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Abstract. The problem of scheduling wireless transmissions under sig-
nal to interference-plus-noise ratio (SINR) constraints has received in-
creasing attention recently. While previous work has considered the uni-
cast case where each transmission has one sender and one receiver, we
consider the setting of multicast requests where each transmission has
one sender and a set of receivers. A set of multicast transmissions can
be scheduled in the same round if the SINR at all receivers is above
a certain threshold. The goal is to minimise the number of rounds.
Building on the relationship between SINR scheduling and unit disk
graph colouring established by Halldórsson (ESA 2009), we present an
O(logΓ )-approximation algorithm for multicast scheduling in the SINR
model, where Γ is the ratio of the longest to the shortest link length,
considering only the longest link of each multicast request. The algo-
rithm uses uniform power assignment and can be implemented online.
We also compare the model of atomic multicasts (where all receivers
of a multicast must receive the transmission in the same round) to the
model of splittable multicasts (where a multicast sender can transmit
in several rounds, each time serving a subset of its receivers). Further-
more, we consider the throughput maximisation problem and obtain an
O(logΓ )-competitive randomised online algorithm and show that every
deterministic algorithm, even for unicast links and using arbitrary power
assignments, has competitive ratio Ω(logΓ ).

1 Introduction

Wireless ad-hoc networks allow a set of wireless nodes to form a network with-
out any pre-existing infrastructure. Such networks are very versatile, but there
are limitations. To receive a transmission successfully, the reception strength
of the signal must be greater than the sum of other transmissions in the net-
work with the addition of any background noise. In other words, the signal to
interference-plus-noise ratio (SINR) must be above a certain threshold. This is
an important feature of wireless networks, especially in situations where nodes
have close proximity to each other or where the network has a high level of
traffic. Such scenarios can reduce the capacity and impair the performance of
wireless networks. Therefore, it is essential that scheduling schemes take into ac-
count interference constraints, otherwise they may suffer a considerable amount
of transmission errors such as corrupted or lost packets.
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In earlier theoretical studies of wireless networks, interference was typically
modelled in a simplistic way, e.g., by assuming that a transmission can be re-
ceived by any node that is at distance at most r1 from the sender, and the
transmission creates interference at any node that is at distance at most r2 > r1
from the sender. One of the shortcomings of such models is that the cumulative
effects of interference are neglected. To address this and other shortcomings, it
has been proposed that the SINR model, also called the physical model, be used
for theoretical worst-case analysis as well [14], and that model has now been
widely adopted, see, e.g., [11, 4, 1, 6, 2, 10].

Given a set of transmission requests, each requesting a direct transmission
from a sender to a receiver, a fundamental problem is to compute a shortest
schedule for completing the requests. A schedule proceeds in rounds, and each
round consists of a set of transmissions that can take place simultaneously with-
out violating SINR constraints. The length of a schedule is the number of rounds.
Another natural optimisation problem, called the throughput problem, is to max-
imise the number of transmissions that can be scheduled simultaneously in one
round.

An important aspect of a wireless transmission schedule is the power that is
assigned to the nodes for their transmissions. The simplest approach is to use
a uniform power assignment where all nodes use the same transmission power.
Uniform power assignments may be preferred due to the simpler implementation
and must be used in homogeneous networks where power control is not available
due to hardware constraints. Other power assignments that have been considered
in the literature are oblivious power assignments, where the power assigned to
the sender of a transmission is a function of the distance to the receiver, and
arbitrary power assignments, where the power assigned to a sender can be set
arbitrarily (for example, depending on the interference caused by simultaneous
transmissions by other senders).

Previous work on transmission scheduling under SINR constraints has con-
sidered unicast transmissions, i.e., the case where each transmission has one
sender and one receiver. However, a fundamental property of wireless transmis-
sions is that a single transmission can be received by several nodes that are
within the sender’s transmission range. Furthermore, there are many scenarios
where nodes of the network may want to transmit the same message to a set of
other nodes, e.g., in the exchange of routing information between neighbours in a
virtual topology maintained on top of the physical network or in the flooding of
information across the network. Therefore, in this paper we consider the wireless
transmission scheduling problem for multicast requests. Our aim is to investi-
gate how existing methods developed for the unicast setting can be adapted to
the multicast setting. We consider algorithms that use uniform power assign-
ment. Although the lack of power control has been shown to be sub-optimal
by a factor logarithmic in the maximum power used [14, 2], we argue that it is
meaningful to study uniform power schedules. The predominant reason for this
is that solutions based on uniform power are simpler for implementation, both in
hardware and software. Thus, such methods are more likely to be adopted and
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utilised by practitioners. A similar justification has also been given in [2, 10].
Furthermore, we measure the approximation ratio of our algorithms compared
to optimal solutions with arbitrary power assignment.

