
Path Splicing with Guaranteed Fault Tolerance
Thomas Erlebach

Department of Computer Science
University of Leicester

University Road, Leicester LE1 7RH, UK
Email: t.erlebach@mcs.le.ac.uk

Anna Mereu
Department of Electrical and Electronic Engineering

University of Cagliari
Piazza d’Armi, 09123 Cagliari, Italy

Email: anna.mereu@diee.unica.it

Abstract—This paper addresses the problem of exploring the
fault tolerance potential of the routing primitive called path
splicing. This routing mechanism has been recently introduced in
order to improve the reliability level of networks. The idea is to
provide for each destination node in a network several different
routing trees, called slices, by running different routing protocols
simultaneously. The possibility for the traffic to switch between
different slices at any hop on the way to the destination makes
it possible to achieve a level of reliability that is close to the
ideal level achieved by the underlying network. In this work we
show that there is a method for computing just two slices that
achieves fault tolerance against all single-link failures that do not
disconnect the underlying network. We present an experimental
evaluation of our approach, showing that for a number of realistic
topologies our method of computing the slices achieves the same
level of fault tolerance that is achieved by a much larger number
of slices using the previously proposed method.

Index Terms—Path Splicing, Reliability, Fault Tolerance.

I. I NTRODUCTION

The existence of multiple paths between two nodes can
be exploited to improve the reliability of the network. One
problem using traditional approaches is that in order to achieve
good fault tolerance, either a large number of backup paths
must be precomputed, or the time the network takes to
converge to new routes after a link failure is rather long.
A new routing primitive calledpath splicing has recently
been introduced by Motiwala et al. [1], [2] to address these
issues. The main idea is to compute several different routing
trees, calledslices, for each destination by running different
routing protocols simultaneously. Furthermore, packets can
switch between different slices at any node on the way to
the destination, based on a sequence of bits in an additional
splicing header of the packet.

The main advantages of path splicing are that a large number
of different backup paths can be obtained by using only a
small number of slices, and that endnodes have some control
over the slices used by the packets they are sending. When a
traffic source notices that the current path to a destinationis
no longer operational, it can randomly determine a new set of
splicing bits and has a good chance of quickly discovering a
new usable path to the destination.

Motiwala et al. [2] proposed to obtain each slice by running
a shortest-paths based routing protocol such as OSPF, after

Thomas Erlebach would like to acknowledge that part of this work was
done during a study leave granted by University of Leicester.

randomly perturbing the link weights for each slice. Using
simulation experiments they show that this approach works
well for two examples of realistic network topologies, in the
sense that the fault tolerance achieved using path splicing
approaches the ideal fault tolerance of the underlying network
already with a relatively small number of slices.

In this paper, we explore the potential for increasing the
fault tolerance achieved with path splicing by varying the way
in which the slices are computed. In particular, we prove that
two slices are already enough to achieve fault tolerance against
all single-link failures that do not disconnect the underlying
network. The previously proposed method of computing slices
by randomly perturbing link weights cannot provide any such
guarantee.

In our method, the computation of the two slices is derived
from ear decompositions of all biconnected components of the
underlying network. Furthermore, we show that our approach
can be generalized tok-edge-connected networks in the sense
that k slices are sufficient to guarantee fault tolerance against
any set ofk − 1 arbitrary link failures.

We present an experimental evaluation of our approach
showing that for different realistic topologies, just two slices
computed according to our method are sufficient to achieve
a level of fault-tolerance that would require a much larger
number of slices using the method proposed in [2].

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Preliminaries are presented in
Section III. Our proposed method of computing two slices
based on an ear decomposition of the underlying network is
presented in Section IV. Experimental results obtained with
this method are discussed in Section V. The generalization
of the method tok-edge-connected networks is discussed in
Section VI. Alternative evaluation metrics and future workare
discussed in Section VII and we conclude in Section VIII.

