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Abstract. In the maximum edge-disjoint paths problem (MEDP) the
input consists of a graph and a set of requests (pairs of vertices), and the
goal is to connect as many requests as possible along edge-disjoint paths.
We give a survey of known results about the complexity and approxima-
bility of MEDP and sketch some of the main ideas that have been used
to obtain approximation algorithms for the problem. We consider also
the generalization of MEDP where the edges of the graph have capaci-
ties and each request has a profit and a demand, called the unsplittable
flow problem.

1 Introduction
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Optimization problems concerning edge-disjoint paths in graphs have led to a
number of interesting approximation results in the last decade. One of the main
reasons for studying such problems is that they are encountered in modern com-
munication networks where establishing a connection requires reserving a certain
amount of bandwidth on all edges along some path from the sender to the re-
ceiver. If the network does not have sufficient bandwidth to satisfy all connection
requests, some requests must be rejected and it is meaningful to try to maximize
the number of accepted requests. The optimization problem that seems to lie at
the heart of this call admission control problem is the maximum edge-disjoint
paths problem (MEDP).

An instance of MEDP is given by a directed graph G = (V,E) and a set (or
multiset) containing k requests R = {(si, ti) | i = 1, . . . , k}, where each request
is a pair of vertices in V . The request (si, ti) asks for a directed path from si

to ti in G. We often use “request i” and “request (si, ti)” interchangeably. A
feasible solution is given by a subset A of R and an assignment of edge-disjoint
paths to all requests in that subset. More precisely, each (si, ti) ∈ A must be
assigned a directed path πi from si to ti in G such that no two paths πi and
πj (for i, j ∈ A and i 6= j) have a directed edge of the graph in common. Such
a subset A is called realizable and a set of edge-disjoint paths assigned to the

⋆ Work partly done while the author was affiliated with ETH Zurich and supported by
EU Thematic Network APPOL II (IST-2001-32007), with funding provided by the
Swiss Federal Office for Education and Science, and by the Swiss National Science
Foundation under Contract No. 2100-63563.00 (AAPCN).



requests in A is called an edge-disjoint routing for A. The goal is to maximize
the cardinality of A, denoted by |A|. The requests in A are called the accepted
requests, those in R \ A the rejected requests.

MEDP can also be studied for undirected graphs. In this case, a request
(si, ti) asks for an undirected path connecting si and ti in the given undirected
graph, and two paths are edge-disjoint if they do not share an undirected edge.
In any case, MEDP can be stated in a compact way as follows.

Problem MEDP (Maximum Edge-Disjoint Paths)
Input: graph G = (V,E), requests R = {(si, ti) | i = 1, . . . , k}
Feasible solution: realizable subset A ⊆ R and edge-disjoint routing for A
Goal: maximize |A|

In general, the same vertex may appear several times as an endpoint of a
request in R, and we may even have several identical requests in R. On the
other hand, if a set R of requests has the property that every vertex of G is the
endpoint of at most one request in R, the set R is called a partial permutation.

As it turns out that MEDP is an NP-hard optimization problem in gen-
eral, one is interested in identifying special cases that can be solved optimally
in polynomial time and in deriving good approximation algorithms for the other
cases. An algorithm for MEDP is a ρ-approximation algorithm if it runs in poly-
nomial time and always outputs a feasible solution A satisfying |A| ≥ OPT/ρ,
where OPT denotes the cardinality of an optimal solution. For randomized algo-
rithms, the value |A| in this definition is replaced by its expectation, taken over
the random choices of the algorithm. The approximation ratio ρ can also be a
function of certain parameters of the given instance, for example, of the number
of vertices or edges of the given graph. We always let n = |V | and m = |E|.

Some of the algorithms that we will encounter work also for the on-line
version of the problem, where the requests are presented to the algorithm one
by one in arbitrary order and the algorithm must accept or reject each request
without knowledge of future requests. In this case, we will say that the algorithm
is an on-line algorithm.

In this chapter, we give a tutorial survey of known results concerning approx-
imation algorithms for MEDP. We treat results for arbitrary graphs as well as
results for specific graph classes. In Section 1.1, we define all the specific graph
classes that we deal with as well as some graph parameters. In Section 1.2, we
give a brief survey of known complexity results for MEDP, i.e., we explain which
special cases can be solved optimally in polynomial time and which variants are
known to be NP-hard or APX -hard.

Section 2 discusses approximation algorithms for MEDP in arbitrary graphs.
Sections 2.1 to 2.3 analyze various greedy-type algorithms, some of which achieve
approximation ratio O(

√
m). In Section 2.4, we give an inapproximability result

showing that no better approximation ratio (as a function of m) can be achieved
for arbitrary directed graphs. Section 2.5 deals with the linear programming
relaxation of MEDP and shows that although the integrality gap can be very
large in general, randomized rounding yields a constant-factor approximation
algorithm for a generalization of MEDP with large edge capacities.



Results for specific graph classes are reviewed in Section 3. We discuss results
for trees, trees of rings, meshes, hypercubes, de Bruijn graphs, expanders, and
complete graphs. In Section 4 we briefly comment on the version of MEDP with
pre-determined paths. In Section 5 we consider a generalization of MEDP with
edge capacities, demand values, and profit values, called the unsplittable flow
problem. We present combinatorial algorithms for arbitrary directed graphs and
give a summary of results that have been achieved using linear programming
techniques. In Section 6, we mention further results that are related to MEDP
and the unsplittable flow problem.

1.1 Definition of Graph Classes and Graph Parameters

We give brief definitions of the graph classes that we consider later on. First,
consider undirected graphs. A graph is a complete graph or a clique if there is an
edge between every pair of vertices. A chain is a graph that consists of a single
path. A tree is a connected acyclic graph. A tree in which all vertices except one
have degree 1 is called a star. A spider or generalized star is a tree in which at
most one vertex can have degree larger than 2. A ring is a graph that consists
of a single cycle. A connected graph all of whose biconnected components are
rings is called a tree of rings.

The (two-dimensional) n1 × n2 mesh is the graph with vertex set V =
{(x, y) ∈ N

2 | 1 ≤ x ≤ n1, 1 ≤ y ≤ n2} and with vertex (x, y) being adja-
cent to the vertices in {(x − 1, y), (x + 1, y), (x, y + 1), (x, y − 1)} ∩ V . While all
internal vertices have degree 4, the vertices on the boundary of the mesh have
only two or three neighbors.

The hypercube of dimension d is the graph with 2d vertices corresponding to
the 2d binary strings of length d, and with an edge between two vertices if and
only if the respective binary strings differ only in one position. There are several
constant-degree graphs that are called hypercubic networks: The d-dimensional
butterfly is a graph whose vertices are pairs (w, i), where i is an integer satisfying
0 ≤ i ≤ d and w is a binary string of length d. For a vertex (w, i), we call i its
layer. There is an edge between two vertices (w, i) and (u, j) if and only if
j = i+1 and either w = u or w and u differ precisely in the jth bit from the left.
The binary d-dimensional de Bruijn graph is a directed graph with 2d vertices
corresponding to the 2d binary strings of length d. It has a directed edge from
u to v if and only if the binary representation of v can be obtained from the
binary representation of u by a cyclic left-shift or by a cyclic left-shift followed
by flipping the rightmost bit. An undirected de Bruijn graph is obtained from a
directed de Bruijn graph by ignoring the directions of the edges and removing
self-loops.

A bidirected graph is a graph that is obtained from an undirected graph by
replacing each undirected edge with two directed edges of opposite directions. For
any of the graph classes defined above, we can thus also consider its bidirected
counterpart.

The maximum degree of a graph G is denoted by ∆(G). For a given graph
G = (V,E) and a set X ⊆ V , we denote by δ(X) the set of edges with one



endpoint in X and the other endpoint in V \ X. The expansion (or flux ) β(G)
of the graph G is defined as

β(G) = min
X⊂V,|X|≤

|V |
2

|δ(X)|
|X| .

A graph is called an expander if its expansion is bounded from below by some
constant.

If the graph G is clear from the context, we write ∆ and β for ∆(G) and
β(G), respectively.

The treewidth of a graph with n nodes is a value between 1 and n − 1 that
measures (in some sense) how “tree-like” a graph is. For example, a graph has
treewidth 1 if and only if all its connected components are trees. We do not give
the definition of treewidth here and refer the reader to [7, 8].

1.2 Polynomial-Time Solvable Cases and Hardness Results

Most of the early work on edge-disjoint paths problems has focused on the ver-
sion of the problem where the goal is to either route all given requests along
edge-disjoint paths or certify that such a routing does not exist. This decision
problem is one of the classical NP-complete problems [27]. For directed graphs,
Fortune, Hopcroft, and Wyllie [23] proved that the problem is NP-complete
even if only two terminal pairs are given. The results in the graph minor series
by Robertson and Seymour led to a polynomial algorithm for undirected graphs
and any constant number of terminal pairs [51]. If the number of terminal pairs
is arbitrary, the problem was shown NP-complete for meshes in [42] and in pla-
nar graphs of maximum degree 3 by Middendorf and Pfeiffer [46]. Substantial
effort has been devoted to the identification of polynomial-time solvable special
cases; we refer the reader to the surveys by Frank [24] and Vygen [57].

An intensive investigation of the maximization version MEDP started in
the 1990s and is still continuing. Observe that there are classes of graphs for
which it can be checked in polynomial time whether a set R of requests is
realizable, but if the answer is no, it is NP-hard to compute a maximum subset
of realizable requests. Bidirected trees and undirected or bidirected trees of rings
are examples.

Nevertheless, MEDP can be solved optimally in polynomial time for some
classes of graphs. A first such class are chains. The routing for each request in
a chain is uniquely determined by its endpoints (the same is true for arbitrary
trees). Therefore, a set of requests in a chain can be represented as a set of
intervals on the real line, and it suffices to find a maximum number of pairwise
disjoint intervals. This problem has been studied in the context of interval graphs
and is known to be solvable in linear time [30]. Thus, MEDP can be solved
optimally in polynomial time for undirected or bidirected chains.

For undirected trees, a polynomial algorithm for MEDP has been found by
Garg, Vazirani and Yannakakis [28].



For bidirected trees of arbitrary degree, MEDP has been proved APX -
complete by Erlebach and Jansen [21], implying that there is a constant r > 1
such that no polynomial-time algorithm can achieve approximation ratio r unless
P = NP. The proof is based on the proof by Garg, Vazirani, and Yannakakis [28]
showing that a generalization of MEDP with edge capacities is APX -complete
in undirected trees with edge capacities in {1, 2}. It can also be adapted to trees
of rings, showing that MEDP is APX -complete for undirected and bidirected
trees of rings [20].

In bidirected stars, each request uses at most two edges, and the MEDP
problem can be reduced to the maximum bipartite matching problem. This ap-
proach can be extended to give a polynomial-time algorithm for bidirected spi-
ders as well, as shown for a more general problem by Erlebach and Vukadinović
[22]. In undirected or bidirected rings, MEDP can also be solved optimally in
polynomial time [58, 49].

