesrk+1 for k = 1, 2, . . . form
a decreasing sequence so thatrk+1 must be strictly less than1 for some large enough value ofk
(depending only onε). This is a contradiction tork+1 ≥ 1 and shows that such a sequence ofck’s
cannot exist, hence no algorithm can achieve competitive ratio 4 − δ for anyδ > 0.

First, we observe thatr2 = 4− δ− c1
c1+ε

≤ 4− δ. Next, we will show thatrk+2 ≤ rk+1/(1+ γ)
for all k ≥ 1 (as long asrk+1 ≥ 1), whereγ > 0 is a constant. Assuming thatrk+1 ≤ 4 − δ was
shown by induction, we can boundrk+2 as follows.

rk+2 = 4 − δ −

∑k+1
j=1 cj

ck+1 + ε
= 4 − δ −

∑k

j=1 cj

ck + ε
·

ck + ε

ck+1 + ε
−

ck+1

ck+1 + ε

= 4 − δ − (4 − δ − rk+1) ·
ck + ε

ck+1 + ε
−

ck+1

ck+1 + ε

≤ 4 − δ − (4 − δ − rk+1) ·
ck + ε

rk+1(ck + ε) + ε
−

1

1 + ε

≤ 4 − δ − (4 − δ − rk+1) ·
ck + ε

(rk+1 + ε)(ck + ε)
−

1

1 + ε

= 4 − δ − (4 − δ − rk+1) ·
1

rk+1 + ε
−

1

1 + ε

= 4 − δ − (4 − δ) ·
1

rk+1 + ε
+

rk+1

rk+1 + ε
−

1

1 + ε

≤ 5 − δ −
1

1 + ε
−

4 − δ

rk+1 + ε
≤ 5 − δ −

1

1 + ε
−

4 − δ

rk+1(1 + ε)

We claim that

5 − δ −
1

1 + ε
−

4 − δ

rk+1(1 + ε)
≤

rk+1

1 + γ
(1)

8



whereγ is chosen in such a way that4
1+γ

≥ 4 − δ2 is satisfied. We see that (1) is equivalent to

1

1 + γ
r2
k+1 − (5 − δ −

1

1 + ε
)rk+1 +

4 − δ

1 + ε
≥ 0.

As this is a quadratic inequality of the formax2 + bx + c ≥ 0 with a > 0, it suffices to show that
the discriminantb2 − 4ac is negative. Forδ < 0.1 we can calculate as follows.

b2 − 4ac = (5 − δ −
1

1 + ε
)2 −

4

1 + γ
·
4 − δ

1 + ε
≤ (4 − δ + δ2)2 − (4 − δ2)(4 − δ)(1 − δ2)

= δ5 − 3δ4 − 7δ3 + 29δ2 − 4δ ≤ 0.0001δ + 2.9δ − 4δ ≤ −δ < 0

Hence, (1) holds, and the proof is complete.

4.2 The bounded model

In order to construct the lower bound, we use as a black box thelower bound of Kierstead and
Trotter [19] given originally for the standard online interval coloring problem. They designed
for any integerk a lower bound sequence where the clique size is at mostk, whereas any online
algorithm is forced to use3k− 2 colors. In [10] it was shown that this construction can be adapted
to the case where the valuek or bounds on it are known in advance to the algorithm.

Theorem 11 Any online algorithm for the bounded model has a competitiveratio of at least4.5.

Proof. Let k be a large enough integer. We are going to have at most two suchconstructions, where
there is no overlap between the intervals of the two constructions. Letε > 0 be a small value, such
thatP = 1

2ε
is an integer. We start with such a construction where all intervals have bandwidth

1
2

+ ε. Since the largest capacity of a color can be1, no two overlapping intervals can receive the
same color, and therefore the algorithm is forced to use3k − 2 colors, whereas an optimal offline
algorithm can use at mostk colors, each of capacity1

2
+ ε.