II. PREVIOUS WORK

The approaches that have been traditionally adopted to
address the problem of improving the reliability of a network
can be mostly described as multipath routing approaches. They
rely on the presence of multiple paths to a destination, i.e.,
when an event of failure occurs in the network, the traffic
can be routed through precomputed backup paths. The main
drawback of this approach is related to scalability: For large
networks, it is very expensive to compute backup paths for



more than a small number of traffic demands. Moreover, mul-
tipath routing is often performed by computingk edge-disjoint
paths, for a suitable value ofk, for an origin-destination pair.
If a link fails on each of thek paths, the node pair will be
disconnected even if the network topology is still connected.
On the other hand, by using the path splicing technique with
k slices, it is possible to ensure that an origin-destination
pair gets disconnected only ifk links fail in the same cut.
Such concentrated failures are unlikely to occur, as far as
IP backbones are concerned, because there the main failure
scenarios arise from single link failures, as shown in [3].

The concept of path splicing was introduced by Motiwala
et al. [2]. The idea is to provide the network alternative paths
besides the original shortest path in order to avoid a bottleneck
scenario along the low-cost path. Splicing bits are added tothe
header of a packet when it is sent into the network, and routers
inspect the splicing bits to determine which of the available
slices is used to forward the packet. Motiwala et al. proposeto
generate different paths for different slices by modifyingthe
link weights using random link-weight perturbations. The new
routing trees to each destination are then found by computing
shortest paths with the modified weights.

It is suggested in [2] that the link perturbation is performed
by means of a linear function of the original weights in order
to obtain new shortest paths whose length is comparable to
the one of the original shortest paths. Their proposed link
perturbation function is the following:

L′(i, j) = L(i, j) + Weight(a, b, i, j) ∗ Random(0, L(i, j)),
(1)

where L(i, j) is the original weight of the link connecting
node i and nodej; Weight(a, b, i, j) is a weight function
with parametersa and b that takes into account properties of
the nodesi andj; andRandom(0, L(i, j)) is a random value
between0 and L(i, j). The concrete weight function chosen
in [2] is a degree-based perturbation function that depends
linearly on the degrees of the nodes that are the endpoints of
the link, and whose values are in the range froma to b:

Weight(a, b, i, j) = fab(degree(i) + degree(j)) (2)

wheredegree(i) anddegree(j) are the degree of nodei andj,
respectively. The reason for using a degree-based perturbation
technique is to discourage the use of links between nodes with
large degree in order to introduce more path diversity.

III. PRELIMINARIES

We model the communication network as a connected,
undirected graphG = (V,E). Let Ḡ denote the bidirected
version of G, i.e., the directed graph obtained fromG by
replacing each edgee ∈ E by a pair of directed edges with
opposite directions. Aslice is given by specifying, for each
nodet of G, a directed in-tree in̄G rooted att. A slice specifies
for each nodew of G and each destination nodet of G an
edge(w, u) of Ḡ, the interpretation being that if a packet with
destinationt is received byw, it gets forwarded byw to u.

If a connected, undirected graph contains a node whose
removal disconnects the graph, such a node is called acut

node. An undirected graph is calledbiconnected if the deletion
of any single node leaves the remaining graph connected. For
a given graphG, any maximal biconnected subgraph with at
least three nodes is called abiconnected component or block.
An edge whose deletion disconnects the graph is called a
bridge. The blocks and bridges of a connected graph form a
tree structure. Formally, this tree structure is a bipartite graph
whose vertices are the blocks and bridges ofG and the cut
nodes ofG, and with an edge between a block or bridge and
a cut node if that cut node is contained in the block or bridge.

Every biconnected graphG possesses anear decomposition,
i.e., the edge set of the graph can be partitioned into a simple
cycleC, called thebase cycle, and a number of pathsP1, P2,
. . . , Pt, such that each pathPi, 1 ≤ i ≤ t, has its endpoints in
the subgraphC∪P1∪· · ·∪Pi−1 and its internal nodes outside
that subgraph. We refer toi as theindex of the earPi. An ear
decomposition of a biconnected graph can be computed in
linear time (see, e.g., [4]). For every edgee of a biconnected
graph, there is an ear decomposition with a base cycle that
containse.

An undirected graphG is k-edge-connected if it containsk

edge-disjoint paths between every pair of nodes; equivalently,
G is k-edge-connected if it remains connected afterk − 1
arbitrary edge deletions.