It is known that many hard problems can be solved efficiently on graphs of
bounded treewidth [7]. However, since trees of rings have treewidth 2, MEDP is
APX -hard even for graphs with treewidth 2. On the other hand, it is remarked
in [19] that MEDP can be solved optimally in polynomial time on graphs whose
treewidth and maximum degree are both bounded by a constant. Furthermore,
Zhou et al. [59] have shown that MEDP can be solved optimally in polynomial
time on graphs of bounded treewidth if the number of requests is O(log n) or if
certain conditions on the location of the request endpoints are fulfilled (includ-
ing the case when the union of the graph and the demand graph has bounded
treewidth, where the demand graph is the graph with an edge between the end-
points of each request).

It is interesting to note that for undirected graphs, no stronger inapproxima-
bility result than APX -hardness is known for MEDP. For directed graphs, we
will see a strong inapproximability result in Section 2.4.

2 Edge-Disjoint Paths in Arbitrary Graphs

2.1 The Greedy Algorithm

A very natural algorithm for MEDP is the greedy algorithm (see Fig. 1). It
processes the requests in arbitrary order. For each request, it checks whether the
request can be routed along a path that is edge-disjoint from all paths assigned
to previously accepted requests. If so, it accepts the request and routes it along
some shortest path that does not intersect previously accepted paths.

Unfortunately, this algorithm does not achieve a good approximation ratio
in general. For example, consider a chain of n vertices, numbered from 1 to n.
Assume that the first request processed by the algorithm is (1, n) and that there
are n−1 further requests of the form (i, i+1), for i = 1, 2, . . . , n−1. The greedy
algorithm accepts the first request but no other request, because the first request
blocks all n − 1 edges of the chain. The optimal solution, however, consists of
the other n − 1 requests. Thus, the optimal solution is better than the greedy
solution by a factor of n − 1.



algorithm Greedy(G = (V, E),R = {(si, ti) | i = 1, . . . , k}):
A ← ∅;
for i = 1 to k do

if ∃ path from si to ti in G then

A ← A∪ {(si, ti)};
πi ← a shortest path from si to ti in G;
remove all edges of πi from G;

fi;
od;
return A and {πi | (si, ti) ∈ A};

Fig. 1. The greedy algorithm.

On the other hand, we can show that the optimal solution can never be
better than the greedy solution by more than a factor of n − 1. To see this,
we employ the following proof technique. Let A∗ be the set of requests in an
arbitrary optimal solution and let π∗

i be the path assigned to request (si, ti) ∈ A∗

by this solution. Let A and πi be defined analogously for the greedy solution.
We consider the execution of the greedy algorithm and, whenever it accepts a
request i, we remove from A∗ the request i (provided i ∈ A∗) and all other
requests in A∗ whose optimal path π∗

j intersects the greedy path πi. Note that
at any time of the execution, the paths π∗

j of the requests that remain in A∗

are disjoint from the paths of the requests that have already been accepted by
the greedy algorithm. When the greedy algorithm terminates, the set A∗ must
be empty, by definition of the greedy algorithm. Therefore, if we can show that
for each request accepted by the greedy algorithm, we have to remove at most ρ
paths from the optimal solution, this implies that |A∗| ≤ ρ·|A| and, consequently,
the greedy algorithm achieves approximation ratio at most ρ.

So how many requests do we have to remove from A∗ when the greedy al-
gorithm accepts a request i? In a graph with n vertices, every simple path (and
therefore also πi) consists of at most n− 1 edges. Consequently, it can intersect
at most n− 1 paths π∗

j of requests in A∗. Since it suffices to remove these up to
n − 1 paths as well as the request i itself, this shows that we have to remove at
most n paths from A∗. In fact, we can strengthen this to show that we have to
remove at most n−1 paths: If the path πi consists of fewer than n−1 edges, the
above argument can be used. If πi has length n− 1, it does in fact pass through
all vertices of the graph. We would have to remove n paths from A∗ only if π∗

i

was edge-disjoint from πi, but this cannot happen since πi passes through all
vertices and is a shortest path from si to ti (among all paths that do not in-
tersect previously accepted paths). Thus, the approximation ratio of the greedy
algorithm is bounded from above by n − 1 as well.

Theorem 1. The greedy algorithm has approximation ratio n − 1 for MEDP
in directed or undirected graphs with n vertices, and this bound is tight.



algorithm BoundedGreedy(G = (V, E),R = {(si, ti) | i = 1, . . . , k}, D):
A ← ∅;
for i = 1 to k do

if ∃ path of length at most D from si to ti in G then (*)
A ← A∪ {(si, ti)};
πi ← a shortest path from si to ti in G;
remove all edges of πi from G;

fi;
od;
return A and {πi | (si, ti) ∈ A};

Fig. 2. The bounded-length greedy algorithm. It differs from the standard greedy al-
gorithm only by the modified condition in line (*).

2.2 The Bounded-Length Greedy Algorithm

The greedy algorithm can perform badly because it may accept a request and
route it on a very long path while the optimal solution accepts many requests
whose paths intersect the long path instead. One idea to avoid this problem is
to restrict the length of the paths that the greedy algorithm is allowed to use.
The bounded-length greedy algorithm, suggested by Kleinberg [33] and shown in
Fig. 2, takes an additional parameter D and behaves like the greedy algorithm,
but accepts a request only if it can be routed on a path of length at most D.
Thus, each accepted request can intersect the paths of at most D other requests
in the optimal solution. On the other hand, the algorithm rejects all requests
whose endpoints are at distance larger than D. This means that the algorithm
will have approximation ratio ∞ on instances where all requests have endpoints
at distance larger than D. Therefore, we need to check for this case separately
and arrive at the following algorithm, which we call BoundedGreedy ′.

1. If for all requests (si, ti) the length of a shortest path from si to ti is at
least D + 1, return the solution consisting of a single request (si, ti) and an
arbitrary path from si to ti assigned to it.

2. Otherwise, run BoundedGreedy(G,R,D).

To analyze this algorithm, let us first consider the case that the condition of
step 1 applies and that the algorithm accepts a single request. Since all paths
assigned to a request must use at least D + 1 of the m edges of the graph,
even the optimal solution can contain at most m/(D + 1) paths. Thus, the ratio
is at most m/(D + 1) in this case. Now assume that the algorithm Bounded-
Greedy is actually called. Each request accepted by BoundedGreedy (and thus
also by BoundedGreedy ′) blocks at most D other requests that could have been
accepted instead. All requests in the optimal solution that are routed along a
path of length at most D in the optimal solution must either be accepted by the
algorithm or intersect a path accepted by the algorithm. Thus, we can apply the
proof technique of the previous section to show that the optimal solution contains
at most (D+1)|A| requests with paths of length at most D, where A is the set of



requests accepted by BoundedGreedy ′. On the other hand, by the same argument
as above, the number of paths in the optimal solution that are routed along paths
of length at least D+1 is at most m/(D+1). Thus, the optimal solution contains
at most m/(D + 1) + (D + 1)|A| ≤ (m/(D + 1) + D + 1)|A| paths. This proves
that BoundedGreedy ′ achieves approximation ratio at most D + 1 + m/(D + 1).
We can choose D = ⌈√m ⌉ − 1 to obtain a 2⌈√m ⌉-approximation algorithm for
MEDP.

To construct a bad instance for BoundedGreedy ′, take a ring with m edges
and vertices, the vertices being numbered clockwise from 1 to m. Choose m such
that

√
m is integral. Consider the set of requests containing the first request

(1,
√

m), the short requests (j, j+1) for j = 1, . . . ,
√

m−1, and the long requests
(i
√

m, (i+1)
√

m) for i = 1, . . . ,
√

m− 1. The algorithm accepts the first request
(1,

√
m) and routes it along the clockwise path. All other requests cannot be

routed along a path of length at most D =
√

m−1 now, so the algorithm rejects
all other requests. On the other hand, the optimal solution accepts all short
requests and all long requests, thus giving a solution with 2

√
m − 2 requests.

Theorem 2 (Kleinberg, 1996). Algorithm BoundedGreedy ′ with parameter
D = ⌈√m ⌉− 1 has approximation ratio O(

√
m) for MEDP in directed or undi-

rected graphs with m edges.

We will see later that BoundedGreedy achieves a much better approximation
ratio in expanders and other specific classes of graphs. Furthermore, it is inter-
esting to note that BoundedGreedy ′ can be adapted to the on-line setting by
flipping a coin in the beginning and running BoundedGreedy with probability 1

2
and the standard greedy algorithm otherwise.

Routing Number and Flow Number Kolman and Scheideler [40] analyze
the approximation ratio achievable by the bounded-length greedy algorithm for
undirected graphs in terms of the routing number of the given graph. Consider
an undirected graph G = (V,E) with n nodes. For a set P of paths in G, the
congestion of an edge e ∈ E is the number of paths containing e. The congestion
of P is the maximum congestion among all edges. Denote by Sn the set of all
permutations from V to V . For any permutation π ∈ Sn and any L that is at
least the diameter of G, let C(G,L, π) be the minimum congestion among all
path sets that realize π (i.e., contain a path from v to π(v) for all v ∈ V ) and
that consist of paths with length at most L. Then the L-bounded routing number
R(G,L) of G is defined by

R(G,L) = max
π∈Sn

max{C(G,L, π), L} .

Intuitively, if a graph has L-bounded routing number R, then for any permu-
tation of the vertices, there exists a set of paths with length at most L and
congestion at most R that realizes the permutation.

The (unbounded) routing number R(G) is defined as R(G) = minL R(G,L).
For any graph G, R(G) lies between Θ(β(G)−1) and O(∆β(G)−1 log n), where



∆ is the maximum degree of G and β(G) is the expansion as defined in Sec-
tion 1.1. There is a constant-factor approximation algorithm for computing the
routing-number of a given graph [52]. The routing number is Θ(n) for the chain,
Θ(

√
n) for the

√
n × √

n-mesh, and Θ(log n) for the butterfly, the hypercube,
and constant-degree expanders.

For undirected graphs with maximum degree ∆ and routing number R,
Kolman and Scheideler show that the bounded-length greedy algorithm with
length parameter D = 2R achieves approximation ratio at most (∆ + 4)R + 1 =
O(∆R) = O(∆2β(G)−1 log n). For graphs with bounded degree, this gives ap-
proximation ratio O(R) = O(β(G)−1 log n). If the exact value of R is not known,
the bounded-length greedy algorithm can be run for all values D = 2p for
p = 0, 1, . . . , log n, and the best solution can be taken as the output of the
algorithm. Thus, approximation ratio O(∆R) is achieved also in this case.

In addition, Kolman and Scheideler present a randomized approximation
algorithm with ratio O(∆

√
LR) for MEDP in undirected graphs with maximum

degree ∆ and L-bounded routing number R [40]. The algorithm works in the on-
line setting. Note that the bound O(∆

√
LR) can be substantially better than the

bound O(∆R(G)). The idea behind the algorithm is that in many graphs, some
edges are “bottleneck” edges and some are not. A single path passing through
many bottleneck edges could cause the rejection of many subsequent requests.
The algorithm thus puts a stricter bound on the number of bottleneck edges
of a path than on the number of non-bottleneck edges. The tricky part of the
algorithm is the initial phase in which the bottleneck edges are determined.