The second construction will use intervals of bandwidth1
2

+ jε for some2 ≤ j ≤ P . In this
construction as well the algorithm is forced to use3k−2 colors of capacity at least1

2
+jε, whereas

the construction isk-colorable. An optimal offline algorithm usesk colors of capacity1
2
+ jε each,

and these colors are used to color all intervals of the first construction as well. Consider the3k− 2
colors with largest capacity opened by the algorithm for thefirst construction. Lets be the number
of colors out of these colors whose capacity is strictly smaller than1

2
+ jε. The algorithm has to

open at leasts new colors of capacity1
2

+ jε.
Already in the first construction, the algorithm only needs to open colors whose capacities are

in the set{1
2
+ε, 1

2
+2ε, . . . , 1

2
+Pε = 1}. Consider only the3k−2 colors of largest capacities that

are opened for the first construction. LetXj for 1 ≤ j ≤ P be the number of colors of capacity
1
2

+ jε.
Let C be the competitive ratio. The cost of the algorithm for the first construction is at least

P
∑

j=1

(1
2

+ jε)Xj. Note that according to the definition of the valuesXj,
P
∑

j=1

Xj = 3k − 2, therefore

9



we can write this lower bound on the cost as3k
2
−1+ ε

P
∑

j=1

jXj. Since the optimal cost is(1
2
+ ε)k,

we get3k
2
− 1 + ε

P
∑

j=1

jXj ≤ C(1
2

+ ε)k. This is equivalent to

P
∑

j=1

jXj ≤ CP (1 + 2ε)k − 3kP + 2P . (2)

For every2 ≤ j ≤ P we get a lower bound on the cost of the algorithm for the second
construction of

P
∑

i=1

(
1

2
+ iε)Xi + (3k − 2 −

P
∑

i=j

Xi)(
1

2
+ jε)

=
3k − 2

2
+ ε

P
∑

i=1

iXi +
3k − 2

2
+ jε(3k − 2) −

1

2

P
∑

i=j

Xi − jε

P
∑

i=j

Xi

= (3k − 2)(1 + jε) + ε

j−1
∑

i=1

iXi + ε

P
∑

i=j

(i − j)Xi −
1

2

P
∑

i=j

Xi.

Therefore,

(3k − 2)(1 + jε) + ε

j−1
∑

i=1

iXi + ε
P
∑

i=j

(i − j)Xi −
1

2

P
∑

i=j

Xi ≤ Ck(
1

2
+ jε) ,

or

2P (3k − 2)(1 + jε) +

j−1
∑

i=1

iXi +
P
∑

i=j

(i − j)Xi − P
P
∑

i=j

Xi ≤ 2PCk(
1

2
+ jε) = PCk + jCk .

We get

j−1
∑

i=1

iXi +

P
∑

i=j

(i − j)Xi − P

P
∑

i=j

Xi ≤ P (C − 6)k + 4P + j(C − 3)k + 2j . (3)

For each1 ≤ j ≤ P , we multiply the inequality forj by the coefficientaj , and add up the
resulting inequalities. The values of the coefficients area1 = P+1

2
(for equation (2)), and forj > 1,

aj = 1.
Next, we compute the coefficient of each valueXi, 1 ≤ i ≤ P , in the resulting inequality.

Given a valueXi, its coefficient in the inequality (2) isi. Its coefficient in the inequality (3) for

10



j > i is i and forj ≤ i is i − j − P . Therefore, we get

P + 1

2
i +

i
∑

j=2

(i − j − P ) +

P
∑

j=i+1

i = i

(

P + 1

2
+ P − 1

)

− P (i − 1) −

(

i(i + 1)

2
− 1

)

=
iP

2
+

i

2
+ iP − i − Pi + P −

i2

2
−

i

2
+ 1 ≥ (P − i) ·

i + 2

2
≥ 0 .

Therefore the left hand side of the resulting inequality is non-negative. Next, consider the right
hand side. It is equal to

P + 1

2
(CP (1 + 2ε)k − 3kP + 2P ) +

P
∑

j=2

(P (C − 6)k + 4P + j(C − 3)k + 2j)

=
P + 1

2
(CP (1 + 2ε)k − 3kP + 2P ) + (P − 1)(P (C − 6)k + 4P )

+ ((C − 3)k + 2)(
P (P + 1)

2
− 1) .