The unicast case of both the scheduling and the throughput problem was
proved NP-complete by Goussevskaia et al. [8] for uniform power. As the uni-
cast case is a special case of the multicast case, the multicast version is also
NP-complete for scheduling and throughput with uniform power. Andrews and
Dinitz [1] prove that the throughput problem is NP-hard for arbitrary power.
These results provide motivation for studying approximation algorithms for these
problems.

1.1 Related Work

Most of the related work that we are aware of and that we discuss in this section
has been for unicast transmissions. A starting point for the theoretical analysis
of the capacity of wireless networks was the seminal work by Gupta and Kumar
[9] that studied the throughput in a setting where the nodes are distributed
uniformly at random. More recently, there has been an extensive study of offline
scheduling and throughput problems in the SINR model with respect to arbi-
trary networks and with a focus on worst-case analysis and approximation algo-
rithms [14, 13, 5, 11, 4, 1, 6, 2, 10]. The uniform power variant has also been under
intense scrutiny especially due to its appeal to both theoreticians and applied
researchers, leading to constant-factor approximation algorithms for scheduling
and throughput (compared to the optimal solution with uniform power) [6, 11].
The difference between uniform and non-uniform power assignments was first
investigated by Moscibroda and Wattenhofer [14].

Halldórsson [10] considers the wireless scheduling problem in comparison
with the optimal solution that uses an arbitrary power assignment. He shows
that the scheduling problem can be related to the colouring of unit disk graphs
at a constant-factor loss of approximation ratio in the case of links of similar
length. This yields simple online algorithms with uniform power that achieve ra-
tio O(1) for links of similar lengths and ratio O(logΓ ) for arbitrary links, where
Γ is the ratio between the maximum and minimum link lengths. Our results
for the multicast setting build on these results. Furthermore, in [10] Halldórsson
also presents an O(log n · log logΓ )-approximation algorithm using an oblivious
power assignment, the so-called square-root assignment [5]. This is the first ap-
proximation algorithm with ratio polylogarithmic in the size of the input. He
complements this result by a lower bound construction showing that any obliv-
ious power assignment cannot achieve a better ratio than Ω(log logΓ ) in the
worst case. Furthermore, he mentions that the results also hold for the through-
put problem.

We note that broadcast transmissions, which can be considered as an ex-
treme case of multicast transmissions, were studied in [7] and [15]. Additionally
the online version of the wireless throughput problem has also been studied very
recently by Fanghänel et al. [3]. They assume that requests can have a duration
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in the interval [1, T ]. They show that no deterministic algorithm with oblivi-
ous power assignment can achieve competitive ratio better than Ω(T · Γ d/2).
Furthermore, they present an O(T · Γ (d/2)+ε)-competitive deterministic online
algorithm and a randomised O(logΓ · log T )-competitive online algorithm. They
also consider a generalisation of the problem where requests have to be assigned
to one of k channels.

1.2 Our Results

We consider the scheduling problem for multicast requests under SINR con-
straints, assuming that the nodes are points in the two-dimensional Euclidean
plane and the received signal strength is proportional to the power of the trans-
mitted signal divided by the distance to the power of α, where α is the path loss
exponent and assumed to be a constant greater than 2 (in practice, α is typi-
cally assumed to be between 2 and 6). We consider multicast transmissions to be
atomic, which is to say that in a given multicast group, all receivers must success-
fully receive the transmission in the same round. Building on Halldórsson’s [10]
results for the unicast case, we present an O(logΓ )-approximation algorithm for
multicast scheduling under SINR constraints. In the multicast case, Γ denotes
the ratio of the longest to the shortest link length, considering only the longest
link of each multicast request. Note that Γ can be much smaller than the ratio
of the longest to the shortest link among all unicast links that are part of a
multicast request. As our algorithm is based on partitioning the requests into
length classes and using unit disk graph colouring to schedule each length class,
it can also be used as a simple online algorithm.

We also discuss the relationship between schedules for such atomic multi-
casts and schedules for splittable multicasts, where the sender of a multicast can
transmit in several rounds, serving a subset of its receivers in each round.