In subsequent work, Kolman and Scheideler [41] consider the flow number
F (G) of the given graph G instead of the routing number. They show that the
bounded-length greedy algorithm with length parameter D = 4F (G) achieves
approximation ratio O(F (G)) = O(∆β(G)−1 log n) for MEDP in undirected
graphs with maximum degree ∆ and expansion β(G).

It is interesting to note that F (G) is 1 for complete graphs, Θ(log n) for
hypercubes and expanders, Θ(

√
n) for the

√
n × √

n-mesh, and Θ(n) for the
chain. As the flow number is defined in the more general context of graphs with
edge capacities, we give its definition only in Section 5.1 where we use it in the
context of the unsplittable flow problem.

The main idea underlying the use of the flow number is that the bounded-
length greedy algorithm has a good approximation ratio if there exists an optimal
solution that consists of short paths only. The key ingredient of the analysis is
then a shortening lemma, which implies that any set of disjoint paths in a graph
with flow number F can be converted into a set of fractional flows such that
the load on every edge is at most 2 and all flow paths have length at most 4F .
The shortening lemma is applied to the paths in the optimal solution of the
given instance of MEDP, and then the size of the solution produced by the
bounded-length greedy algorithm is related to the fractional flows with short
flow paths.

Kolman and Scheideler [41] use this analysis to obtain approximation ratio
16F + 1 for the unsplittable flow problem (that includes MEDP as a special



algorithm ShortestFirstGreedy(G = (V, E),R = {(si, ti) | i = 1, . . . , k}):
A ← ∅;
while R contains a request that can be routed in G do

(si, ti)← a request in R such that the shortest path from si to ti in G
has minimum length among all requests in R;

A ← A∪ {(si, ti)};
R ← R \ {(si, ti)};
πi ← a shortest path from si to ti in G;
remove all edges of πi from G;

od;
return A and {πi | (si, ti) ∈ A};

Fig. 3. The shortest-path-first greedy algorithm.

case), and it is not difficult to verify that the ratio for MEDP can even be
bounded by 8F + 1 [13].

2.3 The Shortest-Path-First Greedy Algorithm

Another modification of the greedy algorithm is the shortest-path-first greedy
algorithm, shown in Fig. 3. It was suggested by Kolliopoulos and Stein [37].
Instead of processing the given requests sequentially in an arbitrary order, the
algorithm ShortestFirstGreedy considers all remaining requests and accepts a
request whose shortest path has length ℓ only if no other remaining request can
be routed along a path of length smaller than ℓ. As a consequence, the algorithm
accepts requests in order of non-decreasing lengths of their shortest paths. It is
easy to see that the worst-case approximation ratio of ShortestFirstGreedy is at
least as good as that of BoundedGreedy.

Algorithm ShortestFirstGreedy achieves approximation ratio ⌈√m ⌉. To prove
this, consider an arbitrary optimal solution A∗ with paths π∗

i . Again, consider
an execution of the algorithm and when the algorithm accepts a request i and
routes it along a path πi, remove from A∗ the request i (if i ∈ A∗) as well as
all requests j whose path π∗

j intersects πi. By the order in which the algorithm
accepts the requests, all requests j ∈ A∗ have length at least |πi| when the
algorithm accepts request i. If |πi| ≤ ⌈√m ⌉ − 1, we have to remove at most
⌈√m ⌉ paths from A∗, as before. If |πi| ≥ ⌈√m ⌉, there can be at most

√
m paths

left in A∗, because they all have length at least ⌈√m ⌉. So we have to remove at
most

√
m paths in this case as well. This shows that the approximation ratio of

ShortestFirstGreedy is at most ⌈√m ⌉.

Theorem 3 (Kolliopoulos and Stein, 1998). The shortest-path-first greedy
algorithm has approximation ratio at most ⌈√m ⌉ for MEDP in directed or
undirected graphs with m edges.

We remark that m can be replaced by m∗ in the analysis above, where m∗

is the number of edges that are actually used by paths in the optimal solution.



By refining the analysis above, we can bound the approximation ratio of
ShortestFirstGreedy in terms of the average path length d∗ = m∗/|A∗| of an
optimal solution A∗ whose paths use m∗ edges in total. Let A′ = A∗ \ A, i.e.,
A′ denotes the requests that are in the optimal solution, but not in the solution
computed by the algorithm. When the algorithm accepts request i and routes it
along path πi, we remove from A′ the requests whose paths π∗

j intersect πi. Let
ki denote the number of requests that are removed from A′ because of path πi.
Each of these ki requests has a path of length at least |πi|, and |πi| must be at
least ki. Therefore, these ki requests use at least k2

i of the m∗ edges used in the
optimal solution, and we get

∑

i∈A

k2
i ≤ m∗.

Since
∑

i∈A k2
i ≥

(
∑

i∈A ki

)2
/|A| by the Cauchy-Schwarz inequality, we get

(
∑

i∈A ki

)2
/|A| ≤ m∗. Using

∑

i∈A ki = |A′|, we obtain |A| ≥ |A′|2/m∗.
If |A| ≥ |A∗|/2, the algorithm has ratio at most 2. If |A| < |A∗|/2, we have
|A′| = |A∗ \ A| > |A∗|/2 and obtain

|A| ≥ |A′|2
m∗

>
|A∗|2
4m∗

=
|A|∗
4 m∗

|A∗|

=
|A|∗
4d∗

.

Thus, the approximation ratio is always bounded by 4d∗.

Theorem 4 (Kolliopoulos and Stein, 1998). The shortest-path-first greedy
algorithm achieves approximation ratio O(d∗) for MEDP on instances for which
some optimal solution has average path length d∗.

We remark that approximation ratio O(d∗) can also be achieved by running
BoundedGreedy with parameter D = 1, 2, 4, 8, . . . , n and outputting the best of
the solutions obtained in this way. This follows because at least half the paths of
the optimal solution have length at most 2d∗, and BoundedGreedy will produce
a solution with the required quality for the value of D that lies in the interval
[2d∗, 4d∗) (see the full version of [40]).

Chekuri and Khanna [15] showed that the bound of O(
√

m) on the approx-
imation ratio of the shortest-path-first greedy algorithm is not tight for dense
graphs. They proved upper bounds of O(n2/3) and O(n4/5) for undirected and
directed graphs, respectively. Their improved result is obtained by tightening
the analysis concerning long paths in the optimal solution. In the arguments
above, we used the fact that the optimal solution can contain at most m/ℓ paths
of length at least ℓ. Roughly speaking, Chekuri and Khanna show that in a
graph where the distance between the end vertices of each request is at least ℓ,
at most O(n2/ℓ2) (in the undirected case) and O(n4/ℓ4) (in the directed case)
requests can be connected along edge-disjoint paths. This leads to the better
bound in dense graphs. They also show that the approximation ratio of the
shortest-path-first greedy algorithm is Ω(n2/3) in directed acyclic graphs and in
undirected graphs. The upper bound on the approximation ratio of the shortest-
path-first greedy algorithm for directed graphs was subsequently improved to



O((n log n)2/3) by Varadarajan and Venkataraman [56]. They obtain this result
by showing that in a directed graph where the distance between the end vertices
of each request is at least ℓ, at most O((n2/ℓ2) · (log n/ℓ)2) of the requests can
be connected along edge-disjoint paths.

Theorem 5 (Chekuri and Khanna, 2003; Varadarajan and Venkatara-
man, 2004). The approximation ratio of the shortest-path-first greedy algo-
rithm for MEDP is O(min{√m,n2/3}) in undirected graphs and O(min{√m,
(n log n)2/3}) in directed graphs.

For directed acyclic graphs, Chekuri and Khanna [15] present a combinatorial
algorithm that achieves approximation ratio O(

√
n·log n). The algorithm is based

on the observation that, if the optimal solution contains many long paths, there
must be a vertex that is contained in a significant fraction of these long paths.

2.4 Inapproximability for Directed Graphs

The bounded greedy algorithm and the shortest-path-first greedy algorithm
achieve approximation ratio O(

√
m) for directed or undirected graphs with m

edges. For directed graphs, an essentially matching inapproximability result has
been obtained by Guruswami et al. [31].

Theorem 6 (Guruswami et al., 1999). For MEDP in directed graphs with

m edges, there cannot be an m
1

2
−ε-approximation algorithm for any ε > 0 unless

P = NP.

Proof. The proof is based on the hardness of the problem 2DirPath, i.e., de-
ciding for a directed graph H = (V,E) and four distinct vertices u1, w1, u2, w2

whether H contains paths from u1 to w1 and from u2 to w2 that are edge-disjoint.
This problem has been proved NP-complete by Fortune, Hopcroft and Wyllie in
[23]. Consider some fixed ε > 0. Given an instance I of the problem 2DirPath,
one can efficiently construct an instance of MEDP with k requests in a directed
graph G with m edges such that the optimal solution contains all k requests
if I is a yes-instance and only one request if I is a no-instance. Therefore, an
approximation algorithm for MEDP with ratio smaller than k would allow to
decide I in polynomial time, implying that P = NP.

The construction of G is illustrated in Fig. 4. G is the lower right triangle
of a k × k mesh, with all edges pointing upward or to the right. Every internal
vertex v of the mesh is replaced by a copy of H. The head of the incoming
horizontal edge of v is attached to u1, the tail of the outgoing horizontal edge
to w1. Similarly, the vertical edges incident to v are attached to u2 and w2.
Intuitively, this copy of H allows two paths arriving at v from below and from
the left to cross (i.e., to leave this copy of H on the top and on the right side,
respectively) if and only if I is a yes-instance.

The k requests in G are defined as follows: The vertices at the bottom of
the mesh (from left to right) are the sources s1, s2, . . . , sk, and the vertices
on the right side of the mesh (from bottom to top) are the destinations t1, t2,
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Fig. 4. Construction used in the inapproximability proof.

. . . , tk. If I is a yes-instance, all k requests can be accepted and routed along
the canonical path that goes upward until the destination row is reached and
then to the right until the destination is hit. If I is a no-instance, there cannot
be edge-disjoint paths for any two requests i and j, i 6= j, because such paths
would have to cross at some copy of H. Therefore, the optimal solution to the
constructed instance of MEDP contains either k requests or only one request,

depending on whether I is a yes-instance. If we choose k = m
1/ε
H , where mH is

the number of edges of H, the graph G has m = Θ(k2mH) = Θ(k2+ε) edges,
hence k = Θ(m1/(2+ε)). Since the construction can be applied for every fixed
ε > 0, the theorem follows. ⊓⊔

Note, however, that for the graphs constructed in the proof of Theorem 6, we
have m = O(n). Therefore, the lower bound does not necessarily apply to dense
graphs. In fact, we have seen in Theorem 5 that the shortest-path-first greedy al-
gorithm indeed achieves approximation ratio strictly better than O(

√
m) in dense

graphs. In terms of n, the proof of Theorem 6 gives only n
1

2
−ε-inapproximability

of MEDP in directed graphs.
Another inapproximability result for MEDP in directed graphs has been

obtained by Ma and Wang [45]. They prove that MEDP cannot be approxi-

mated within ratio 2log1−ε n in directed graphs with n vertices unless NP ⊆
DTIME(2polylogn).