Lettingk tend to infinity, we get the following inequality onC.

0 ≤ (P 2 + P )(C(
1

2
+ ε) −

3

2
) + (P 2 − P )(C − 6) + (C − 3)

P 2 + P − 2

2
.

Next, we letP tend to infinity and get0 ≤ C−3
2

+ (C − 6) + C−3
2

= 2C − 9. This gives a lower
bound of4.5 onC.

Remark 12 Running a linear program using Matlab forP = 400 we can get a lower bound of
4.591 onC.

5 Offline problems

In this section we show that the unbounded model is polynomially solvable (offline) whereas the
bounded model is NP-hard and we provide a 3.6-approximationalgorithm for it.

5.1 The unbounded model

In the unbounded model, the problem is clearly polynomiallysolvable. The algorithm computes
the maximum load, and then opens a single color with capacityequal to the maximum load.
Clearly, all the intervals can be colored using this color, and we obtain a feasible solution whose
cost equals the maximum load, which is a lower bound on the optimal cost. Hence, we conclude
the following:

Proposition 13 The offline problem of the unbounded model is polynomially solvable.

11



5.2 The bounded model

We first show that the resulting offline problem for the bounded model is NP-hard.

Theorem 14 The offline problem of the bounded model is NP-hard in the strong sense.

Proof. We show a reduction from the 3-Partition problem defined as follows (see problem [SP15]
in [13]): We are given a set of3m positive numberss1, s2, . . . , s3m such that

∑3m

j=1 sj = mB and
eachsi satisfiesB

4
< si < B

2
. The goal is to find out whether there exists a partition of thenumbers

into m sets such that the sum of elements of each set is exactlyB. The 3-Partition problem is
known to be NP-hard in the strong sense.

Given such an instance of the 3-Partition problem we define aninstance of the variable sized
interval coloring problem as follows: We are given a set ofm intervals each with bandwidth request
1 and all of them are the interval[0, 1]. Moreover, we are given another set of3m intervals[2, 3],
where thei-th interval of this set has a bandwidth requestsi

B
. We claim that there is a feasible

solution to this variable sized interval coloring problem of cost at mostm if and only if the 3-
Partition instance is a YES instance.

To see this last claim first note that the variable sized interval coloring problem must color with
distinct colors the intervals of the first set (since we are considering the bounded model), and we
can color with the same color intervals from the second set aslong as their total bandwidth request
is at most 1. I.e., there is a solution to the variable sized interval coloring of cost at mostm, if and
only if the intervals of the second set (the intervals of[2, 3]) can be partitioned intom sets such
that the total bandwidth request of the intervals of a set is at most 1. This means that the sum of
elements of each such set is at mostB, i.e., the 3-Partition instance is a YES instance.

Because of the fact that the bounded model problem is NP-hard, we turn our focus to designing
an approximation algorithm for this problem. We define asmall requestto be a request with
bandwidth that is at most1

2
, and alarge requestto be a request whose bandwidth is strictly larger

than 1
2
. Our algorithm uses disjoint sets of colors to color the small requests and the large requests.

For small requests we sort the intervals in non-decreasing order of their left end-point. Then,
we use colors with maximum capacity 1 and color the intervalsaccording to the First-Fit algorithm.
After we color all the small requests, we compute the maximumload of the last color that is opened
and we change its capacity to be this value of the maximum load.

Lemma 15 The cost of colors that our algorithm uses to color the small requests is at most2·OPT.