IV. T WO SLICES: EAR DECOMPOSITION

In this section we present a method for computing two slices
such that the following strong property is satisfied for every
pair of nodesv, w of the network: it is guaranteed that if an
arbitrary link fails in each biconnected component on the way
from v to w, the union of the in-trees with rootw from the
two slices still contains at least one path fromv to w. This
means that a packet with destinationw that is sent out by
v can still reachw if the splicing bits in the packet header
are set appropriately. (In practice, the splicing bits can be set
randomly until a feasible path to the destination is found.)

Our method is based on the concept of ear decompositions.
We describe how to compute the in-trees for the two slices for
one specific destinationt. First, we compute the biconnected
components of the graph and an ear decomposition of each
biconnected component according to the algorithm described
in [4]. Here, we choose the ear decomposition in such a
way that in the biconnected component containingt, the base
cycle of the ear decomposition containst, and in every other
biconnected component, the base cycle contains the cut node
of that component that separates the component fromt.

We specify for each nodev ∈ V \ {t} two outgoing edges,
one for the in-tree with roott in the first slice and one
for the in-tree with roott in the second slice. Consider any
biconnected component. Letw be t, if t is in the component,
or the cut node that separates the component fromt, otherwise.
The two outgoing edges for each node in the biconnected
component are determined as follows:

• Let w, v1, v2, . . . , vℓ, w be the base cycleC of the
ear decomposition of this biconnected component. For
the first slice, we pick the directed edges(v1, w) and



(vi+1, vi) for 1 ≤ i ≤ ℓ − 1. For the second slice, we
pick the directed edges(vi, vi+1) for 1 ≤ i ≤ ℓ − 1 and
the edge(vℓ, w).

• Let v1, v2, . . . , vℓ be an ear. For the first slice, we pick
the directed edges(vi, vi+1) for 2 ≤ i ≤ ℓ − 1. For the
second slice, we pick the directed edges(vi, vi−1) for
2 ≤ i ≤ ℓ − 1.

Now consider any bridgee = {u, v}. If v is the endpoint of
e that is closer tot, then we pick the directed edge(u, v) for
both slices.

(a)

(b)

(c)

Fig. 1. (a) A biconnected network. (b) An ear decomposition. (c) The in-trees
for destination0 in the two slices.

Two examples illustrating the algorithm are shown in Fig-
ures 1 and 2. Figure 1 shows a biconnected graph, an ear
decomposition, and the two resulting slices. Figure 2 showsa
graph consisting of several biconnected components and one
bridge, ear decompositions of all its biconnected components,
and the two resulting slices.

Lemma 1: In each of the two slices, the directed edges
selected by the algorithm for destinationt form an in-tree
with root t.

Proof: It is clear that for every destination nodet, our
algorithm selects one (and only one) out-edge for every node

(a)

(b)

(c)

Fig. 2. (a) A network with four biconnected components and onebridge. (b)
Ear decompositions of all biconnected components (single-edge ears omitted).
(c) The in-trees for destination0 in the two slices.

different from t. To show that the directed edges selected by
the algorithm form an in-tree with roott, we show that every
other node has a path tot consisting of only such edges.

Consider an arbitrary source nodes. Any path froms to t in
the underlying graphG consists of segments of the following
types:

• Travelling from some nodeu inside a biconnected com-
ponent to the unique nodev in the same biconnected
component that is closest tot. We call u the entry node
andv the exit node of the biconnected component.

• Traversing a bridge edge from some nodeu to some node
v. We call u the entry node andv the exit node of the
bridge.

Furthermore, the sequence of segments and their entry and
exit nodes are uniquely determined bys andt; different paths
differ only in how they reach the exit node of a biconnected
component from the entry node.

Consider the directed edges selected by the algorithm for
destination t in one of the two slices. For every bridge
segment of the path froms to t, the algorithm indeed selects
the directed edge from the entry node to the exit node of



the bridge. Consider any other segment of the path in a
biconnected componentB with entry nodeu and exit node
v. The directed edges selected by the algorithm inB form a
path fromu to v that can be constructed as follows: start with
u as current node. While the current node is not a node of the
base cycleC of B, the current node must be an internal node
of a unique earPi. The directed edges picked by the algorithm
allow to route from the current node to an endpoint of that
ear. That endpoint becomes the new current node; note that
if it is an internal node of an ear, that ear must have index
smaller thani (thus ensuring that the path cannot enter the
same ear twice). If the current node is a node on the base
cycle C, the directed edges picked by the algorithm contain
either the clockwise or the counterclockwise path onC to v.

