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Abstract. We study the planar version of Minimum-Weight Set Cover,
where one has to cover a given set of points with a minimum-weight
subset of a given set of planar objects. For the unit-weight case, one PTAS
(on disks) is known. For arbitrary weights however, the problem appears
much harder, and in particular no PTASs are known. We present the
first PTAS for Weighted Geometric Set Cover on planar objects, namely
on axis-parallel unit squares. By extending the algorithm, we also obtain
a PTAS for Minimum-Weight Dominating Set on intersection graphs
of unit squares and Geometric Budgeted Maximum Coverage on unit
squares. The running time of the developed algorithms is optimal under
the exponential time hypothesis. We also show inapproximability results
for Geometric Set Cover on various object shapes that are more general
than unit squares.

1 Introduction

One of the most fundamental and best-known optimization problems is
Minimum Set Cover. Given a universe U, a set of elements P ⊆ U, and
a set S of subsets of U, one should find a minimum set S ⊆ S such that
each element of P is contained in (covered by) a set in S. If U = Rd

for some d > 0, we talk about Geometric Set Cover. In particular, we
are interested in the case where d = 2 and the sets in S are induced by
simple geometric shapes, such as disks or squares. Geometric Set Cover
can be better approximated than general Minimum Set Cover [2, 5, 23,
29], but for many object shapes the approximability has not been set-
tled yet, particularly in the weighted case. In this paper, we consider the
approximability of Geometric Set Cover and several of its variants, with
emphasis on weighted cases.

Motivation Minimum Set Cover is known to be approximable
within 1 + ln |P|, even in the weighted case [20, 25, 4]. This algorithm
is also optimal. That is, Minimum Set Cover has no polynomial-time al-
gorithm attaining an approximation ratio of (1 − ε) ln |P| for any ε > 0,
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unless NP ⊂ DTIME(nO(log logn)) [11]. Because of its applicability in the
design of (wireless) networks, Geometric Set Cover has recently received
a lot of attention. Geometric Set Cover is NP-hard on unit squares and
on unit disks [12, 21], even if the point set P corresponds to the centers of
the squares or disks. This has led to researchers studying approximation
algorithms for variations of the problem.

The biggest focus of approximation algorithms for Geometric Set
Cover has been on (unit) disks. Several constant-factor approximation
algorithms were proposed on unweighted unit disks [2, 6, 30, 3]. This line
of research recently culminated in the discovery of a PTAS for Geometric
Set Cover on general disks [29] using a transformation into the geometric
version of Minimum Hitting Set on three-dimensional half-spaces.

The above algorithms are not known to be applicable to the weighted
case and only recently have algorithms approximating the problem started
to appear. After a few iterations [1, 19, 7], a (4 + ε)-approximation al-
gorithm on unit disks, independently proposed by Zou et al. [34] and
Erlebach and Mihalák [9], currently is the best known result. Varadara-
jan [32] gives a 2O(log∗ n)-approximation on general disks. On unit squares,
a 2-approximation algorithm exists [28]. It seems however that past ap-
proaches are insufficient to reach a PTAS, except when the disk centers
have a constant minimum distance from each other [13, 24].

We also consider the geometric version of the Budgeted Maximum
Coverage problem. Here each element u of P has a profit p(u), each set Si
of S a cost c(Si), and we aim to maximize the total profit of the points cov-
ered by some S ⊆ S, while the total cost of S is no more than a given bud-
get B. Budgeted Maximum Coverage has a 1− 1

e -approximation algorithm
in both the unit cost [33, 18, 16] and the general case [22]. Khuller, Moss,
and Naor [22] proved that no polynomial-time algorithm can obtain an
approximation ratio better than (1−1

e ), unless NP⊂DTIME(nO(log logn)).
As far as we know, Geometric Budgeted Maximum Coverage has not been
studied yet. The problem can be shown to be NP-hard on unit squares
by reduction from Geometric Set Cover.

Observe that Geometric Set Cover differs significantly from the Geo-
metric Covering problem, where the position of the objects may be chosen
freely. This problem has a well-known PTAS both on unit disks [17] and
on unit squares [14].