Proof. Assume that the algorithm usesc colors to color the small requests and that the maximum
load in the last color equalsa. Then, the cost of the colors that our algorithm uses to colorthe
small requests isc − 1 + a. Note that ifc = 1 then this cost is at most the maximum load (which
equals the maximum load of the small requests) and thereforea ≤ OPT. So we assume thatc ≥ 2.
Consider the leftmost point in which the load of the last color is a, and denote this point byp.
Then,p is the left end-point of an interval that our algorithm colors with the last color. Denote by
I this interval, and recall that the bandwidth request ofI is at most1

2
. Since our algorithm decided

not to placeI in the firstc− 1 colors we conclude that the load of each of these colors in thepoint
p is at least1

2
(this is so because the intervals are sorted from left to right). Therefore, the total load

12



of all the small requests at pointp is at leastc−1
2

+ a. Therefore, OPT≥ c−1
2

+ a ≥ c−1+a
2

. Since
the algorithm pays at mostc − 1 + a, this cost is at most2 · OPT.

It remains to consider the large requests. Before presenting our algorithm, we consider the
following algorithm. We sort the large requests in non-decreasing order of their left end-point.
Then, we use colors with capacity 1 and color the intervals according to the First-Fit algorithm. We
note that using First-Fit minimizes the number of colors that are used to color the large requests
(when the intervals are sorted) and since the capacity of each color is 1 whereas in the optimal
solution the capacity of each color is at least1

2
, we conclude that this algorithm uses colors with

total cost of at most2 · OPT.
Let ε > 0 be a given constant such thatk = 1

2ε
− 1 is an integer to be selected afterwards. Our

algorithm for the large requests computesk + 1 solutions and picks the cheapest solution among
these. The first solution is to pack all the large requests with a minimum number of unit capacity
colors (using First-Fit on the sorted list of large requests). For eachj = 1, 2, . . . , k we define
aj = 1

2
+jε and our(j+1)-th solution is constructed as follows. We partition the large requests into

two classes: the first class consists of all large requests with bandwidth at mostaj , and the second
class consists of all the remaining large requests. Each class is packed separately using its own set
of colors. The capacity of the colors that are used for the first class isaj , whereas the capacity of
the colors that are used for the second class is 1. Each class is packed optimally using the minimum
number of colors (using First-Fit on the sorted list of intervals from this class). We next show that
the cheapest solution among thek + 1 solutions has a cost of at most

(

8
5

+ O(ε)
)

· OPT.

Lemma 16 The cheapest solution among thek + 1 solutions has a cost of at most
(

8
5−2ε

)

· OPT.

Proof. We prove that the algorithm colors the large requests with total cost of at most 8
5−2ε

· OPT
and the approximation ratio of the algorithm is at most8

5−2ε
. Let a0 = 1

2
andak+1 = 1. Let

ρ be the competitive ratio of the algorithm, we prove thatρ ≤ 8
5−2ε

. Denote byXj the number
of colors that OPT opens with capacity in the interval(aj, aj+1], for j = 0, 1, 2, . . . , k. Then,
OPT ≥

∑k

j=0 aj · Xj. We assume that the cheapest solution among thek + 1 solutions costs at
leastρ · OPT.

Since two intersecting large requests cannot be colored by the same color in any solution, we
can compute upper bounds on the number of colors of each capacity used by the algorithm in each
one of the cases. Note that our first solution can pack all the large requests using at most

∑k

j=0 Xj

colors and therefore the cost of this solution is at most
∑k

j=0 Xj. Since we assume that the cheapest

solution among thek + 1 solutions costs at leastρ · OPT, we conclude that
∑k

j=0 Xj ≥ ρ · OPT.
Next, consider the(j + 1)-th solution forj ≥ 1. The intervals of the first class can be colored
using at most

∑k

i=0 Xi colors each with capacityaj (since this amount of colors suffices to color
all the large requests). The intervals of the second class can be colored using at most

∑k

i=j Xi unit

capacity colors. Therefore, the cost of the(j +1)-th solution is at mostaj ·
(

∑k

i=0 Xi

)

+
∑k

i=j Xi.

Since we assume that the cheapest solution among thek + 1 solutions costs at leastρ · OPT, we

conclude thataj ·
(

∑k

i=0 Xi

)

+
∑k

i=j Xi ≥ ρ · OPT.