Theorem 1: The two slices computed by the algorithm
are resilient to arbitrary simultaneous single-edge failures in
all biconnected components of the given network. They are
even resilient to arbitrary simultaneous single-edge failures
in all ears and base cycles of the ear decompositions of all
biconnected components.

Proof: Consider an arbitrary sources and destinationt.
As observed in the proof of Lemma 1, every path froms
to t consists of segments that are either bridges or travel
from a unique entry nodeu to a unique exit nodev of some
biconnected componentB. We need to consider only the latter
case. Assume that an arbitrary edge has failed in each ear and
in the base cycle ofB. We need to show that the union of
the two in-trees computed by the algorithm for destinationt

contains a path fromu to v that avoids all failed edges. That
path can be constructed as follows: Start withu as current
node. While the current node is not a node of the base cycle
C of B, the current node must be an internal node of a unique
ear Pi. The directed edges picked by the algorithm allow to
route from the current node to one endpoint of that ear in the
first slice, and to the other endpoint of that ear in the second
slice. No matter which edge has failed, we can still route to one
endpoint of the ear. That endpoint becomes the new current
node. If the current node is a node on the base cycleC, the
directed edges picked by the algorithm contain the clockwise
path onC to v in one slice and the counterclockwise path on
C to v in the other slice, and one of the two paths avoids the
failed edge onC.

V. EXPERIMENTAL RESULTS

This section shows the results obtained with an implemen-
tation of our slice construction method from the previous
section. We have already shown in Theorem 1 that our method
guarantees the reliability of the network in case of simultane-
ous single link failures in all biconnected components of the
network. In the following we show that we obtain a level of
reliability that is better than the one that can be achieved with
the slice generation method of [2] also for the failure scenario
considered in [2], where each link of the network is assumed
to fail independently with a certain probability.

Fig. 3. Reliability curves for the Sprint network

In order to compare the performance of our method with that
obtained by the random weight perturbation method, we have
implemented the latter method and considered the same simu-
lation setting as [2]. The parameter measured in the evaluation
is the fraction of origin-destination pairs that are disconnected
when each link of the network fails independently with a
fixed probabilityp. Reliability curves have been produced by
varying the failure probability of the links from 0.01 to 0.11 in
steps of 0.002. The reliability achieved by path splicing with
two slices is also compared to the ideal reliability achieved by
the underlying network.

To analyze the reliability achieved for a network topology,
each link is deleted independently with a fixed probabilityp,
and then the fraction of disconnected node pairs is computed.
This process is repeated 8,000 times for each value of the link
failure probability, and the average values are plotted. With
this procedure we have constructed the reliability curve for the
underlying network, for the routing based on a single shortest-
path tree for each destination (which is the most common
approach in standard IP routing), for path splicing with two(or
more) slices generated as proposed in [2], and for path splicing
with two slices generated according to our new method.

The first network that we analyze is the Sprint backbone
network topology. This topology has been inferred with the
software Rocketfuel [5], and we consider the resulting PoP
level topology: it is composed of 52 nodes and 84 links. This
is the same network that is considered in the performance
evaluation of [2]. The results are shown in Figure 3. In
the figure, the solid line represents the reliability curve for
the full topology, which represents the ideal curve that we
would like to approach using as few slices as possible. The
dotted curve is the one obtained for a single slice that is
obtained by computing shortest paths according to the actual
link weights. Between these two curves we have the two curves
that represent path splicing withk = 2 slices. As can be seen
from Figure 3, the dashed curve that represents the reliability
of the network achieved with the two slices obtained with
our method based on ear decompositions performs very well
in comparison to path splicing with slices constructed using



Fig. 4. Reliability curves for the Ǵeant network

the random weight perturbation method of [2] (dash-dotted
line). In particular, we can see that forp = 0.1 the fraction of
disconnected pairs decreases by almost25% using our method.