Our Results In this paper, we present a PTAS for Geometric Set
Cover on any set of axis-parallel unit squares. Using a novel dynamic
programming idea, refining the classic sweep-line technique, we are able
to solve this problem optimally in nO(k) time when the given sets of points
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lie within a horizontal strip of height k. Combining this with the well-
known shifting technique then yields the PTAS. We also observe that it
follows from Marx [26, 27] that the scheme has essentially optimal running
time (up to constants), unless the exponential time hypothesis is false.

The presented scheme extends to the weighted case of Geometric
Set Cover and Minimum Dominating Set on intersection graphs of unit
squares and in fact to the more general Geometric Budgeted Maximum
Coverage problem. We note that the optimality result for our PTAS con-
tinues to hold.

Beside these positive algorithmic results, we also give several negative
results. In particular, we show that Geometric Set Cover is APX-hard
on arbitrary four-sided convex polygons. We also obtain APX-hardness
results on axis-parallel rectangles and ellipses. Finally, we show that on
convex polygons, translated copies of a single polygon, rotated copies of a
single convex polygon, and α-fat objects, Geometric Set Cover is as hard
as Minimum Set Cover.

2 A PTAS on Unit Squares

We consider Geometric Set Cover on unit squares and show that it has a
PTAS by applying the shifting technique. So let P be a set of points and S
a set of axis-aligned unit squares. For sake of notation, when referring to
the (x, y)-coordinates of a square, we mean the coordinates of the bottom
left corner of that square. For a square s, the x-coordinate of s is denoted
by x(s), while the y-coordinate is denoted by y(s). We can assume that
no horizontal (vertical) boundary of a square is on the same line as the
horizontal (vertical) boundary of another square, that no point lies on the
boundary of a square, and that none of the square or point coordinates
are integers.

Consider the horizontal lines y = h (h ∈ Z). They partition the plane
into horizontal slabs of height 1. Any point is contained in a slab and
every square intersects precisely one line. Let k ≥ 1 be an integer deter-
mined later. Using the shifting technique, it suffices to prove that we can
optimally solve Geometric Set Cover on unit squares if we restrict to k
consecutive slabs and the k + 1 lines defining them.

Theorem 1. For any instance of Geometric Set Cover on a set of unit
squares S where all points of P are inside k ≥ 1 consecutive height 1
horizontal slabs, one can find an optimal solution in O((3|S|)4k+4 |P|)
time.
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The idea of the proof of this theorem will be to apply a sweep-line algo-
rithm. To this end, consider the subset of squares of an optimum solution
intersecting a horizontal line y = h for some h ∈ Z. Any such square
must appear on the lower or upper envelope of this subset, or all points it
covers would be covered by other squares. Following this observation, for
each position of the sweep-line and for each of the k+1 integer horizontal
lines, we should consider at most two squares intersecting the sweep-line:
one that will appear on the upper envelope and one that will appear on
the lower envelope of the final solution.

However, a square might appear on the lower envelope for some posi-
tion of the sweep-line and on the upper envelope for a later position. This
makes it difficult to avoid counting certain squares twice. To circumvent
this, we split the sweep-line into k parts, one part per slab. We move these
parts at different speeds, but always in such a way that if a square ap-
pears both on the lower and the upper envelope, then the split sweep-line
is positioned such that it intersects the square both at the point where
the square appears on the lower and on the upper envelope. We formal-
ize this intuition below. We remark that the basic idea of having a split
sweep-line was also used by Erlebach and Mihalák [9], but the details
of how the split sweep-line is then handled by a dynamic programming
approach are very different in our case.

Just as in any sweep-line algorithm, we maintain a data structure (the
front) containing the squares that are ‘active’ at a given position of the
sweep-lines and allow only a limited number of operations on it.

Let S l and Sr be two dummy sets of k + 1 squares each, such that
the squares in S l (Sr) are to the left (right) of all squares in S and each
integer horizontal line intersects precisely one square of S l and one square
of Sr. Let S = S ∪ S l ∪ Sr. Given some set S ⊆ S, let Si denote the set
of squares in S intersecting line i. Let Ri ⊆ Si be the set containing
precisely the rightmost square of Si (denote it by si) and those squares s
that overlap part of the left boundary of si and whose right boundary is
not fully covered by squares of Si.