13



We next consider the following set of inequalities (these inequalities hold by our assumption):

OPT ≥
k
∑

j=0

aj · Xj (4)

k
∑

j=0

Xj ≥ ρ · OPT (5)

aj ·

(

k
∑

i=0

Xi

)

+
k
∑

i=j

Xi ≥ ρ · OPT ∀j = 1, 2, . . . , k. (6)

We construct the following inequality: we multiply (5) byy0 = a0 −
∑k

i=1(ai − ai−1) · ai, and for
eachj = 1, 2, . . . , k we multiply thej-th constraint of (6) byyj = aj−aj−1 = ε, and we add up all
the resulting inequalities. The left hand side of the resulting inequality is exactly

∑k

j=0 aj ·Xj. This

is so because the coefficient ofXj in the resulting inequality isy0+
∑j

i=1 yi(ai+1)+
∑k

i=j+1 yiai =

a0 −
∑k

i=1(ai − ai−1) · ai +
∑k

i=1(ai − ai−1)ai +
∑j

i=1(ai − ai−1) = aj . By (4), we conclude that
the left hand side of the resulting inequality is at most OPT.The right hand side of the resulting
inequality isρ · OPT ·

∑k

i=0 yi. We note also that the coefficientsyj are non-negative. To see this
last claim note that forj ≥ 1, yj = ε > 0 and forj = 0, y0 = a0 −

∑k

i=1(ai − ai−1) · ai =
1
2
−
∑k

i=1 ε ·
(

1
2

+ iε
)

= 1−kε
2

− ε2
∑k

i=1 i = 1−kε
2

− ε2 · k(k+1)
2

≥
1− 1

2ε
ε

2
− ε2 · 1

8ε2 = 1
8

> 0.
Therefore, the inequality OPT≥

∑k

j=0 aj · Xj ≥ ρ · OPT ·
∑k

i=0 yi holds. Therefore,

ρ ≤
1

∑k

i=0 yi

=
1

1−kε
2

− ε2 · k(k+1)
2

+ kε
=

2

1 + kε − k(k + 1)ε2

=
2

1 + 1
2
− ε − (1

4
− ε

2
)

=
8

5 − 2ε
.

This completes the proof.
By Lemma 16, we obtain a solution that colors the large requests with colors of total cost at

most
(

8
5

+ O(ε)
)

· OPT. We would like to argue that by pickingε as an infinitesimally small
positive number we obtain an8

5
approximation algorithm. However, picking such a value ofε will

increase dramatically the time complexity of our algorithm. To avoid these bad consequences we
note the following lemma.

Lemma 17 There is a polynomial time algorithm that emulates the solution returned by our pre-
vious algorithm for infinitesimally small value ofε.

Proof. Our previous algorithm constructs solutions by partitioning the set of large intervals into
two classes, and then solving the minimum coloring of each class by itself. The cost of each color
of each class is bounded by the largest bandwidth request of intervals of this class (and this bound
can be better than the bound we used in the proof of Lemma 16). Since the partitioning into two
classes is done by deciding upon a threshold valueτ and all requests smaller thanτ are assigned

14



to the first class and all other requests are assigned to the second class, we conclude that even for
infinitesimally small value ofε we have to consider at mostn ways to partition the large intervals,
wheren is the total number of large intervals. Therefore, we can execute the algorithm for an
infinitesimally small value ofε by computing at mostn solutions, and this is a polynomial time
algorithm whose running time is independent ofε.

The following corollary is a direct consequence of Lemmas 16and 17.

Corollary 18 There is a polynomial time algorithm that colors the large requests with colors of
total cost at most8

5
· OPT.

We can now combine the results for small requests and large requests.

Theorem 19 There is an approximation algorithm with ratio18
5

= 3.6 for the variable sized
interval coloring problem in the bounded model.

References

[1] U. Adamy and T. Erlebach. Online coloring of intervals with bandwidth. InProceedings
of the First International Workshop on Approximation and Online Algorithms (WAOA’03),
LNCS 2909, pages 1–12, 2003.