The second network that we analyze is the Géant Network,
the European network that connects the national research
networks from the different countries to each other. It is
composed of 23 nodes and 38 links. The reliability curves
for the Ǵeant network are plotted in Figure 4. In this case we
compare path splicing with two slices constructed from the
ear decomposition to path splicing withk slices constructed
using the random link weight perturbation method of [2],
where k ranges from2 to 12. It is demonstrated that our
construction method allows a significant improvement not only
if we compare it withk = 2 random weight perturbation slices
but also if we compare it with up tok = 12 such slices. It
is remarkable that for a link failure probability of 0.1, the
fraction of disconnected pairs for just two slices built with the
ear decomposition method is almost 44% lower than that for
12 slices computed with the random link weight perturbation
method.

These results show that only two slices built with the ear
decomposition method are sufficient to guarantee better fault
tolerance even if compared to a considerably larger number
of slices computed with the random link weight perturbation
method. Comparing Figure 3 and Figure 4, we can infer
that this behavior is particularly apparent for networks whose
nodes have quite homogeneous node degrees, i.e., networks
where the difference between the maximum and minimum
node degree is small: For the Sprint network, this difference is
equal to26 (since the maximum degree is28 and the minimum
is 2), whereas for the Geánt network the maximum degree is
12 and the minimum degree is4.

VI. k SLICES: EDGE-DISJOINT IN-TREES

If G is a biconnected graph, it is not difficult to see that
the two in-trees that are constructed by our algorithm of
Section IV for each destination nodet are in fact edge-disjoint,
in the sense that the set of directed edges ofḠ that is used
by one in-tree is disjoint from that used by the other in-
tree. It is possible that one in-tree uses a directed edge(u, v)

and the other uses a directed edge(v, u), however, so the
undirected trees underlying the two in-trees are not edge-
disjoint in general. In fact, it is easy to see that there are
biconnected graphs (e.g., graphs consisting of a single cycle)
that do not contain two edge-disjoint spanning trees.

In this section, we present a generalization of our approach
to the construction ofk slices in ak-edge-connected network
for arbitrary valuesk ≥ 2. A classical result of Edmonds
[6] states that if a directed graph containsk edge-disjoint
paths from some noder to every other node of the graph,
then the graph containsk edge-disjoint out-trees (branchings)
rooted atr. Furthermore, thesek edge-disjoint out-trees can
be computed efficiently in timeO(kmn + k3n2) for graphs
with m edges andn nodes [7].

It is easy to see that if an undirected graphG is k-edge-
connected, thenḠ contains k edge-disjoint directed paths
between each pair of nodes. Using this observation and the
fact that the result by Edmonds can be adapted from out-trees
to in-trees in a straightforward way, we have the following.

Proposition 1: Let G be an undirected graph. IfG is k-
edge-connected, then for every nodet it holds thatḠ contains
k edge-disjoint in-trees rooted att, and these in-trees can be
computed efficiently.

A natural idea is then to computek slices for ak-edge-
connected network by choosing, for each destinationt, k edge-
disjoint in-trees with roott, one for each slice. We refer to
slices computed in this way asslices based on edge-disjoint
in-trees. We are interested in the level of fault tolerance that
can be guaranteed by this method of computing slices. In
particular, we would like to see whether thek slices computed
in this way can toleratek − 1 arbitrary edge failures of the
underlying undirected graph. This is not obvious, because the
failure of a single edge{u, v} in the underlying undirected
graph G corresponds to simultaneous failures of the two
directed edges(u, v) and (v, u) in Ḡ; k − 1 edge failures in
G therefore correspond to2(k − 1) failures of directed edges
in Ḡ. Nevertheless, we can prove that the desired level of
fault tolerance is indeed achieved by this method of computing
slices.

Theorem 2: Let G = (V,E) be ak-edge-connected undi-
rected graph. Path splicing withk slices based on edge-disjoint
in-trees is resilient tok − 1 arbitrary edge failures.

Proof: Assume for a contradiction that there is a setF

containingk−1 edges ofG with the property that if all edges
of F fail, then some nodet is no longer reachable from some
nodes using thek slices based on edge-disjoint in-trees. Note
that t is still reachable froms in the underlying graphG,
becauseG is k-edge-connected. Let̄F be the2k − 2 directed
edges ofḠ that correspond to the undirected edges inF , i.e.,
for every edge{u, v} in F , F̄ contains the two directed edges
(u, v) and (v, u).