We now define a front. For a better understanding of the definition,
imagine that the squares are being inserted in order of increasing x-
coordinate and that we want to keep track of the upper and lower envelope
of each line i.

Definition 1. Let S be the union of S l and some subset of S. Then
a front F = {u1, . . . , uk+1, l1, . . . , lk+1, b1, . . . , bk+1, x1, . . . , xk} for S has
the following:
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– ui, li ∈ Ri with ui = si or li = si, y(s) ≤ y(ui) for any s ∈ Si to the
right of ui (i.e. with x(s) > x(ui)) and y(s) ≥ y(li) for any s ∈ Si to
the right of li (i.e. with x(s) > x(li)),

– bi equals the lowest square of Si to the right of li if x(ui) > x(li),
the highest square of Si to the right of ui if x(li) > x(ui), and si if
x(ui) = x(li),

– xi equals the larger x-coordinate from which li+1 appears on the lower
envelope of Si+1 and from which ui appears on the upper envelope of
Si.

Fronts are the representative of the current state of the sweep-line algo-
rithm. The squares ui and li track the current square on respectively the
upper and the lower envelope of line i. The value of xi is the x-coordinate
of the part of the sweep-line between lines i and i + 1. The square bi is
used in checking if a certain square may be inserted into the front or not.
An example is depicted in Figure 1.

We make two observations about fronts. Firstly, y(ui) ≥ y(li) and
as ui, li ∈ Ri, |x(ui) − x(li)| < 1 for any i = 1, . . . , k + 1. Secondly,
y(li) ≤ y(bi) ≤ y(ui).

For a given front, we distinguish four types of insertions that are
possible: an upper-insertion for squares that will appear only on the upper
envelope for some line, a lower-insertion for squares appearing only on the
lower envelope, and a middle-insertion and a skip-insertion for squares
appearing on both envelopes. We define these four insertions, describe
when they may be applied, and prove that any geometric set cover can
be obtained using these insertions.

From now on, S will denote the union of S l and some subset of S.

ui bi

li = si

ui
ui

li = si = bi

ui
li

ui = si = bi

Fig. 1. The left figure shows a set Si. The solid squares are in Ri, the dashed square is
not. By Definition 1, the labeling of the left figure is correct. The middle figure shows
the same set Ri, with a different and still correct labeling. The labeling in the right
figure is incorrect.
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ui

bi

li = si

si = ui = bi

bi

li

ui

bi

li = si

Fig. 2. The left figure shows two (dashed) squares that are upper-insertable. The mid-
dle figure shows the resulting front after upper-inserting the rightmost square. The
right figure shows two (dashed) non-upper-insertable squares.

Definition 2. Let F be a front for some S and let s 6∈ S be a square
intersecting line i ∈ {1, . . . , k}. We say that s is upper-insertable into
F if all of the following hold: 1) y(s) > y(li) and if x(li) > x(ui), then
y(s) > y(bi), 2) x(s) ∈ (x(li), x(li) + 1] and x(s) ∈ (x(ui), x(ui) + 1],
3) x′i > xi, 4) any point of P in [xi, x′i] × [i, i + 1] is covered by ui or
li+1, where x′i is the x-coordinate from which s is on the upper envelope
of (S ∪ {s})i.

Condition 1 ensures that s lies above li and all squares between ui and
li (represented by bi), Condition 2 ensures that s appears on the upper
envelope of (S ∪{s})i, Condition 3 ensures that this appearance happens
after ui appears on the upper envelope, and Condition 4 ensures that we
cover all points between two consecutive sweep-line positions. An example
of upper-insertable squares and squares that are not upper-insertable is
given in Figure 2.

Lemma 1. Let F be a front for some S and let s 6∈ S be a square inter-
secting line i ∈ {1, . . . , k} that is upper-insertable into F . Then between
the appearance of ui and the appearance of s on the upper envelope of
(S ∪ {s})i no other squares appear on the upper envelope of (S ∪ {s})i.