It remains an interesting open problem to determine whether the approxima-
tion ratio for MEDP in undirected graphs can be improved substantially. The
proof of Theorem 6 cannot be adapted to the undirected case because the variant
of 2DirPath for undirected graphs can be solved in polynomial time. In fact,
for every constant k there is a polynomial-time algorithm that decides for an



undirected graph and k requests whether all k requests can be connected along
edge-disjoint paths by the results of Robertson and Seymour [51]. At present,
we cannot even exclude the existence of an O(1)-approximation algorithm for
MEDP in undirected graphs.

2.5 Linear Programming and Randomized Rounding

Linear programming [53] is a very powerful tool in combinatorial optimization. In
this section we discuss the natural LP relaxation of MEDP. Intuitively, solutions
to the LP relaxation correspond to fractional solutions, i.e., solutions that may
accept only fractions of certain requests and that may split the accepted fraction
of a request among several paths arbitrarily.

In the following, we allow a more general edge capacity constraint than the
strict requirement of having edge-disjoint paths: we assume that each edge e has
a certain integral capacity u(e) and that a routing is feasible if at most u(e)
paths go through every edge e. We call this problem generalized MEDP.

An LP Relaxation of MEDP Let a graph G = (V,E) with edge capacities
u : E → N and a set of requests R = {(si, ti) | i = 1, . . . , k} be given. Denote by
Pi the set of all paths from si to ti in G. Note that there might be exponentially
many paths in Pi; we will discuss later how to deal with this.

It is natural to introduce a variable xi for each request i, 1 ≤ i ≤ k, that
is constrained by 0 ≤ xi ≤ 1 and represents the fraction of request i that is
accepted. Furthermore, a variable yi,π is introduced for each path π ∈ Pi; this
variable corresponds to the fraction of request i that is routed along path π.

Thus, maximizing the sum of the accepted fractions of the given requests can
be formulated as the following linear program:

f∗ = max

k
∑

i=1

xi (1)

s.t.
∑

i,π:e∈π∈Pi

yi,π ≤ u(e), for all e ∈ E (2)

∑

π∈Pi

yi,π = xi, for 1 ≤ i ≤ k (3)

0 ≤ xi ≤ 1, for 1 ≤ i ≤ k (4)

0 ≤ yi,π ≤ 1, for 1 ≤ i ≤ k and π ∈ Pi (5)

The objective function (1) expresses that the goal is to maximize the sum of the
accepted fractions of the requests. Constraint (2) ensures that the edge capacities
are not exceeded. Constraint (3) requires that the fractions of request i that are
routed along different paths from si to ti add up to xi, the total accepted fraction
of request i. Constraints (4) and (5) ensure that all variables are between zero
and one.
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Fig. 5. The brick-wall graph.

The above LP may be of exponential size, but is easy to understand. In
order to obtain an LP of polynomial size, one uses variables fi,e for 1 ≤ i ≤
k and e ∈ E that represent the fraction of request i that is routed through
edge e. The number of such variables is bounded by k|E|. Furthermore, the edge

capacity constraints (2) are replaced by
∑k

i=1 fi,e ≤ u(e) for all e ∈ E, and
flow conservation constraints are added for each request i and each vertex v ∈
V \{si, ti} (expressing that the amount of request i reaching v through incoming
edges is equal to the amount leaving v through outgoing edges). Constraint (3)
is replaced by a constraint ensuring that the amount of request i leaving si is
equal to xi. The variables yi,π are not needed in this modified LP. The modified
LP has polynomial size and can be solved optimally in polynomial time. We refer
to the resulting values of the variables fi,e and xi as f∗

i,e and x∗
i , respectively.

These quantities can be viewed as representing a flow of value x∗
i from si to

ti, for 1 ≤ i ≤ k. Using standard flow decomposition methods (also called path
stripping) [50], the flow of request i can be efficiently transformed into O(|E|)
separate flows along paths from si to ti, and these flows represent a fractional
solution to the original (exponential-size) LP with the same objective value.
Thus, we can assume from now on that we can compute an optimal fractional
solution to the original LP in polynomial time and that this solution has only a
polynomial number of variables y∗

i,π that are non-zero.

A solution to the LP in which the variables xi and yi,π are all integral, i.e.,
either equal to 0 or equal to 1, corresponds to a feasible solution of the origi-
nal instance of generalized MEDP. However, adding such integrality constraints
makes the linear programming problem NP-hard. Therefore, a meaningful ap-
proach is to solve the LP to obtain an optimal fractional solution and then try to
convert the fractional solution into an integral solution without losing too much
in the objective function. This conversion is usually called rounding.

The Integrality Gap Unfortunately, the gap between the fractional optimum
and the integral optimum can be arbitrarily large for the LP formulation of
MEDP [28]. A simple example to demonstrate this is shown in Fig. 5. This type



of mesh-like graph with internal vertices of degree 3 is often called a brick-wall
graph. Assume that the graph is undirected, all edges have capacity 1, and there
are 6 requests, where both endpoints of request i are labeled by i in the figure.
Since any two paths for different requests must cross somewhere and thus share
an edge, the integral optimum accepts only one of the six paths. The fractional
solution, however, can route 1/2 of each request without violating any capacity
constraint, thus giving an objective value of 3. This example can be generalized
to give instances where the integral optimum is 1, but the fractional optimum
is Θ(

√
m) for brick-wall graphs with m edges, where m is arbitrarily large. The

construction can also be adapted to directed graphs in a straightforward way.
Note, however, that the brick-wall graph is sparse and thus the lower bound on
the integrality gap in terms of n is only Ω(

√
n). Chekuri and Khanna [15] prove

that an upper bound of O(
√

n · log n) on the integrality gap holds for directed,
acyclic graphs.

In any case, the discussion above shows that we cannot hope to find a round-
ing approach that always gives an integral solution with objective value close to
the fractional optimum.

Randomized Rounding in the High-Capacity Case Fortunately, the sit-
uation is much better if the edge capacities are required to be large. In this
case, the randomized rounding approach due to Raghavan and Thompson [50]
gives a constant-factor approximation ratio. Our presentation follows the work
by Kleinberg [33, pp. 39–41]. The basic idea is to interpret the values of the vari-
ables in the fractional solution as probabilities. For the variables xi, this means
that xi is set to 1 with probability x∗

i . More precisely, we will have to scale down
the values x∗

i by some factor µ before the rounding can be done.

Assume that all edge capacities are at least ε log m for some constant ε. Let
µ < 1 be a positive constant whose choice will be explained later. For each
request i, 1 ≤ i ≤ k, make an independent random choice and route request i
along path π ∈ Pi with probability µy∗

i,π, for all non-zero y∗
i,π, and reject request

i with probability 1 − ∑

π∈Pi
µy∗

i,π = 1 − µx∗
i .

We need to show that with constant probability, the resulting integral solu-
tion does not violate any edge capacity and that its objective value is at least a
constant fraction of the fractional optimum. The number of paths going through
an edge in the integral solution is the number of fractional paths through that
edge that were rounded up. Thus, the random variable representing the number
of paths going through the edge in the integral solution can be viewed as the sum
of independent Bernoulli trials; since the number of trials is large in the case of
large edge capacities, Chernoff-Hoeffding bounds [47] can be used to show that
the probability that some edge capacity is violated is at most 1/m if µ is chosen
as µ = e−14−1/ε. Furthermore, by the Markov inequality, the probability that
the objective value resulting from the rounding is at least µ/2 times the frac-
tional optimum is at least µ/(2 − µ). Therefore, the probability that no edge
capacity is violated and the objective value is at least µ/2 times the fractional
optimum is a constant. Thus, repeating the randomized rounding Θ(p) times



provides a constant-factor approximation algorithm for the high-capacity case
of MEDP with probability 1 − 2−p.

Theorem 7 (Raghavan and Thompson, 1987; Kleinberg, 1996). For all
instances of generalized MEDP where the edge capacities are at least ε log m
for a suitable constant ε, there is a randomized polynomial-time algorithm that
achieves a constant-factor approximation with high probability.

Note that the constant-factor approximation ratio of this theorem holds also
if the solution of the algorithm is compared with the fractional optimum of the
LP relaxation of the problem.

Kolman and Scheideler [41] prove that a constant-factor approximation al-
gorithm for generalized MEDP (in fact, even for the unsplittable flow problem)
in graphs with flow number F exists if the edge capacities are at least ε log F
for a suitable constant ε. Their result is obtained by a rather sophisticated use
of randomized rounding. Note that for graphs with polylogarithmic flow number
(hypercubes, expanders, etc.), this shows that constant approximation ratio can
already be obtained if the edge capacities are Ω(log log n). This latter result had
previously been obtained by Srinivasan [55] (see also Baveja and Srinivasan [5]).

Further results about the approximation ratio achieved by LP-based algo-
rithms will be discussed in Section 5.5 in the context of the unsplittable flow
problem.

3 Edge-Disjoint Paths in Specific Graph Classes

Since the approximation ratios that have been achieved for arbitrary graphs
are quite large, it is interesting to investigate whether MEDP admits better
approximation ratios for restricted classes of graphs. There are two basic tech-
niques that sometimes allow to obtain a better approximation ratio on specific
graph classes:

– For some graph classes, the approximation ratio of the standard greedy al-
gorithm of Section 2.1 can be improved by sorting the given requests in some
order depending on the structure of the given graph.

– For some graph classes, one can prove that there exists a solution using
paths of length at most D that is at least as large as 1/α times the optimum
solution. The bounded-length greedy algorithm of Section 2.2 with parame-
ter D and the shortest-path-first greedy algorithm of Section 2.3 both give
approximation ratio at most αD in this case (cf. Kolman [38]).

We will see examples of both techniques in the following.

3.1 Trees and Trees of Rings

Recall that MEDP can be solved optimally in polynomial time for undirected
trees, but is APX -hard for bidirected trees and undirected or bidirected trees



of rings. A simple approximation algorithm for MEDP in bidirected trees is
the following: Root the given tree at an arbitrary node. For each node v of the
tree, let d(v) denote its distance from the root. For each request (si, ti), let ℓi

be the node on the path from si to ti that is closest to the root. The node ℓi

is also called the lowest common ancestor of si and ti. Now process the given
requests in order of non-increasing values d(ℓi) and apply the greedy algorithm
(i.e., accept each path if it does not intersect any previously accepted path).

In order to analyze the algorithm, we fix an arbitrary optimal solution A∗.
When the algorithm accepts a request (si, ti), we remove from A∗ all paths
that intersect (si, ti). By definition of the algorithm, all paths j ∈ A∗ have
d(ℓj) ≤ d(ℓi). Therefore, if such a path j ∈ A∗ intersects the path πi from si to
ti, it must contain one of the (at most) two edges on πi that are incident to ℓi.
This means that there can be at most two paths in A∗ that intersect πi. Thus,
the algorithm achieves approximation ratio 2.