As with previous work, we show that our approach is also applicable to the
case of throughput maximisation. Moreover, we present a lower bound showing
that every deterministic online algorithm has competitive ratio Ω(logΓ ) even
for the unicast version of the throughput problem. This complements previous
lower bounds where the algorithm was restricted to oblivious power assignments.

2 Preliminaries

We assume that senders and receivers are points in two-dimensional Euclidean
space, and we use δ(p, q) to denote the Euclidean distance between two points
p and q. For a given undirected graph G = (V,E), ∆(G) denotes the maximum
degree of any vertex in V . Note that any graph G can be coloured with O(∆(G))
colours using any greedy colouring algorithm. A graph G = (V,E) is a unit disk
graph (for disks with radius r) if each vertex v ∈ V can be associated with a disk
of radius r centred at a point pv in the plane such that two vertices u, v ∈ V
are adjacent if and only if the corresponding disks intersect (or, equivalently, if
the distance between pu and pv is at most 2r). We note the following simple
property of unit disk graphs.
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Lemma 1. If a unit disk graph with disks of radius r has maximum degree k ≥ 1,
increasing the radius of the disks from r to cr for some c > 1 increases the
maximum degree to at most O(kc2).

In the following, we first discuss notation for unicast requests and multicast
requests and then define the problems we are considering. As we are presenting
adaptations of previous work, in particular [10], we strive to keep similar notation
for clarity.

2.1 Unicast Requests

A unicast request `v is a transmission request from a single sender sv to a single
receiver rv. We also interchangeably refer to requests as links, as is common
practice in the literature.

We override notation when the context is clear and denote the length of a
link `v by `v = δ(sv, rv). Additionally, we use the shorthand δuv to refer to
the distance δ(su, rv) between the sender su of a link `u and the receiver rv of
another link `v. A set L of links is nearly equilength if the lengths of the links
in L are within a factor of 2 of each other. When discussing a set of nearly
equilength links, we let D be a value such that the lengths of all links lie in the
interval [D, 2D].

For a set L of nearly equilength unicast links with lengths in [D, 2D], as
in [10] G′q(L) denotes the unit disk graph formed by disks with radius qD/2 and
with the unicast receivers as centres.

For a given set L of unicast links, we denote by Γ the ratio maxv `v/minu `u
of the maximum link length to the minimum link length.

We denote the power assigned to a sender sv as Pv. For all our algorithms
we assume that all senders are assigned the same power and that there is no
constraint on the maximum power level.

To model the degradation of a transmitted signal over distance, we let α be
the path loss exponent and adopt the common assumption that 2 < α ≤ 6. The
received signal strength of a transmission on link `v from sv to rv is Pv/`αv .

Let Sv be the set of senders that are transmitting concurrently with a sender
sv and let N represent the background noise in the network. We use the SINR
model of interference, which is interchangeably termed the physical model. A
unicast transmission `u from su to ru is successfully received if the following
constraint is satisfied:

Pu/`αu
N +

∑
sv∈Su\{su}

Pv/δαvu
> β (1)

Here, β ≥ 1 denotes the minimum SINR required for a successful reception. As in
previous work, we assume throughout the paper without loss of generality that
N = 0. This assumption can be justified by noting that the effect of noise can be
made arbitrarily small by scaling up the power of all senders. Furthermore, one
sometimes considers the case β = 1 for simplicity, as by Lemma 6 any constant
β > 1 can be achieved losing only a constant factor in the approximation ratio.



6 Thomas Erlebach and Tom Grant

2.2 Multicast Requests

A multicast request or multicast group is a set of unicast links with a common
sender. A multicast group mv is represented as a pair (sv, Rv) where sv is the
sender and Rv = {rv1 , rv2 . . . rvkv

} is a set of kv ≥ 1 receivers. Intuitively, a
multicast request (sv, Rv) asks for a single transmission by the sender sv that is
successfully received by all receivers in Rv simultaneously. For 1 ≤ i ≤ kv, we
use `vi

to refer to the link with sender sv and receiver rvi
. Again, we override

notation and also use `vi to refer to the length of that link. Without loss of
generality, we assume that the receiver with index 1 is a receiver that is furthest
from the sender of mv, i.e., `v1 = max1≤i≤kv

`vi
. The distance between the sender

of multicast group mu to a given receiver rvi
in multicast group mv is denoted

by δuvi
= δ(su, rvi

).
For a given set M of multicast groups, we denote by Γ the ratio of the

maximum link length to the minimum link length amongst all longest links of
the multicast groups in M , i.e., the value maxv `v1/minu `u1 .