Proof. If ui = si, this follows from x(s) > x(ui) = x(si) and x′i > xi. So
assume that ui 6= si. Then li = si and x(li) > x(ui). Recall the definition
of a front and observe that bi is the highest square of Si to the right of
ui. As x(li) − x(ui) < 1 and y(bi) < y(ui), it suffices for s to lie above
bi (i.e. y(s) > y(bi)) and for s to cover the x-range [x(ui) + 1, x(li) + 1]
(i.e. x(li) < x(s) < x(ui) + 1). This holds from the definition of upper-
insertable. ut



PTAS for Weighted Set Cover on Unit Squares 7

Lemma 2. Let F be a front for some S and let s 6∈ S be a square inter-
secting line i ∈ {1, . . . , k} that is upper-insertable into F . Then S ∪ {s}
has a front F ′ equal to F , except ui is replaced by s, xi is set to x′i, where
x′i is equal to x(s) if y(s) > y(ui) and to x(ui) + 1 otherwise, and if
x(ui) ≤ x(li) or y(s) ≤ y(bi), bi is set to s.

Proof. Since x(s) > max{x(ui), x(li)} = x(si) by Condition 2 of Def-
inition 2, we can replace ui by s. Note that li can remain the same by
Condition 1 and 2. By Lemma 1, x′i is indeed the x-coordinate from which
s appears on the upper envelope of (S∪{s})i. From Condition 3, xi should
be set to x′i. If x(ui) ≤ x(li), then as x(s) > x(li), bi should be set to s. If
x(ui) > x(li), then bi must be changed if s lies below bi, i.e. if y(s) ≤ y(bi).
Then F ′ is indeed a front for S ∪ {s}. ut

Constructing the front F ′ from F as prescribed in the lemma statement
is called the upper-insertion of s into F .

We can define the notions of lower-/middle-/skip-insertable and lower-
/middle-/skip-insertions in similar ways. The definitions of upper- and
lower-insertable/-insertion are similar, except that we check if the square
we want to insert will appear on the lower envelope directly after li ap-
pears on the lower envelope. The definition of middle-insertable/-insertion
combines the definitions of upper- and lower-insertable/-insertion. Skip-
insertions are used when the square we want to insert does not intersect
ui or li, i.e. when x(s) > 1+max{x(ui), x(li)}. Full definitions are in [31].

In general, we call an upper-/lower-/middle-/skip-insertion an in-
sertion and we say s is insertable if it is upper-/lower-/middle-/skip-
insertable. A valid insertion is the upper- (respectively lower-/middle-
/skip-) insertion of a square that is upper- (respectively lower-/middle-
/skip-) insertable.

Denote by F l and F r the fronts for S l and S respectively.

Lemma 3. Assume P = ∅. Let S be some set such that S = S l ∪Si ∪Sr
for some i ∈ {1, . . . , k + 1} and any square in Si appears on the lower or
the upper envelope of Si. Then there is a sequence of |Si| + k − 1 valid
insertions starting from F l, leading to fronts F l = F0, F1, . . . , F|Si|+k−1 =
F r such that for any square s ∈ Si, there is a front Fj containing s.

Proof (Sketch). We assume that if i = 1, then no squares of Si appear
only on the lower envelope of Si. Similarly, if i = k + 1, assume that no
squares of Si appear only on the upper envelope of Si. Order the squares in
Si\S l by increasing x-coordinate, i.e. s1, . . . , s|Si|−1. Note that the squares
appearing on the upper envelope form an increasing subsequence of Si.
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Similarly, the squares appearing on the lower envelope form an increasing
subsequence. We claim that one can obtain the requested sequence of valid
insertions by inserting sj into Fj−1 for all j = 1, . . . , |Si| − 1 as follows. If
sj appears only on the upper envelope of Si, then sj is upper-insertable
and will be upper-inserted. If sj appears only on the lower envelope of
Si, then sj is lower-insertable and will be lower-inserted. If sj appears on
the upper and lower envelope of Si and a square of Si covers part of its
left boundary, then sj is middle-insertable and will be middle-inserted.
If sj appears on the upper and lower envelope of Si and no square of Si
covers part of its left boundary, then sj is skip-insertable and will be skip-
inserted. Now apply induction on the number of inserted squares. ut