An improved approximation algorithm with ratio 5
3 + ε, where ε > 0 is

an arbitrary fixed constant, was presented by Erlebach and Jansen [21]. This
algorithm is based on the simple 2-approximation just described, but it considers
all paths with the same lowest common ancestor simultaneously and computes
a maximum number s of such paths that can be added to the current solution.
This can be done using a maximum bipartite matching algorithm. If s ≥ 3, all
these s paths are accepted. Since it suffices to remove from A∗ at most s paths
with the same lowest common ancestor and at most two other paths whose lowest
common ancestor is closer to the root, at most 5

3s paths have to be removed from
A∗. If s = 1 or s = 2, the algorithm cannot always make the decision regarding
acceptance or rejection right away. In some cases, it creates a configuration of
unresolved paths, i.e., paths which are neither accepted nor rejected and whose
status will be decided at a later node. Such configurations of unresolved paths
complicate the processing at later nodes, but a careful case analysis shows that
approximation ratio 5

3 + ε can be achieved for any ε > 0. The running-time is
polynomial in the size of the input for fixed ε > 0.

Theorem 8 (Erlebach and Jansen, 2001). For every fixed ε > 0, there is a
( 5
3 + ε)-approximation algorithm for MEDP in bidirected trees.

An example of a tree of rings is shown in Fig. 6. In undirected or bidirected
trees of rings, it is possible to reduce the problem to that for trees while losing at
most a factor of 3 in the approximation ratio. The idea is just to remove one link
from every ring of the tree of rings arbitrarily. This turns the tree of rings into a
tree, and at least one third of the requests in the optimal solution for the tree of
rings can still be routed in the tree. Thus, in the undirected case one can apply
the optimal algorithm for undirected trees, leading to approximation ratio 3 for
MEDP in undirected trees of rings. For bidirected trees of rings, approximation
ratio 5+ ε is obtained by using the (5

3 + ε)-approximation algorithm for MEDP
in bidirected trees of Theorem 8.



Fig. 6. A tree of rings.

Theorem 9 (Erlebach, 2001). There exists a 3-approximation algorithm for
MEDP in undirected trees of rings and a (5 + ε)-approximation algorithm for
MEDP in bidirected trees of rings, for every fixed ε > 0.

3.2 Meshes and Densely Embedded Graphs

Kleinberg and Tardos [36] found a randomized O(1)-approximation algorithm for
MEDP in two-dimensional meshes. Furthermore, they generalized the algorithm
to obtain approximation ratio O(1) also for the class of densely embedded, nearly-
Eulerian graphs; we refer to [36] for details. In the following, we give an outline
of their algorithm for meshes.

Fix some constant γ. The given requests are partitioned into long requests
and short requests. A request (si, ti) is short if the distance between its endpoints
is at most 16γ log n, and long otherwise. By considering short requests and long
requests separately, computing an approximate solution for each of the two sets,
and outputting the better of the two, an algorithm loses at most a factor of 2 in
the approximation ratio. This is because at least half the requests in an optimal
solution are either all short or all long.

The basic idea for dealing with the long requests is to embed a simulated
network with high capacity into the mesh and to use an O(1)-approximation
algorithm for high-capacity networks based on linear programming and ran-
domized rounding (cf. Section 2.5) in this simulated network. One difficulty is
translating the accepted paths in the simulated network into edge-disjoint paths
in the original mesh.

The short requests are again partitioned into medium requests and small
requests. The medium requests will be handled by applying the algorithm for
long requests in separate submeshes of the original mesh. The small requests are
short enough to be handled by brute-force enumeration.



Fig. 7. The given mesh (left); its partitioning into γ log n×γ log n subsquares, with cho-
sen subsquares drawn in bold and additional lines showing the border of the enclosures
(middle); and the core of the resulting simulated network (right).

Long Requests and the Simulated Network For dealing with long requests,
the mesh is partitioned into subsquares of size γ log n × γ log n. The subsquare
whose middle vertex is v is denoted by Cv. For a subsquare Cv, the up to eight
other subsquares that are adjacent to it are called its neighbors. A maximal sub-
set of the subsquares is chosen randomly such that no two chosen subsquares have
a common neighbor. The random choice ensures that every subsquare becomes a
chosen subsquare with constant probability and for any pair of subsquares whose
middle vertices are at distance at least 11γ log n, there is a constant probability
that both subsquares are chosen. The algorithm discards all requests that do not
have both endpoints in chosen subsquares. This costs only a constant factor in
the approximation ratio.

A chosen subsquare Cv together with all its neighbors becomes an enclosure
Dv. Subsquares that do not belong to an enclosure at this point are included in
any of their adjacent enclosures arbitrarily. Thus, the vertices of the mesh are
partitioned into enclosures. Two enclosures Dv and Dw are adjacent if there is
an edge with one endpoint in Dv and the other endpoint in Dw. In this way, an
enclosure can be adjacent to no more than 20 other enclosures. See Fig. 7 for an
example.

Now the simulated network is built. First, take a vertex zv for each chosen
subsquare Cv, and connect two vertices zv and zw if their enclosures are adjacent.
This defines the core N of the simulated network, and all edges in this core will
be assigned capacity ρ log n for a constant ρ < γ. The right-hand side of Fig. 7
depicts the core of the simulated network in the example. To obtain the final
simulated network N ′, add a copy of each chosen subsquare Cv and make all
vertices at the boundary of Cv adjacent to zv. The edges inside Cv and the edges
from the boundary of Cv to zv are assigned capacity 1.

The long requests with endpoints in chosen subsquares can be viewed as
requests in N ′. Formulating the problem in N ′ as a linear program and solving
this linear program, we obtain an optimal fractional solution F ∗ for the problem.
The objective value of this fractional solution is within a constant factor of
the optimal integral solution for the long requests in the mesh. By applying
the randomized rounding approach of Raghavan and Thompson, we obtain an
integral solution F (a set of accepted requests and one path for each accepted
request) that, with high probability, does not violate any edge capacity in N
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γ log n rings outside Cv realize a crossbar structure in Dv. Two paths

using the crossbar structure are shown: one path arrives from Dx and is routed to a
vertex on the boundary of Cv, the other arrives from Dx and is routed to Dy.

and whose cardinality is a constant fraction of the fractional optimum. However,
the paths in F may violate edge capacities in Cv.

The paths of the integral solution F in N ′ must be translated back into
paths in the mesh. For each pair of adjacent enclosures Dv and Dw, choose a
set τv,w of ρ log n edges connecting Dv and Dw arbitrarily. Furthermore, choose
a set σv of ρ log n vertices equally spaced at the boundary of each Cv. The part
of the mesh around a chosen subsquare Cv will be used to establish a crossbar
structure allowing arbitrary interconnection of vertices in σv and endpoints of
edges in all sets τv,w along edge-disjoint paths. The up to ρ log n paths going
from zv to zw in N ′ will be routed through edges of τv,w, and up to ρ log n paths
with an endpoint s in Cv are to be routed from s to some vertex in σv.

To establish the crossbar structure, the 1
2γ log n rings induced by vertices at

distance γ log n to 3
2γ log n from the middle vertex v of a chosen subsquare Cv

are used. This is illustrated in Fig. 8. Each vertex in σv and each endpoint in
Dv of an edge in some τv,w is assigned a different such ring; since Dv is adjacent
to at most 20 other enclosures, this is possible if ρ is chosen smaller than γ/42.
The outermost ρ log n rings are assigned to vertices in σv. It is easy to see that
we can assign each vertex in σv and each endpoint in Dv of an edge in some τv,w

a path from that vertex to its ring, such that all these paths are edge-disjoint
and do not use an edge of any of the rings.

Consider a path πF assigned to request (si, ti) in F . Let si and ti be contained
in Cv and Cw, respectively. To route (si, ti) in the mesh, a path is obtained as
follows:

– Find a path from si to some vertex ri,v in σv and a path from ti to some
vertex ri,w in σw. These paths form the first segment and last segment of
the constructed path from si to ti in the mesh.



– If zu is the first vertex after zv in πF , choose a free edge ei in τv,u, and let
its endpoint in Dv be ui. Follow the path from ri,v to its ring in Dv until it
intersects the ring of ui, then follow that ring and the path from that ring
to ui. Then take the edge ei.

– Consider an intermediate vertex zu with successor zx on πF . If the con-
structed path enters Du through an edge e1, pick a free edge e2 in τu,x.
Assume without loss of generality that the ring of e1 in Du is inside the ring
for e2. Follow the path from e1 to its ring until the ring of e2 is hit, then
follow the ring of e2 and the path to e2.

– At the last N -vertex zw of πF (i.e., the last vertex of πF that is in the core
N of the simulated network N ′), if the partial path enters Dw through edge
e1, follow the path from e1 to its ring in Dw until it intersects the ring of
ri,w, then follow that ring and its path to ri,w.

Except for the first and last segment of the paths, it is clear that we find edge-
disjoint paths in the mesh for each path in F .

It remains to deal with the first and last segments. Consider some subsquare
Cv. The solution F can have more paths with an endpoint in Cv than can be
routed along edge-disjoint paths to distinct vertices in σv. Kleinberg and Tardos
model the escape problem of routing path endpoints in Cv to vertices in σv as a
flow problem and observe that an edge-disjoint routing exists provided the cut
condition is satisfied for all rectangular cuts. For the case that the cut condition
is violated by the requests accepted in the solution F , they show that one can
discard requests from F so that the remaining requests are a constant fraction of
the requests in F and all cut conditions are satisfied. For the remaining requests,
a network flow algorithm can be used to solve the escape problem and to obtain
the first and last segments of the paths as required. In total, this gives an O(1)-
approximation algorithm for the long requests.

Short Requests Recall that the endpoints of short requests are at distance
smaller than 16γ log n. Set r = 32γ log n. First, the algorithm randomly chooses
a maximal set M of vertices in the mesh with the property that the L∞ distance
between any two vertices in M is more than 4r. For u ∈ M , let Xu be the set
of all vertices with L∞ distance at most r from u, and let Yu be the set of all
vertices with L∞ distance at most 2r from u. Note that Yu and Yu′ are disjoint
for u, u′ ∈ M , u 6= u′. If M is chosen by an appropriate randomized algorithm,
it can be shown that for any short request (si, ti), there is a constant probability
that both si and ti are contained in Xu for some u ∈ M . Thus, the algorithm can
restrict its attention to short requests with both endpoints in the same set Xu

for some u ∈ M and discard all other short requests. Furthermore, the optimal
solution for the short requests with endpoints in Xu using paths in the submesh
induced by Yu can be shown to route at least one quarter of the requests in an
optimal solution for these requests using paths in the whole mesh. Thus, the
algorithm can deal with the requests in each Xu separately and use only the
submesh induced by Yu to route the requests with both endpoints in Xu.



Now consider the short requests with both endpoints in Xu. By considering
these requests as requests in the submesh induced by Yu, we can recursively
partition them into long requests and short requests with respect to the submesh.
Call the resulting long requests medium requests and the resulting short requests
small requests. The medium requests are handled by the algorithm for long
requests of the previous section, now applied to the submesh induced by Yu.
The small requests have endpoints whose distance is O(log log n). By selecting
subsets X ′

v and Y ′
v inside Yu in the same way as Xu and Yu were selected in

the original mesh, the routing of small requests is reduced to solving MEDP in
submeshes with side length O(log log n). These submeshes are so small that an
optimal solution can be computed by a brute-force enumeration in polynomial
time.