A set M of multicast links is nearly equilength if the lengths of the longest
links in each group are within a factor of 2 of each other, i.e., there is a D such
that `v1 ∈ [D, 2D] for all mv ∈M .

A multicast transmission from su to Ru is successfully received if for all
receivers rui ∈ Ru inequality (1) holds.

A schedule for a set M of multicast links is a partition of M into subsets,
called rounds or slots, and an assignment of powers to all senders of requests in
M , such that the multicast transmissions assigned to the same slot are success-
fully received by all their receivers.

Halldórsson [10] defines the affectance on the receiver rv of a unicast link
`v to be the ratio of the interference received from concurrent transmissions by
other senders to the received signal strength at rv from sv. In the multicast con-
text we define the affectance on a receiver rvi in a multicast group mv to be the
ratio of the interference received from concurrent transmissions by other senders
to the received signal strength at rvi

from sv. Note that a receiver rvi
success-

fully receives a transmission from sv if and only if the affectance of concurrent
transmissions on rvi

is at most 1/β.
For p ≥ 1, a p-signal schedule is a schedule for which the affectance on any

receiver of any multicast request is at most 1/p. (Equivalently, the SINR at every
multicast receiver is at least p.) A p-signal slot or p-signal set is one round of a
p-signal schedule.

2.3 Problem Definitions

We are concerned with the following two optimisation problems. The multicast
scheduling problem, denoted by M-Scheduling, is to compute, for a given set
M of multicast requests, a p-signal schedule with a minimum number of rounds.
The multicast throughput problem, denoted by M-Throughput, is to compute,
for a given setM of multicast requests, a largest subset ofM that forms a p-signal
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slot. The corresponding problems for unicast requests are called Scheduling
and Throughput.

An algorithm for one of these problems is called a ρ-approximation algorithm,
and has approximation ratio ρ, if it runs in polynomial time and always outputs
a solution that is at most a factor of ρ away from the optimum.

In the online versions of these problems, the requests are presented to the
algorithm one by one, and the algorithm must process each request without
knowledge of future requests. In the scheduling problems, this means that the
algorithm must assign a round and a power to the request, and in the through-
put problem, the algorithm must accept or reject the request and, if accepted,
assign a power to the sender. In both problems, decisions of the algorithm are
irrevocable, and the solution must be feasible at all times. In the online ver-
sion, we compare the quality of the solution produced by an algorithm with the
quality of an optimal offline solution for the same input. An online algorithm is
ρ-competitive, or has competitive ratio ρ, if it always produces a solution that is
within a factor ρ of the optimum.

Even though our algorithms use uniform power assignments, we compare
their solutions with an optimal solution that can use arbitrary power assign-
ments. This strengthens the approximation results. For a given set R of unicast
or multicast links, we denote an optimal solution by optp(R). For convenience,
when discussing the scheduling problem, we may also use optp(R) to refer to
the length of the optimal schedule. If p = 1, we also write opt for optp.

So far we have assumed that multicast requests are atomic, i.e., the sender of
a multicast request can transmit only once and all its receivers must successfully
receive the transmission in the same round. One can also consider a variant of the
scheduling problem with splittable multicast requests. In that variant, the sender
of a multicast request can transmit in several rounds, and each of its receivers
must successfully receive the transmission in at least one of those rounds. It
is clear that the optimal splittable schedule cannot be longer than the optimal
atomic schedule.

3 Algorithm for Multicast Scheduling

We present an O(logΓ )-approximation algorithm for M-Scheduling. We follow
the approach of Halldórsson [10] and show that a constant-factor approximation
for nearly equilength multicast groups can be achieved by a greedy colouring of
a suitably defined unit disk graph. The difficulty is that a set of nearly equi-
length multicast groups may contain unicast links that are much shorter than
the longest links of the groups, and hence it is not enough to argue about nearly
equilength unicast links. We recapitulate some results by Halldórsson [10] which
we require.

As in [10], two unicast links `u and `v are called q-independent if they satisfy

δuv · δvu ≥ q2 · `v`u . (2)

A set of links is q-independent if any pair of links in the set is q-independent.
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For a given set L of unicast requests, the link graph Gq(L) is a graph with a
vertex for each request in L and an edge between two vertices if the corresponding
requests are not q-independent.