Lemma 4. Assume P = ∅. Let S be some subset of S containing S l∪Sr,
such that for the set Si of squares in S intersecting line i for i ∈ {1, . . . , k+
1}, any square in Si appears on the upper or lower envelope of Si. Then
there is a sequence of |S| − k − 1 valid insertions starting from F0 = F l,
leading to F1, . . . , F|S|−k−1 = F r such that for any square s ∈ S, there is
a front Fj containing s.

Proof (Sketch). By the previous lemma, we can insert the squares in-
tersecting each horizontal line in order of increasing x-coordinate. How-
ever, we should interleave the sequences of the different lines. For any
i = 1, . . . , k, consider the squares appearing on the upper envelope of
Si and the lower envelope of Si+1. Order these squares according to the
x-coordinate from which they appear on the upper envelope of Si or on
the lower envelope of Si+1 respectively. Combining these two orders, we
can extend this to an order by which to insert the squares of S. We can
then prove that the j-th square sj according to this order is insertable
into Fj−1 and that after inserting sj , all squares sj′ with j′ > j are still
insertable. ut

The next lemmas follow from the coverage constraints on valid insertions.

Lemma 5. Let S be any smallest subset of S containing S l ∪ Sr and
covering all points in P. Then there is a sequence of |S| − k − 1 valid
insertions starting from F l, leading to F1, . . . , F|S|−k−1 = F r such that
for any square s ∈ S, there is a front Fj containing s.

Lemma 6. Let l ≥ 0. Then any sequence of l + k + 1 valid insertions
starting from F l and resulting in F r corresponds to a set S ⊆ S of cardi-
nality l covering all points in P.
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Proof (of Theorem 1). Construct a directed graph G with V (G) equal to
the set of all fronts and a directed edge from front F to front F ′ if F ′ can
be obtained from F by a single valid insertion. From the definition of a
front, |V (G)| = O(|S|4k+3). As each front allows for at most 4|S| valid
insertions, |E(G)| = O(|S|4k+4). Because the validity of an insertion can
be checked in O(|P|) time, G can be constructed in O(|S|4k+4|P|) time.

From Lemma 5 and 6, a shortest path in G from F l to F r corresponds
to a minimum subset of S covering all points in P. Then a shortest path
can be found in O(|E(G)|) = O(|S|4k+4) time. Observe that |S| = |S| +
|S l| + |Sr| ≤ 3|S|, because if no square intersects a certain line, we may
ignore it. The running time of the algorithm is O((3|S|)4k+4|P|). ut

Using Theorem 1 with the shifting technique, we get a PTAS for Geo-
metric Set Cover on unit squares. The proof of this theorem can be found
in [31].

Theorem 2. There is a PTAS for Geometric Set Cover on unit squares.

3 Geometric Budgeted Maximum Coverage

The above PTAS easily extends to the weighted case of Geometric Set
Cover, by weighting the graph constructed in the proof of Theorem 1. We
can however extend to the more general budgeted case as well.

Let S be a set of unit squares, P a set of points, c a cost function
over S, p a nonnegative profit function over P, and B a budget. Let pmax

denote the maximum profit of any single point. We define the function
cov(s) as the set of points in P covered by a square s ∈ S. This notation
extends to cov(S) for a set S ⊆ S. Abusing notation, we will use p(S) to
denote p(cov(S)).

Theorem 3. In Geometric Budgeted Maximum Coverage on a set of unit
squares S where all points are inside k−1 consecutive height 1 horizontal
slabs and all profits are positive integers, one can find a cheapest set
of profit at least r (if one exists) for all 0 ≤ r ≤ |P| · pmax in time
O((3|S|)4k (|P| · pmax)).