Thus, we get approximation algorithms with constant ratio for the long re-
quests, medium requests, and small requests. By running all three algorithms
and outputting the largest of the three solutions, we get a constant-factor ap-
proximation algorithm for MEDP in meshes. Since some of the steps hold only
with constant probability, parts of the algorithm must be repeated a certain
number of times in order to guarantee that the constant-factor approximation
is achieved with high probability.

Theorem 10 (Kleinberg and Tardos, 1995). For MEDP in undirected
meshes there is a randomized polynomial-time approximation algorithm that
achieves a constant-factor approximation with high probability.

Prior to this result, an O(log n log log n)-approximation algorithm (that was
an on-line algorithm) for meshes had been obtained by Awerbuch et al. [3] and
O(log n)-approximation algorithms by Aumann and Rabani [1] and Kleinberg
and Tardos [35]. Kleinberg and Tardos [36] presented also an on-line algorithm
with approximation ratio O(log n) for MEDP in meshes.

3.3 Hypercubes and de Bruijn Graphs

MEDP admits an O(log n)-approximation algorithm in undirected or bidirected
hypercubes. For bidirected hypercubes, Gu and Tamaki [29] have shown that
any partial permutation can be realized with two sets of edge-disjoint paths.
Taking the larger of the two sets gives a 2-approximation algorithm for MEDP
on partial permutation instances. For general instances, we can first compute
a largest subset of the given requests that is a partial permutation instance
and then use the 2-approximation algorithm by Gu and Tamaki. By reducing
a general instance to a partial permutation instance, we lose at most a factor
of O(log n) in the approximation ratio, because the vertices of the hypercube
have degree d = log n. For undirected hypercubes, it was shown by Aumann
and Rabani in [1] that any partial permutation can be realized by a constant
number of sets of edge-disjoint paths. Hence, the same reasoning can be applied
to undirected hypercubes as well. Since hypercubes have flow number O(log n),
it follows from the work of Kolman and Scheideler [41] that BoundedGreedy



achieves ratio O(log n) for MEDP in hypercubes. Hence, this approximation
ratio can even be achieved in the on-line setting.

An embedding of the butterfly into the de Bruijn graph and a decomposition
of the de Bruijn graph were presented by Kolman [38]. From these he derived,
for every constant ε > 0, an O(log2+ε n)-approximation algorithm for MEDP in
undirected de Bruijn graphs. As de Bruijn graphs have routing number O(log n)
and constant maximum degree, it follows from the subsequent results by Kolman
and Scheideler [40] on the routing number that BoundedGreedy is an O(log n)-
approximation algorithm for MEDP in de Bruijn graphs.

3.4 Expander Graphs

Kleinberg and Rubinfeld [34] considered MEDP in bounded-degree expander
graphs. They fix a natural number ∆ ≥ 3 and a real number α > 0 arbitrarily,
and then they assume that the maximum degree of the given graph G is at most
∆ and that the expansion β(G) is at least α.

Theorem 11 (Kleinberg and Rubinfeld, 1996). For every constant ∆, the
bounded-length greedy algorithm with parameter D = c∆ log n for a suitable con-
stant c is an O(log n log log n)-approximation algorithm for MEDP in undirected
expander graphs with maximum degree at most ∆.

To analyze the algorithm, they first show that there exists a feasible routing
for a subset R′ of R that is a partial permutation. Furthermore, |R′| is at least a
constant fraction (more precisely, a 1/(∆+1)-fraction) of the optimal solution for
R. This follows, because each vertex is the endpoint of at most ∆ requests that
are accepted in the optimal solution for R, and so the requests in the optimal
solution, viewed as edges between their endpoints, can be partitioned into ∆+1
matchings by Vizing’s edge coloring theorem. The largest matching gives the
desired partial permutation R′.

Next, they show that there is a set of requests R′′ ⊆ R′ containing at least
half of the paths in R′ such that the requests in R′′ can be routed along paths of
length at most c log n and at most c′ log log n paths are routed through the same
edge. This result builds on previous work on routing of partial permutations in
expanders by Broder, Frieze, and Upfal [12].

To analyze the bounded-length greedy algorithm, the same technique as in
Section 2.2 can be used: Whenever the algorithm accepts a request and routes
it along a path π, we remove that request and all other requests with paths that
intersect π from R′′. We see that at most |π| · c′ log log n + 1 = O(log n log log n)
requests have to be removed from R′′ in this way, thus proving the claimed
approximation ratio.

Since expanders have routing number O(log n), it follows from the work of
Kolman and Scheideler [40] that BoundedGreedy with parameter D = O(log n)
achieves approximation ratio O(log n) for expanders, thus improving the result
by Kleinberg and Rubinfeld.



Chakrabarti et al. [14] consider so-called ∆-regular strong expanders and
show that approximation ratio O(

√
log n) can be achieved for sufficiently large

constant ∆.

3.5 Complete Graphs

For undirected or bidirected complete graphs, Erlebach and Vukadinović [22]
have shown that there is a solution that uses only paths of length at most two and
whose size is at least a constant fraction of the optimal solution. Therefore, the
bounded-length greedy algorithm with D = 2 and the shortest-path-first greedy
algorithm both achieve constant approximation ratio for MEDP in complete
graphs. Using the results on the flow number due to Kolman and Scheideler
[41], Carmi et al. [13] have shown that the approximation ratio achieved by the
shortest-path-first greedy algorithm and the bounded-length greedy algorithm
(with D = 4) is at most 9 and cannot be better than 3 for undirected complete
graphs (which have flow number 1).

Chekuri and Khanna [15] prove that the shortest-path-first greedy algorithm
has approximation ratio O(n/δ) for MEDP in undirected graphs with minimum
degree δ. This also implies a constant-factor approximation algorithm for MEDP
in complete graphs.

MEDP is NP-hard in undirected and bidirected complete graphs [22], but
no inapproximability result is known.

4 MEDP with Pre-determined Paths

In our definition of the MEDP problem, each request specifies only the end-
points si and ti, and if the request is accepted, the path connecting si and ti is
determined by the algorithm. Alternatively, one can assume that every request
with endpoints si and ti already specifies a pre-determined path πi connecting
si and ti. The path πi might be determined by a separate routing algorithm or
by the customer who submits the request. If request i is accepted, it must be
routed along πi. We denote this variant of MEDP by PreMEDP.

An instance I of PreMEDP with a set of k paths in a graph G can be
viewed as a maximum independent set problem in the conflict graph of I, i.e.,
in the graph with one vertex for each of the k paths and with an edge between
two vertices if the corresponding paths intersect.

Of course, the problems MEDP and PreMEDP are equivalent for trees.
For undirected or bidirected rings, PreMEDP is polynomial, since the conflict
graph is a circular-arc graph (or a disjoint union of two circular-arc graphs, in
the bidirected case) in this case and the maximum independent set problem
is polynomial for circular-arc graphs [30]. For undirected or bidirected trees of
rings, PreMEDP was shown APX -complete in [20]. For the approximation ratio
achieved by a greedy algorithm based on depth-first search, upper bounds of 4
and 8 were given there for the undirected and bidirected case, respectively. For
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Fig. 9. A series-parallel graph.

arbitrary graphs, it is easy to see that the natural adaptations of the bounded-
length greedy algorithm and the shortest-path-first greedy algorithm achieve
approximation ratio O(

√
m) for PreMEDP.

To get an inapproximability result for PreMEDP in arbitrary graphs, note
that any graph H with n vertices can be encoded as the conflict graph of n
paths in a series-parallel graph with m = O(n2) edges, such as the one shown
in Fig. 9: All n paths go from s to t. There are O(n) layers between s and t,
and each layer consists of O(n) parallel chains of length two. The edge set of H
can be split into ℓ = O(n) matchings M1, M2, . . . , Mℓ using an edge coloring
algorithm. In each layer i, the paths corresponding to the endpoints of the jth
edge in Mi both use the jth chain of that layer. The paths corresponding to
nodes that are not matched in Mi use one of the other chains of that layer (no
two of them use the same chain). Thus, two of the constructed paths intersect
if and only there is an edge between the corresponding vertices in H.

The maximum independent set problem in graphs with n vertices cannot
be approximated within n1−ε for any ε > 0 unless NP = co-RP , as shown
by H̊astad [32]. Therefore, PreMEDP cannot be approximated within m

1

2
−ε

for any ε > 0 under the same assumption. Unlike in the case of MEDP, this
inapproximability result for PreMEDP applies also to undirected graphs and
to graphs with bounded treewidth (since series-parallel graphs have treewidth
at most two).

We remark that any graph with n vertices can also be encoded as the conflict
graph of n paths in a mesh with O(n2) vertices, thus yielding the same inapprox-
imability result. This construction was given by Nomikos in a reduction from the
vertex coloring problem to path coloring with pre-determined paths [48].

For PreMEDP, one can also take the number of rejected paths as the ob-
jective value and turn the problem into a minimization problem, as suggested by
Blum, Kalai and Kleinberg [6]. Viewed in the conflict graph, the goal is now to
compute a minimum vertex cover. Since the minimum vertex cover problem can
be approximated within a factor of 2 on arbitrary graphs, this shows that Pre-
MEDP admits a 2-approximation for arbitrary graphs if the goal is to minimize
the number of rejected paths.



5 The Unsplittable Flow Problem

The unsplittable flow problem (UFP) generalizes MEDP in several aspects. With
respect to the given graph G = (V,E), the difference is that every edge e now
has a positive capacity u(e). With respect to the set of requests R, the difference
is that in addition to specifying its endpoints si and ti, each request i also has a
positive demand di and a positive profit ri. Unless stated otherwise, we assume
that the edge capacities, demands, and profits can be arbitrary positive rational
numbers. Again, a solution is given by selecting a subset of the given requests and
assigning a path from si to ti to each accepted request i. A solution is feasible
if the edge capacity constraints are satisfied, i.e., if the sum of the demands of
all accepted requests that are routed through an edge e is at most u(e). The
objective value of a solution is the sum of the profits of the accepted requests.

For a given instance of UFP, we let umin and umax denote the smallest
and largest edge capacity, respectively. Similarly, dmin and dmax represent the
smallest and largest demand of any request, and rmin and rmax are defined
analogously. For a set S of requests, we define r(S) =

∑

i∈S ri and d(S) =
∑

i∈S di.
In addition to studying UFP in its full generality, many researchers have

considered combinations of the following restrictions.

– The largest demand is at most the smallest edge capacity, i.e., dmax ≤ umin.
Since many results are known under this assumption, we call UFP with this
restriction classical UFP. To distinguish the general UFP problem from
classical UFP, it is also called extended UFP.

– We have dmax ≤ umin/K for some K > 1. This variant is called bounded
UFP.

– All edge capacities are the same. This variant is called uniform-capacity
UFP (UCUFP).

– All demands are the same.
– All profits are the same.
– The profit of a request is proportional to its demand.

In particular, MEDP is the special case of UFP in which u(e) = 1 for all e ∈ E
and di = ri = 1 for all requests i. Therefore, all inapproximability results for
MEDP apply also to UFP.

Even though UFP appears to be significantly more general than MEDP, an
approximation ratio of O(

√
m) can be achieved for classical UFP as well.