Recall that G′q(L) denotes the unit disk graph with a disk of radius qD/2
centred at each receiver of a link in L.

Halldórsson shows that there is a close relationship between link graphs
Gq(L) and unit disk graphs G′q′(L) for the same set of unicast links.

Lemma 2. [10] For any q ≥ 1 and any set L of nearly equilength unicast links,
G′q(L) ⊆ Gq+1(L) and Gq(L) ⊆ G′2(q+1)(L).

Halldórsson shows that unicast links that belong to the same qα-signal slot
are q-independent, and he establishes a slightly weaker version of the converse
statement as stated in the following lemma.

Lemma 3. [10] Let S be a z-independent set of nearly equilength unicast links.
Then, with uniform power assignment, S is an Ω(zα)-signal set.

Furthermore, Halldórsson gives the following lower bound on opt for nearly
equilength links.

Lemma 4. [10] Let L be a set of nearly equilength unicast links and q be any
constant. Then opt(L) = Ω(∆(Gq(L))).

Halldórsson combines the above statements to show that a constant factor
approximation for scheduling a set L of nearly equilength unicast links can be
obtained by greedily colouring either Gq(L) or G′q′(L), for suitably chosen con-
stants q and q′. The results listed above can be combined to derive the statement
of Theorem 1.

Theorem 1. [10] Let p ≥ 1 be an arbitrary constant. Then there is a q =
q(p) ≥ 1 such that for any set L of nearly equilength unicast links, any colouring
of G′q(L) with O(∆(G′q(L))) colours gives a p-signal schedule with uniform power
that is within a constant factor of the optimal p-signal schedule for L.

Proof. By Lemma 3, for every p there is a z such that any z-independent set
of nearly equilength links is a p-signal set (with uniform power). Let q = 2(z +
1). By Lemma 2, Gz(L) ⊆ G′q(L), and hence any independent set in G′q(L)
is z-independent and therefore a p-signal slot. Thus, any colouring of G′q(L)
constitutes a p-signal schedule. By Lemma 4, the optimal 1-signal schedule for L,
and therefore also the optimal p-signal schedule for L, has length Ω(∆(Gq+1(L)))
and thus, by Lemma 2, length Ω(∆(G′q(L))). ut

Consider Algorithm 1 for scheduling a set of nearly equilength multicast
groups. It creates a unit disk graph H that has one disk for every multicast
group, centred at the receiver of the longest link in that multicast group. The
radius is set to (q/2 + 4)D, where q is chosen according to Theorem 1. Then
a greedy colouring of that unit disk graph is returned as the schedule, i.e., we



Scheduling Multicast Transmissions Under SINR Constraints 9

Data: a set M of multicast requests with longest link lengths in [D, 2D]
Result: a p-signal schedule SM for M with uniform power

let q = q(p) be the value from Theorem 1;1

construct the unit disk graph H with disks of radius (q/2 + 4)D centred at the2

receivers rv1 of all mv ∈M ;
greedily colour H with O(∆(H)) colours;3

return the colouring of H as a p-signal schedule SM with uniform power;4

Algorithm 1: Algorithm for nearly equilength multicast requests

schedule each multicast group in the round given by the colour assigned to the
corresponding disk, and assign uniform power to all senders.

For a set M of multicast groups, let LM be the set of unicast links obtained
by taking the longest link `v1 from every multicast group mv ∈M .

Lemma 5. Let M be a set of nearly equilength multicast groups. For any con-
stant p ≥ 1, any greedy colouring of the unit disk graph H constructed by Algo-
rithm 1 gives a p-signal schedule for M whose length is at most a constant factor
longer than the optimal p-signal schedule for LM .

Proof. Let D be such that the length of the longest link in each multicast group
lies in the interval [D, 2D].

The algorithm chooses q = q(p) ≥ 1 according to Theorem 1. Hence we have
that any colouring ofG′q(LM ) withO(∆(G′q(LM ))) colours gives a p-signal sched-
ule with uniform power for LM that is within a constant factor of optp(LM ).

The unit disk graph H constructed by the algorithm is the unit disk graph
obtained from G′q(LM ) by increasing the radius of the disks from qD/2 to (q/2+
4)D. As q ≥ 1, this increases the radius of the disks by at most a factor of 9,
so by Lemma 1 the maximum degree of H is within a constant factor of the
maximum degree of G′q(LM ). Hence, a greedy colouring of H with O(∆(H))
colours uses only O(∆(G′q(LM ))) colours. Note that any greedy colouring of
H is also a colouring of G′q(LM ) with O(∆(G′q(LM ))) colours and thus, by
Theorem 1, constitutes a p-signal schedule SLM

for LM that is a constant-factor
approximation of optp(LM ).