Proof. We modify the algorithm described above. Assume the cost of
squares in S l ∪ Sr to be zero. Remove the coverage constraints from the
four definitions of insertable. Then, as in the proof of Theorem 1, we
construct a directed graph G with V (G) equal to the set of all fronts and
an edge from F to F ′ if F ′ can be obtained from F by a single valid
insertion.
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We assign two weights, a cost and a profit, to each edge of this graphG.
For any edge in E(G) from some front F to a front F ′ that represents the
insertion of a square s, the cost of the edge is the cost c(s) of s and the
profit of the edge is the total profit of the points covered by the insertion
of s. For example, for an upper-insertion of a square s intersecting line i,
the profit of the edge is the total profit of the points covered by ui or li+1

in [xi, x′i]× [i, i+ 1].
Now the sum of the profits of the edges on a F l–F r path equals the

profit of the solution corresponding to this path. Moreover, the sum of
the costs of the edges of the path equals the cost of that solution. Hence
we aim to find for any 0 ≤ r ≤ |P| · pmax a lightest path (with respect
to edge costs) of total edge profit at least r. A straightforward dynamic
programming algorithm for this problem takes O(|E(G)| · |P| · pmax) =
O((3|S|)4k(|P| · pmax)) time. ut

We now apply the shifting technique and scaling to obtain a PTAS. First
assume integer profits. For each integer 0 ≤ a ≤ k − 1, let Na denote
the set of points between lines y = bk + a and y = bk + a + 1 for any
b ∈ Z. Moreover, for any b ∈ Z, let Pba be the set of points between lines
y = bk + a+ 1 and y = (b+ 1)k + a.

For any 0 ≤ r ≤ |P| · pmax, let Cba(r) denote the set returned by the
algorithm of Theorem 3, applied on S and Pba, attaining profit at least r.
We assume that c(Cba(r)) =∞ if profit at least r cannot be attained.

Let the nonempty sets Pba be numbered P0
a , . . . ,P laa in an arbitrary

way, and let C0
a , . . . , C

la
a be the corresponding solutions. Define

sa(0, r) = c(C0
a(r))

sa(b, r) = min
0≤r′≤r

{c(Cba(r′)) + sa(b− 1, r − r′)}

for 1 ≤ b ≤ la and 0 ≤ r ≤ |P| · pmax. Observe that computing sa can be
done in O(|P| · (|P| · pmax)2) time.

Let Ca denote a set attaining max0≤r≤|P|·pmax
{r | sa(la, r) ≤ B} and

let Cmax denote a most profitable such set. By definition, c(Cmax) ≤ B.

Lemma 7. p(Cmax) ≥ (1 − 1/k) · p(OPT ), where OPT is an optimal
solution.

Proof. Let Sba denote the set of squares in S covering at least one point in
Pba. Then it can be easily seen that c

(
Cba

(
p
(

cov
(

OPT ∩ Sba
)
∩ Pba

)))
≤

c(OPT ∩Sba) for any 0 ≤ a ≤ k−1 and 0 ≤ b ≤ la. Because for fixed a the
sets Sba are pairwise disjoint,

∑la
b=0 c(OPT ∩Sba) ≤ B. Then it follows from
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the definition of s and by induction that p(Ca) ≥
∑la
b=0 p(cov(OPT∩Sba)∩

Pba). Since we can show that
∑la
b=0 p(cov(OPT ∩Sba)∩Pba) = p(OPT )−

p(cov(OPT ) ∩ Na) and any point is in Na for precisely one value of a,
k ·p(Cmax) ≥

∑k−1
a=0 p(Ca) ≥ (k−1) ·p(OPT ). It follows immediately that

p(Cmax) ≥ (1− 1/k) · p(OPT ). ut

Using scaling for noninteger profits, we obtain a PTAS. Details can be
found in [31].

Theorem 4. There is a PTAS for Geometric Budgeted Maximum Cov-
erage on unit squares.

4 Optimality and Relation to Domination

Geometric Set Cover and the geometric version of Minimum Dominating
Set are closely related. An instance of Minimum Dominating Set on an
intersection graph of unit squares can be easily transformed into an in-
stance of Geometric Set Cover on unit squares [28]. Then the following is
immediate from Theorem 2 and the remarks at the beginning of Section 3.