[2] J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, and O. Waarts. On-line routing of virtual circuits
with applications to load balancing and machine scheduling. Journal of the ACM, 44(3):486–
504, 1997.

[3] Y. Azar, A. Fiat, M. Levy, and N. Narayanaswamy. An improved algorithm for online color-
ing of intervals with bandwidth.Theoretical Computer Science, 363(1):18–27, 2006.

[4] S. K. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan,L. E. Rosier, D. Shasha, and
F. Wang. On the competitiveness of on-line real-time task scheduling. Real-Time Systems,
4(2):125–144, 1992.

[5] M. Chrobak and M.Ślusarek. On some packing problems relating to dynamical storage
allocation.RAIRO Journal on Information Theory and Applications, 22:487–499, 1988.

[6] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing:
A survey. In D. Hochbaum, editor,Approximation algorithms. PWS Publishing Company,
1997.

[7] J. Csirik. An online algorithm for variable-sized bin packing. Acta Informatica, 26:697–709,
1989.

[8] J. Csirik and G. J. Woeginger. On-line packing and covering problems. InA. Fiat and G. J.
Woeginger, editors,Online Algorithms: The State of the Art, LNCS 1442, pages 147–177,
1998.

15



[9] W. F. de la Vega and G. S. Lueker. Bin packing can be solved within 1 + ε in linear time.
Combinatorica, 1:349–355, 1981.

[10] L. Epstein and M. Levy. Online interval coloring and variants. InProceedings of the 32nd
International Colloquium on Automata, Languages and Programming (ICALP’05), LNCS
3580, pages 602–613, 2005.

[11] L. Epstein and M. Levy. Online interval coloring with packing constraints. InProceed-
ings of the 30th International Symposium on Mathematical Foundations of Computer Science
(MFCS’05), LNCS 3618, pages 295–307, 2005.

[12] D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM J. Comput., 15:222–230,
1986.

[13] M. R. Garey and D. S. Johnson.Computer and Intractability. W. H. Freeman and Company,
New York, 1979.

[14] M. C. Golumbic.Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

[15] T. R. Jensen and B. Toft.Graph coloring problems. Wiley, 1995.

[16] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. InProceedings of the 23rd Annual Symposium on Foundations of
Computer Science (FOCS’82), pages 312–320, 1982.

[17] H. A. Kierstead. The linearity of first-fit coloring of interval graphs. SIAM Journal on
Discrete Mathematics, 1(4):526–530, 1988.

[18] H. A. Kierstead and J. Qin. Coloring interval graphs with First-Fit.SIAM Journal on Discrete
Mathematics, 8:47–57, 1995.

[19] H. A. Kierstead and W. T. Trotter. An extremal problem inrecursive combinatorics.Con-
gressus Numerantium, 33:143–153, 1981.

[20] C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the ACM,
32(3):562–572, 1985.

[21] F. D. Murgolo. An efficient approximation scheme for variable-sized bin packing.SIAM J.
Comput., 16(1):149–161, 1987.

[22] N. S. Narayanaswamy. Dynamic storage allocation and online colouring interval graphs. In
Proceedings of the 10th Annual International Conference onComputing and Combinatorics
(COCOON’04), LNCS 3106, pages 329–338, 2004.

[23] S. V. Pemmaraju, R. Raman, and K. R. Varadarajan. Bufferminimization using max-
coloring. InProceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’04), pages 562–571, 2004.

16



[24] S. S. Seiden. An optimal online algorithm for bounded space variable-sized bin packing.
SIAM Journal on Discrete Mathematics, 14(4):458–470, 2001.

[25] S. S. Seiden. On the online bin packing problem.Journal of the ACM, 49(5):640–671, 2002.

[26] S. S. Seiden, R. van Stee, and L. Epstein. New bounds for variable-sized online bin packing.
SIAM Journal on Computing, 32(2):455–469, 2003.

[27] J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100,
Princeton University, Princeton, NJ, 1971.

17