Observe that for any multicast group mv, the disk in H with centre rv1
contains the disks with radius qD/2 centred at any receiver rvj

of the multicast
group mv, as the distance between two receivers of the same multicast group is
at most 4D by the triangle inequality (using that each unicast link in mv has
length at most 2D).

We claim that a greedy colouring of H gives a p-signal schedule SM for
M with uniform power that is within a constant factor of optp(LM ). Since
the maximum degree of H is within a constant factor of the maximum degree of
G′q(LM ), the number of colours in any greedy colouring of H is a constant-factor
approximation of optp(LM ). It remains to show that the schedule SM derived
from any greedy colouring of H constitutes a p-signal schedule. Consider an
arbitrary link `vi

of a multicast group mv. Let U be the set of all multicast
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groups mu 6= mv that are scheduled in the same round as mv in SM . If i = 1,
i.e., if `vi

is the longest link of mv, we can simply argue as follows: The received
signal strength from sv at rv1 and the total strength of interfering signals received
at rv1 are the same in SM and in SLM

, so the affectance at rv1 is at most 1/p in
SM . If i 6= 1, we need a more elaborate argument. Let s′v be an arbitrary point
in the plane that has distance 2D from rvi , and let `′v be the unicast link with
sender s′v and receiver rvi

. Consider the unit disks of radius qD/2 centred at
rvi

and at all ru1 for mu ∈ U . Observe that these unit disks are the disks that
constitute G′q(L

′), where L′ is the set of unicast links containing the link `′v and
the links `u1 for all mu ∈ U . Furthermore, these unit disks are disjoint since they
are contained in the respective disks of radius (q/2 + 4)D that have received the
same colour in H. By Theorem 1, the links in L′ constitute a p-signal set SL′ .
In the round in which mv is scheduled in SM , the received signal strength from
sv at rvi

is at least as large as the received signal strength from s′v at rvi
in SL′ ,

and the total strength of interfering signals received at rvi
is the same in SM

and in SL′ . Therefore, the affectance at rvi is at most 1/p in SM . ut

As any p-signal schedule for M is also a p-signal schedule for LM , it is clear
that optp(LM ) cannot be larger than optp(M). Thus, we obtain the following
corollary.

Corollary 1. For any constant p ≥ 1, Algorithm 1 is a constant-factor approx-
imation algorithm for M-Scheduling with nearly equilength multicast groups.

We can now tackle arbitrary sets M of multicast requests using the standard
approach of partitioning the requests into a logarithmic number of length classes.
Assume without loss of generality that the lengths of the longest links of all
multicast groups lie in the interval [1, Γ ]. Partition the set M of multicast groups
into dlogΓ e classes Mi where Mi consists of all multicast groups with a longest
link of length in [2i, 2i+1). Apply Algorithm 1 to each class Mi separately and
obtain a schedule for M by concatenating the schedules for the classes Mi. As
the schedule for each class Mi is a constant-factor approximation of optp(Mi)
and therefore also of optp(M), we obtain a p-signal schedule that is an O(logΓ )-
approximation of optp(M).

Theorem 2. For every constant p ≥ 1, there is an O(logΓ )-approximation
algorithm for the problem of computing a shortest p-signal schedule for a given
set of multicast requests, i.e., for the M-Scheduling problem.

Since the partition of multicast requests into length classes and the greedy
colouring of the unit disk graphs for each length class can be performed online,
the same approach gives an O(logΓ )-competitive online algorithm for multicast
scheduling. Furthermore, as pointed out by Halldórsson [10], approaches based
on colouring of unit disk graphs are amenable to a distributed implementation.

3.1 Signal Strengthening

It is also interesting to relate the length of the optimal p-signal schedule to
the optimal 1-signal schedule. The following result from [11] shows that in the
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unicast case, a larger SINR for all receivers can be achieved at a constant-factor
loss in the schedule length.

Lemma 6. [11] There is a polynomial-time algorithm that takes a p-signal
schedule for a set of unicast links and refines it into a p′-signal schedule, for
p′ > p, increasing the number of slots by a factor of at most d2p′/pe2.