Theorem 5. There is a PTAS for Minimum-Weight Dominating Set on
intersection graphs of unit squares.

Theorem 5 is the first PTAS for Minimum-Weight Dominating Set on
intersection graphs of two-dimensional objects. Another consequence of
the above reduction from Minimum Dominating Set on unit square graphs
to Geometric Set Cover on unit squares is the following. Recall that the
exponential time hypothesis (ETH) states that n-variable 3SAT cannot
be decided in 2o(n) time.

Theorem 6. If there exist constants δ ≥ 1, 0 < β < 1 such that Geo-
metric Set Cover or Geometric Budgeted Maximum Coverage on n unit
squares has a PTAS with running time 2O(1/ε)δnO(1/ε)1−β , then ETH is
false.

This holds, as Marx [27] showed that Minimum Dominating Set on in-
tersection graphs of unit squares cannot have such a PTAS. Similarly,
one can show from Marx [26] that Geometric Set Cover and Geometric
Budgeted Maximum Coverage on unit squares have no EPTAS.

Theorem 7. Geometric Set Cover and Geometric Budgeted Maximum
Coverage on unit squares cannot have an EPTAS, unless FPT=W [1].

This is an indication that one cannot hope to improve the running time
of the algorithms of Theorems 2 and 4.



12 Thomas Erlebach and Erik Jan van Leeuwen

5 Hardness of Approximation

Not many explicit inapproximability results for Geometric Set Cover
problems can be found in the literature. Our approximation scheme set-
tles the approximability of Geometric Set Cover on unit squares. In this
section, we adapt known results for related problems to give several hard-
ness results for more general shapes. A convex subset s of R2 is α-fat for
some α ≥ 1 if the ratio between the radii of the smallest disk enclosing s
and the largest disk inscribed in s is at most α [8].

Theorem 8. Geometric Set Cover is not approximable within (1−ε) lnn
for any ε > 0, unless NP ⊂ DTIME(nO(log logn)), on convex polygons,
translated copies of a single polygon, rotated copies of a single convex
polygon, and α-fat objects for any α > 1, where n is the number of points,

Theorem 9. Geometric Set Cover is APX-hard on convex polygons with
r ≥ 4 corners, α-fat objects of constant description complexity for any
α > 1, axis-parallel rectangles, and ellipses.

Theorem 8 and Theorem 9 can be proved using constructions where points
are arranged on a line or circle and the objects can cover arbitrary subsets
(of bounded size, in case of Theorem 9) of these points. On axis-parallel
rectangles and ellipses we need a more elaborate construction. The ideas
are similar to ones used for the geometric version of Minimum Dominat-
ing Set [10]. See [31] for details. We remark that Har-Peled [15] recently
showed that Geometric Set Cover is even APX-hard on fat convex poly-
gons with r ≥ 3 corners.

Using ideas from Khuller et al. [22], one can obtain the following.

Corollary 1. Geometric Budgeted Maximum Coverage is not approx-
imable with ratio better than (1−1/e), unless NP ⊂ DTIME(nO(log logn)),
on convex polygons, translated copies of a single polygon, rotated copies
of a single convex polygon, and α-fat objects for any α > 1.

6 Conclusions

We have given the first PTAS for Weighted Geometric Set Cover, in
the case of axis-parallel unit squares. The scheme extends to Geometric
Budgeted Maximum Coverage. Moreover, we presented evidence that one
cannot hope to improve on the running time of these algorithms. This
settles the approximability of Geometric Set Cover on unit squares.
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Many problems surrounding Weighted Geometric Set Cover remain
open however. In particular, the question of a PTAS on (unit) disks or
arbitrary squares is very interesting. The techniques in this paper seem
insufficient to deal with these problems and probably completely differ-
ent insight is required. In general, it is an interesting question for which
objects (Weighted) Geometric Set Cover can still be approximated well.
The hardness results of this paper however set clear limits to its approx-
imability.
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