5.1 UFP Approximations in Terms of Routing Number and Flow
Number

Kolman and Scheideler [40] consider UCUFP in undirected graphs under the
assumption that the profit of a request is equal to its demand. They suggest to
use the bounded-length greedy algorithm with length parameter D = 2R, where
R is the routing number of the given graph (cf. Section 2.2). If the algorithm



processes the requests in order of non-increasing demands, they show that ap-
proximation ratio O(∆R) = O(∆2β(G)−1 log n) is achieved. They also present
a randomized algorithm with approximation ratio O(∆

√
LR) if the graph has

L-bounded routing number R.

In subsequent work, Kolman and Scheideler [41] obtain improved results by
considering the flow number instead of the routing number. Let G = (V,E) be
an undirected graph with arbitrary positive edge capacities. For v ∈ V , let u(v)
be the sum of the capacities of the edges incident to v. Let Γ =

∑

v∈V u(v).
Consider a concurrent multicommodity flow problem I with a demand of dv,w =
u(v)u(w)/Γ between every pair (v, w) of vertices in V . A feasible solution assigns
to each pair (v, w) a (splittable) flow of at most dv,w units from v to w such that
the total flow through each edge is at most the capacity of the edge. The flow
value of a feasible solution is the maximum value f , 0 ≤ f ≤ 1, such that
at least f · dv,w units of flow are routed for each pair (v, w). Finally, the flow
number F (G) is defined as the minimum, over all feasible solutions S to I, of
max{C(S),D(S)}, where D(S) is the longest flow path used in S and C(S) is
the inverse of the flow value of S [41].

Kolman and Scheideler show that the flow number F (G) of a graph can be
computed in polynomial time and, using a result by Leighton and Rao [43],
that F (G) = Ω(β(G)−1) and F (G) = O(∆′β(G)−1 log n) always hold, where
∆′ = maxv∈V u(v) and β(G) is the expansion of G.

Then they prove that the bounded-length greedy algorithm with length pa-
rameter D = 4F (G) achieves approximation ratio 16F (G) + 1 = O(F (G)) =
O(∆′β(G)−1 log n) for the classical UFP in undirected graphs if the profit of a
request is equal to its demand and if the algorithm processes the requests in order
of non-increasing demand values. In terms of ∆ instead of ∆′, this gives approx-
imation ratio O(∆umax

umin

β(G)−1 log n). For bounded UFP with dmax ≤ umin/K
for some integer K, they present a modified algorithm with approximation ra-
tio O(K · (F (G)1/K − 1)). If K ≥ log F (G), this gives approximation ratio
O(log F (G)).

They also use an LP-based algorithm with randomized rounding to show
that approximation ratio O(1) can be achieved for classical UFP if umin/dmax ≥
γ log F (G) for a sufficiently large constant γ.

5.2 A Combinatorial Algorithm for Classical UFP

In the following, we present the combinatorial O(
√

m)-approximation algorithm
for classical UFP due to Azar and Regev [4]. First, the set of requests R is split
into two subsets R1 and R2 such that R1 contains all requests with di ≤ umin/2
and R2 all remaining requests. The algorithm computes a solution for each of
the two sets separately and outputs the better of the two solutions. This costs
at most a factor of 2 in the approximation ratio.

Consider one of the two sets Rq, q = 1, 2. The algorithm sorts the requests
in order of non-increasing ratio ri/di and processes them in this order. In this
way, more “valuable” requests are processed first. For a request i and a path π



algorithm ThresholdGreedy(G = (V, E),S, α):
A ← ∅;
sort the requests in S in order of non-increasing ri/di;
for all requests i in S in this order do

if ∃ path πi from si to ti in G such that
F (i, πi) > α and every edge e ∈ π has at least di available capacity then

A ← A∪ {(si, ti)};
reduce the available capacity on all edges of πi by di;

fi;
od;
return A and {πi | (si, ti) ∈ A};

Fig. 10. A threshold-based variant of the greedy algorithm.

from si to ti, define

F (i, π) =
ri

∑

e∈π
di

u(e)

.

Thus, F (i, π) measures the profit gained relative to the added network load. The
main idea of the algorithm is to fix a threshold α and to accept a request i only
if there is a path π from si to ti that has sufficient free capacity to accommodate
the request and that satisfies

F (i, π) > α. (6)

The best choice for α is not known a priori. Therefore, the algorithm tries all
powers of two in a certain range as possible values for α, computes a solution
for each of these values, and outputs the best of them. A meaningful range for
α is from αmin = rmin/n to αmax = rmax/(dmin/umax), because (6) is satisfied
for all paths in case α ≤ αmin and for no path if α > αmax. Thus, the algorithm
tries out α = 2j for ⌊log αmin⌋ ≤ j ≤ ⌈log αmax⌉.

More precisely, the algorithm by Azar and Regev calls the subroutine Thresh-
oldGreedy of Fig. 10 with each combination of parameters S and α = 2j satisfying
S = R1 or S = R2 and ⌊log αmin⌋ ≤ j ≤ ⌈log αmax⌉. The best of the solutions
obtained in this way is output.

To see that the algorithm has a polynomial running-time, note that the
subroutine ThresholdGreedy is called

O

(

log
αmax

αmin

)

= O

(

log
(

n
rmaxumax

rmindmin

)

)

times, so the number of calls is bounded by a polynomial in the size of the input.
(Numbers in the input are encoded using a logarithmic number of bits.) Each
call of ThresholdGreedy can be executed in polynomial time since the existence
of a path πi with enough available capacity and with F (i, πi) > α can be checked
using a shortest path algorithm, for the execution of which the weight of an edge
e is taken to be 1/u(e).



Theorem 12 (Azar and Regev, 2001). There is an O(
√

m)-approximation
algorithm for classical UFP in arbitrary directed or undirected graphs.

Proof. Let Q be the set of requests in an optimal solution, and let π∗
i be the

path assigned to request i ∈ Q by the optimal solution. Take q = 1 or q = 2
such that Q∩Rq contains at least half of the total profit of Q. Let Q′ = Q∩Rq.
Note that r(Q′) ≥ r(Q)/2.

Let α′ = 2j′

be the largest value for α that is considered by the algorithm
and that satisfies r({i ∈ Q′ | F (i, π∗

i ) > α′}) ≥ r(Q′)/2. It is clear that such an
α′ exists. We will show that ThresholdGreedy(G,Rq, α

′) produces a solution A
with r(Q′)/r(A) = O(

√
m). Let πi be the path assigned to request i in this set

A by the algorithm.
Let Q′

high = {i ∈ Q′ | F (i, π∗
i ) > α′} and Q′

low = {i ∈ Q′ | F (i, π∗
i ) ≤ 2α′}

Note that Q′
high and Q′

low are not necessarily disjoint and each of them has total
profit at least r(Q′)/2. We obtain

r(Q′
low) =

∑

i∈Q′
low

F (i, π∗
i )

∑

e∈π∗
i

di

u(e)
≤ 2α′

∑

i∈Q′
low

∑

e∈π∗
i

di

u(e)
≤ 2α′m,

since the solution Q′ respects the edge capacities. Thus, we have r(Q′) ≤ 4mα′

and r(Q) ≤ 2r(Q′) ≤ 8mα′.
Call an edge e heavy if the total demand routed through the edge in the

solution A is at least u(e)/4. Then define Eheavy to be the set of all heavy edges.
We distinguish two cases.
Case 1. Eheavy contains at least

√
m edges. Then we get

r(A) =
∑

i∈A

F (i, πi)
∑

e∈πi

di

u(e)
≥ α′

∑

i∈A

∑

e∈πi

di

u(e)

≥ α′|Eheavy|/4 ≥ α′
√

m/4.

Thus we get r(Q) ≤ 8mα′ ≤ 32
√

m · r(A).
Case 2. Eheavy contains less than

√
m edges. In this case, we compare r(A) with

r(Q′
high). Let Q′′ = Q′

high \ A. Since every request i in Q′′ is not accepted by
the algorithm even though F (i, π∗

i ) > α′, this means that if the algorithm had
routed request i along π∗

i , this would have exceeded the capacity of at least one
of the edges on π∗

i , say, of the edge ei.
We claim that ei is a heavy edge. If q = 1, all requests in Rq have demand

at most umin/2, thus the edge ei can overflow only if it already carries a total
demand of more than u(ei)/2 and, consequently, is a heavy edge. If q = 2, all
demands are between umin/2 and umin. If u(ei) ≤ 2umin, at least one request
must already be routed through ei and thus use at least umin/2 ≥ u(ei)/4 of the
capacity of the edge. If u(ei) > 2umin, a total demand of more than u(ei)−dmax ≥
u(ei)−umin ≥ u(ei)/2 must already be using the edge ei. Again, we find that ei

is a heavy edge.
Let Q′′(p) be the set of requests in Q′′ that are among the first p requests

that are processed by the algorithm, and let E(p) = {ei | i ∈ Q′′(p)}. Note



that E(p) ⊆ Eheavy and, therefore, |E(p)| ≤ √
m. Let A(p) be the requests that

are accepted by the algorithm among the first p requests that it processes. Now
the idea is to show that the total demand of A(p) is at least Ω(1/

√
m) times

the total demand of Q′′(p). Since the requests are processed in order of non-
increasing ratio rj/dj , we will then be able to conclude that r(A) is Ω(1/

√
m)

times r(Q′′).
Since each request in Q′′(p) is routed through an edge of E(p) in the optimal

solution, we have d(Q′′(p)) ≤ ∑

e∈E(p) u(e). Let f be an edge in E(p) with largest

capacity. As f is heavy, we have d(A(p)) ≥ u(f)/4. So we get

d(Q′′(p)) <
√

m · u(f) ≤ 4
√

m · d(A(p)).

This implies that r(Q′′) < 4
√

m·r(A), since the requests are processed in order of
non-increasing ratio ri/di and the following claim can be verified by elementary
calculations: Let d1, d2, . . . , dℓ be a positive sequence and b1, b2, . . . , bℓ a non-
increasing positive sequence, and let X,Y ⊆ {1, . . . , ℓ} and X(p) = X∩{1, . . . , p}
and Y (p) = Y ∩ {1, . . . , p}. If for every 1 ≤ p ≤ ℓ we have

∑

j∈X(p) dj >

γ
∑

j∈Y (p) dj , then
∑

j∈X

djbj > γ
∑

j∈Y

djbj .

By taking bj = rj/dj , X(p) = A(p), Y (p) = Q′′(p), and γ = 1/(4
√

m), the above
implication follows. From r(Q′′) < 4

√
m · r(A) and r(Q′

high) ≤ r(Q′′) + r(A),

we get r(Q′
high) ≤ (4

√
m + 1)r(A) and thus r(Q) ≤ 2r(Q′) ≤ 4r(Q′

high) ≤
(16

√
m + 4)r(A).