Adapting this lemma to the multicast setting does not seem straightforward,
but we are able to establish an analogous result at least for nearly equilength
multicast links.

Lemma 7. If there is a p-signal schedule for a set M of nearly equilength mul-
ticast groups that has length k, then there is a p′-signal schedule for M , for any
constant p′ > p, of length O(k). Moreover, such a schedule can be computed in
polynomial time.

Proof. Let A be a p-signal schedule for a set M of multicast groups. Let LM
be the set of unicast links obtained by taking the longest link `v1 from every
multicast group mv in M . It is clear that A can also be viewed as a p-signal
schedule for LM . As LM is a set of unicast links, we can transform A into a
p′-signal schedule A′ for LM by Lemma 6, such that the length of the schedule
increases by only a constant factor. As the optimal p′-signal schedule for LM
cannot be longer than A′, we have that the length of optp′(LM ), the optimal
p′-signal schedule for LM , is within a constant factor of the length of A.

Consider the p′-signal schedule SM computed for M by Algorithm 1 in poly-
nomial time. By Lemma 5, the length of SM is within a constant factor of
optp′(LM ), and therefore also within a constant factor of the length of A. Thus,
SM is a p′-signal schedule for M that is within a constant factor of the length
of A. ut

Applying Lemma 7 to an optimal 1-signal schedule for M , we obtain the
following corollary.

Corollary 2. For any constant p ≥ 1 and any set M of nearly equilength mul-
ticast groups, optp(M) is at most a constant factor longer than opt(M).

This result shows that if we require strengthening of the SINR in a schedule,
we will lose only a constant factor in the schedule length, at least for nearly
equilength multicast requests.

4 Splittable versus Atomic Multicast

In this section we discuss the relationship between splittable and atomic multi-
cast requests. For ease of presentation, we only consider 1-signal schedules in this
section. For a given set M of multicast requests, denote by opts(M) the length
of an optimal 1-signal schedule that is allowed to split a multicast request. As
before, opt(M) denotes the length of an optimal 1-signal schedule with atomic
multicasts.
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Since every atomic schedule is also a splittable schedule, it is clear that
opts(M) ≤ opt(M) for any set M of multicast requests. Furthermore, we have
the following lemmas.

Lemma 8. For any set M of nearly equilength multicast requests, opt(M) =
O(opts(M)).

Proof. Let LM be defined as in Section 3. We have opt(LM ) ≤ opts(M) since
even a splittable schedule must schedule the longest link of each multicast group
in some round. Furthermore, by Lemma 5 there is an atomic 1-signal schedule
for M that is within a constant factor of opt(LM ). ut

Lemma 9. For any set M of multicast requests, opt(M) = O(logΓ )·opts(M).

Proof. Consider a partition of M into O(logΓ ) length classes Mi, such that
each length class is nearly equilength. The maximum of opt(LMi

) over all i is a
lower bound on opts(M). Furthermore, the algorithm of Section 3 computes an
atomic schedule for M that is within a constant factor of the sum of the values
opt(LMi) over all i. ut

5 Throughput Maximisation

5.1 Algorithms

In this section, we discuss how the approach described in Section 3 can be
adapted to the problem M-Throughput. We consider only atomic multicasts.
For a given set M of nearly equilength multicast groups, one can construct the
unit disk graph H as in Algorithm 1 and then compute a maximal independent
set I in H, for example using a greedy algorithm. The set I forms a 1-signal set.
It is known that in unit disk graphs, the size of any maximal independent set is
within a factor of 5 of the maximum independent set [12].

Let I∗ ⊆ M be a 1-signal set of largest size. By Lemma 5, the unit disks in
H corresponding to the multicast groups in I∗ can be coloured with a constant
number of colours. Hence, I∗ contains a set of multicast groups that corresponds
to an independent set in H of size Ω(|I∗|). The set I computed by the algorithm
then also has size Ω(|I∗|) and therefore constitutes a constant-factor approxi-
mation of the largest 1-signal set.

For general sets of multicast requests, we can partition the multicast re-
quests into O(logΓ ) length classes, compute a 1-signal set for each length class
as described above, and output the largest of these 1-signal sets. This gives an
O(logΓ )-approximation for M-Throughput. The same approach can be used
to obtain a randomised O(logΓ )-competitive online algorithm. The randomisa-
tion is only needed to select one of the length classes at the beginning of the
algorithm.
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5.2 Online Lower Bound

In this section we present a lower bound showing that no deterministic online
algorithm for the throughput problem can achieve competitive ratio better than
Ω(logΓ ) even in the case of unicast requests. We make use of the following fact
that was stated by Avin et al. [2].

Lemma 10. [2] Two senders s1 and s2 cannot transmit successfully at the same
time if their respective receiver is closer to the other sender i.e., if δ(s1, r1) >
δ(s1, r2) and δ(s2, r2) > δ(s2, r1).

Now utilising Lemma 10 we provide a construction bounding the performance
of any arbitrary deterministic algorithm for the online variant of Throughput.

Theorem 3. The competitive ratio of every deterministic online algorithm, even
with arbitrary power assignments, is Ω(logΓ ) for Throughput.

Proof. Consider the following construction. Let n be an arbitrary positive inte-
ger, and let Γ = 2bn for a sufficiently large constant b > 1. All senders and re-
ceivers are located on the x-axis, so we can identify a node with its x-coordinate.

Let A be an arbitrary deterministic online algorithm. The adversary first
presents a request `0 with sender s0 = 2bn and receiver r0 = 0. The algorithm
must accept `0 as otherwise its competitive ratio is unbounded if the request
sequence stops here. Next, the adversary presents requests `1, . . . , `n where for
each 1 ≤ i ≤ n the sender and receiver of `i are si = −bi and ri = bi, respectively.

By Lemma 10, the algorithm cannot accept any of the requests `1, . . . , `n as
none of them can transmit at the same time as `0. It remains to show that an
optimal solution can reject `0 and accept all other requests.

Let `1, . . . , `n transmit simultaneously using the square root power assign-
ment, i.e., assign power

√
bi to si for all i.

The strength of the signal received at ri from si is
√
bi

(2bi)α
=
b(0.5−α)i

2α
.

The total interference received at ri is∑
j<i

√
bj

(bj + bi)α
+

∑
j>i

√
bj

(bj + bi)α
. (3)

We can bound the first sum in (3) as follows:∑
j<i

√
bj

(bj + bi)α
≤

∑
j<i

√
bj

(bi)α
≤

√
bi

(
√
b− 1) · (bi)α

=
b(0.5−α)i

√
b− 1

The second sum in (3) can be bounded as follows:∑
j>i

√
bj

(bj + bi)α
≤

∑
j>i

√
bj

(bj)α
=

∑
j>i

b(0.5−α)j ≤ 2 · b(0.5−α)(i+1)
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where the last inequality holds for sufficiently large b. The SINR at ri is

b(0.5−α)i2−α

b(0.5−α)i( 1√
b−1

+ 2 · b0.5−α)
=

2−α
1√
b−1

+ 2 · b0.5−α

For b a sufficiently large constant (chosen depending on α), the SINR is larger
than 1 (or any other desired constant SINR threshold). ut

We remark that the lower bound of Theorem 3 applies even in the case where
the algorithm can change the power assigned to previously accepted requests
upon the acceptance of a new request.

6 Conclusion

In this paper we have studied wireless scheduling and throughput problems for
multicast requests in the SINR model. We have presented O(logΓ )-competitive
algorithms for both problems by exploiting and extending the relationship be-
tween SINR scheduling and unit disk graph colouring that has been established
by Halldórsson for unicast links [10]. This shows that the approach of reducing
SINR scheduling problems for nearly equilength links to unit disk graph colour-
ing extends to multicast requests provided that the longest links in the multicast
groups are nearly equilength. We have also given an Ω(logΓ ) lower bound on
the competitive ratio of any deterministic online algorithm for throughput even
in the case of unicast links and arbitrary power assignments, and discussed re-
lationships between scheduling with atomic and splittable multicast requests.

Several questions are left open. First, it would be interesting to find out
whether offline approximation algorithms with ratio better than O(logΓ ) exist
for the multicast scheduling and throughput problems. Halldórsson’s O(log n ·
log logΓ )-approximation algorithm for unicast links seems difficult to extend to
the multicast setting. Furthermore, it would also be useful to determine whether
signal strengthening can be done for arbitrary multicast requests while losing
only a constant factor. This is true for arbitrary unicast requests (Lemma 6),
but our current proof of Lemma 7 works only for nearly equilength multicast
requests. Finally, it would be interesting to know whether the factor O(logΓ )
bounding the difference in schedule length between atomic and splittable sched-
ules in Lemma 9 can be reduced.
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