In both cases, we have shown that r(Q) = O(
√

m)·r(A). Thus, the algorithm
achieves approximation ratio O(

√
m). ⊓⊔

The running-time of the algorithm leading to Theorem 12 is polynomial
in the size of the input, but it depends on the numbers that are part of the
input, because ThresholdGreedy is called O(log

(

n rmaxumax

rmindmin

)

) times. Azar and
Regev show that it is possible to modify the algorithm so that its running-time
is strongly polynomial, i.e., bounded by a polynomial function of n, m, and k
independent of the edge capacities, profit values, and demand values. To achieve
this, first note that the capacity of an edge e with u(e) > kdmax can be reduced
to kdmax without affecting the feasible solutions. Next, requests with profit below
rmax/k can be discarded, while losing at most a factor of 2 in the approximation
ratio. Then, the set Rtiny of requests with demand at most umin/k are treated
separately: the algorithm computes one solution consisting of all requests in
Rtiny and one solution computed as before for the requests in R \ Rtiny. By
outputting the better of the two solutions, again at most a factor of 2 is lost in
the approximation ratio. In R\Rtiny, all requests have demand at least umin/k.
Thus, the ratio rmaxumax/(rmindmin) is now bounded from above by O(k3), so
the running-time of the algorithm is strongly polynomial.

Finally, we note here that Chekuri and Khanna [15] have extended their
results for MEDP (cf. Section 2.3) to UCUFP: They gave algorithms with



approximation ratio O(min{√m,n2/3}) for UCUFP in undirected graphs and
O(min{√m,n4/5}) for UCUFP in directed graphs, under the assumption that
the profit of each request is equal to 1. Their analysis works also if the profit of
each request is equal to its demand.

5.3 Combinatorial Algorithms for Extended and Bounded UFP

Azar and Regev [4] present additional results for extended UFP and bounded
UFP. For extended UFP, they obtain a combinatorial, strongly polynomial
O(

√
m · log(2+ dmax

umin

))-approximation algorithm. The basic idea of the algorithm

is to partition the given requests into 2 + max{log dmax

umin

, 0} classes depending on
their demands and to run the algorithm of the previous section on each of the
classes separately. In the end, the best of the computed solutions is output.

For bounded UFP, i.e., for the case of dmax ≤ umin/K for some K ≥ 2, Azar

and Regev present a strongly polynomial O(K · D 1

K )-approximation algorithm,
where D is the maximum possible length of a path assigned to a request.

For the extended UFP, Kolman and Scheideler [41] propose a variant of
the bounded-length greedy algorithm that achieves approximation ratio O(

√
m)

under the assumption that the profit of each request is equal to its demand. Kol-
man [39] generalizes the results due to Chekuri and Khanna [15] for UCUFP and
shows that approximation ratio O(min{√m,n2/3}) and O(min{√m,n4/5}) can
be achieved for extended UFP in undirected and directed graphs, respectively,
provided that the profit of each request is equal to its demand.

5.4 Inapproximability Results for UFP

In Section 2.4, we have seen that there cannot be an approximation algorithm
for MEDP in directed graphs that achieves approximation ratio O(m

1

2
−ε) for

any ε > 0, unless P = NP. Since UFP is a generalization of MEDP, this
inapproximability result applies to UFP as well. For the extended UFP, Azar
and Regev present a stronger inapproximability result in [4]. They show that
unless P = NP, no approximation algorithm for the extended UFP can achieve
approximation ratio O(m1−ε) for any ε > 0. (In terms of n, the result shows
that no algorithm can have approximation ratio O(n1−ε).) For instances of the
extended UFP with dmax/umin ≥ 2 and any ε > 0, they prove that no ap-

proximation algorithm can have ratio better than Ω(m
1

2
−ε

√

⌊log dmax

umin

⌋) unless

P = NP. The proofs of these inapproximability results are again based on
the NP-completeness of problem 2DirPath and, hence, apply only to directed
graphs.

5.5 LP-Based Algorithms for UFP

Prior to the work by Azar and Regev [4], a number of researchers had inves-
tigated the possibility of obtaining approximation algorithms for UFP from a



linear programming relaxation. In Section 2.5, we have discussed the natural lin-
ear programming relaxation of MEDP. It is not difficult to see that the linear
programming formulation of MEDP can be adapted to UFP in a straightfor-
ward way. In this context, the requests are often called commodities and the LP
formulation is called a fractional multicommodity flow problem.

In case of extended UFP, it is important to ensure that a request (si, ti) is
routed only along paths π on which all edges have capacity at least di. This can
easily be enforced in the LP formulation.

Throughout this section, we let OPT ∗ denote the objective value of the op-
timal solution to the LP-formulation and let OPT denote the integral optimum
value. It is clear that OPT ≤ OPT ∗.

Srinivasan [55] presents approximation algorithms for UCUFP that are based
on rounding the fractional solution of the LP relaxation. Without loss of gen-
erality, one can assume that u(e) = 1 for all e ∈ E. Under the assumption
that the profit of each request is equal to its demand value, Srinivasan obtains
a polynomial-time algorithm that outputs a feasible solution with total profit
Ω(max{(OPT ∗)2/m,OPT ∗/

√
m}). The bound Ω((OPT ∗)2/m) holds also in the

case of arbitrary profit values in the interval [0, 1].

Furthermore, Srinivasan considers fractional solutions to the LP with objec-
tive value at least OPT ∗/2 such that each path that carries a positive fraction
of a request (i.e., the paths π for which some variable yi,π is non-zero) consists
of at most ℓ edges. He shows that in this case an O(ℓ)-approximation is possible
for UCUFP with arbitrary profits. Using results from [34], ℓ = O(∆2β−2 log3 n)
can always be achieved for UCUFP. Thus, for graphs in which ∆ is bounded
by a constant and β−1 is polylogarithmic, there is an approximation algorithm
for UCUFP with polylogarithmic (in n) approximation ratio. This gives poly-
logarithmic approximation ratio for the butterfly and related hypercubic net-
works, which have ∆ = O(1) and β = Θ(1/ log n). Srinivasan also shows that
approximation ratio O(ℓ1/ε−1) can be achieved for UCUFP in the case where
dmax ≤ 1 − ε for some constant ε ≥ 1

2 . This implies that for graphs like the
butterfly, approximation ratio O(1) can be achieved for UCUFP provided that
dmax = O(1/ log log n).

Kolliopoulos and Stein [37] obtain results concerning column-restricted pack-
ing integer programs and use them to derive LP-based algorithms for MEDP
and classical UFP. For MEDP with arbitrary profit values, their algorithm com-
putes a solution with total profit Ω(OPT ∗/

√
m) provided that the number k of

requests is O(m). For classical UFP with profit values in the interval [0, 1], their
solutions have total profit Ω(OPT ∗/(

√
m log m)), Ω((OPT ∗)2/(m log3 m)) and

Ω(OPT ∗/ℓ), where ℓ is defined as above.

Baveja and Srinivasan generalize the results of [55] to classical UFP in [5].
They show that it is possible to compute in polynomial time a solution with total
profit at least Ω(min{OPT ∗, (OPT ∗)2/m}) and Ω(OPT ∗/

√
m). The approxi-

mation algorithms with ratio O(ℓ) and O(ℓ1/ε−1) of [55] are also generalized to
classical UFP and bounded UFP, respectively.



Guruswami et al. [31] consider LP-based algorithms that apply the random-
ized rounding technique [50] in a more direct way. They assume that all edge
capacities and demand values are integral and that dmax is bounded by a poly-

nomial in m. Their algorithms achieve approximation ratio O(
√

m log
3

2 m) for
extended UFP and O(

√
m log m log log m) for classical UFP. They also show

that if umin/dmax ≥ c log m for a suitably large constant c, then UFP can be
approximated within a constant factor by standard randomized rounding (cf.
Section 2.5).

Chakrabarti et al. [14] give LP-based algorithms to obtain approximation
ratio O(∆β(G)−1 log2 n) for UFP in undirected graphs and O(∆β(G)−1 log n)
for UCUFP in undirected graphs. They also show that the approximation ratios
improve to O((∆β(G)−1 log2 n)1/K) for UFP and O((∆β(G)−1 log n)1/K) for
UCUFP in the bounded case with dmax ≤ umin/K. Chakrabarti et al. [14]
and Chekuri et al. [16] use LP-based algorithms also to obtain constant-factor
approximation algorithms for classical UFP in chains, rings, and trees.

6 Further Results for Related Problems

In this survey we have focused on approximation algorithms for MEDP and
UFP. Numerous results for closely related problems can be found in the litera-
ture. In this section we briefly mention some of them.

First, maximum path coloring (MAXPC) is the variant of MEDP where
the input specifies an additional parameter W ≥ 1 and the goal is to accept
and route a subset of the requests such that the resulting paths can be parti-
tioned into at most W sets of edge-disjoint paths. This problem is motivated by
all-optical networks with wavelength-division multiplexing, because a network
with W wavelengths can establish connections for W sets of edge-disjoint paths
simultaneously. By a general reduction [17, 2], a ρ-approximation algorithm for
MEDP can be converted into an approximation algorithm with ratio at most
1/(1 − e−1/ρ) ≤ ρ + 1 for MAXPC. In some cases, better approximation ratios
for MAXPC have been obtained using more direct approaches, for example by
Nomikos et al. for MAXPC in undirected and bidirected rings [49].

Another problem related to MEDP is path coloring, where all given requests
must be routed and assigned colors such that requests receive different colors if
they share an edge. The goal is to minimize the number of colors used. Results
for path coloring are surveyed in a different chapter of this book.

A variant of MEDP, called the bounded-length edge-disjoint paths problem,
specifies a bound L on the lengths of the paths that the algorithm may assign
to the requests. An O(

√
m)-approximation for this problem is presented in [31].

That paper deals also with the integral-splittable flow problem, i.e., with the
variant of UFP where the requests need not be routed along single paths, but
can be split integrally among several paths (i.e., each demand is an integer and
can be split among several paths in an integral way).

Instead of considering the maximization version of the edge-disjoint paths
problem, one can also consider the question of how many terminal pairs in a



graph can always be connected along edge-disjoint paths, no matter how the
terminal pairs are chosen. For r-regular expander graphs, all sets of up to κ =
Ω(n/ log n) pairs of vertices can be connected along edge-disjoint paths (provided
no vertex appears as an endpoint of more than a constant number of requests),
both in the undirected case [25] and in the directed case [9]. Since random graphs
have good expansion properties with high probability, similar results could also
be proved for random graphs of sufficiently high degree [11] and for random
regular graphs [26].

While we have seen that UFP cannot be approximated within O(m
1

2
−ε)

unless P = NP, it has been shown that the single-source version of the problem
admits constant-factor approximation algorithms [18, 54]. In the single-source
version, the vertex si of all requests (si, ti) is the same.

Finally, we emphasize that we have mainly considered approximation algo-
rithms for MEDP and UFP that have full knowledge about the input, i.e., that
are off-line algorithms. In applications such as call admission control, it is mean-
ingful to consider the on-line version of the problem, where the requests arrive
over time and the algorithm must accept or reject each request without knowl-
edge of future requests. The greedy algorithm and the bounded-length greedy
algorithm that we discussed as approximation algorithms can in fact be applied
as on-line algorithms, since they can process the requests in an arbitrary order.
For surveys of known results on on-line MEDP and UFP, we refer the reader
to Leonardi [44] and Borodin and El-Yaniv [10, Chapter 13]. More recent results
can be found in Azar and Regev [4] and Kolman and Scheideler [41].
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