Each of thek slices contains an in-tree rooted att, and
thesek in-trees are edge-disjoint. LetD be the directed graph
that is the union of thesek in-trees. It is clear thatD contains
k edge-disjoint directed paths froms to t (namely the paths
from s to t in the k edge-disjoint in-trees rooted att). As the



failures of the edges inF disconnectt from s, we must have
that D \ F̄ , the graph obtained fromD by deleting all edges
that are inF̄ , does not contain a directed path froms to t. This
implies that there must be a cut(S, T ) of D, whereS ⊂ V

containss and T = V \ S containst, such thatF̄ contains
all edges with tail inS and head inT . SinceD containsk

edge-disjoint paths froms to t, we know thatD contains at
leastk different directed edges with tail inS and head inT .
Furthermore, no two of these directed edges correspond to the
same undirected edge, because if(u, v) is an edge with tail in
S and head inT , then(v, u) does not have this property. As
the directed edges in̄F correspond to onlyk − 1 undirected
edges, there must be one edge with tail inS and head inT
that is not contained in̄F , giving the desired contradiction.

VII. D ISCUSSION ANDFUTURE WORK

Our analysis has focussed on the reliability achieved by
the computed set of slices. Other metrics that have been
considered in [2] include stretch (i.e., how much longer the
paths in the slices are compared to shortest paths) and recovery
time (i.e., how long it takes the source node, after a path fails,
to find a a set of splicing bits that yields a new path avoiding
the failed links). It would be interesting to investigate these
metrics for the slices constructed by our method as well.

The stretch metric is highly related to the concept of novelty
(i.e., path diversity). In particular, stretch and noveltyare
conflicting goals. One wants to achieve that the alternative
paths are not much longer than the original shortest paths (low
stretch), and, at the same time, that the new paths exploit path
diversity (high novelty). We expect that in our method the
stretch of the paths is larger but the novelty is also larger than
in the random link weight perturbation method. A feasible
method to limit the length of the paths could be using normal
shortest-path routing in the absence of failure scenarios and
switching to path splicing with two slices computed by our
method when link failures affect the shortest path.

As far as the recovery time is concerned, in [2] this is
analyzed in terms of the number of recovery attempts before
a working path is found. We expect the recovery performance
with the implementation of our method to be very similar to
that of the original splicing procedure since we modify the
original approach only in the way the alternative paths are
computed and we do not introduce any change in the recovery
schemes.

A problematic scenario that can occur with path splicing is
the possibility of forwarding loops. This is because trafficis
not routed along a single routing tree. This scenario seems to
be more likely to happen with our path splicing methodology.
A simple method to eliminate forwarding loops would be to
allow packets to switch slices only when they enter an ear or
base cycle of the ear decomposition, but not while they traverse
an ear or base cycle. Moreover, in [2] different strategies are
suggested in order to avoid forwarding loops, such as the
restriction of the number of switches between slices that the
packets can perform, and the same methods should be effective
in our case.

It could be interesting to adopt a combination of both
methods (computing some slices using our method based on
ear decompositions or edge-disjoint in-trees, and some slices
using the random link weight perturbation method) in order
to obtain a good compromise between the different metrics in
practice.

Moreover, from a theoretical point of view, an interesting
question could be: How can we compute, for a given graph,
the minimum number of slices that is sufficient so that the
reliability that can be achieved with path splicing is the same
as the ideal reliability of the underlying network? For example,
it is easy to see that one slice suffices if the network is a tree
and two slices suffice if the network is a ring, but we do not
yet know how to answer this question for arbitrary networks.

VIII. C ONCLUSION

In this paper we have explored how the slices used for path
splicing can be computed in such a way that the resilience
to edge failures improves. We have presented a method based
on ear decompositions that allows us to compute two slices
that can tolerate arbitrary single-link failures that do not
disconnect the underlying network; in fact, the slices can
tolerate simultaneous single-link failures in all biconnected
components. Furthermore, we have shown experimentally that
in a failure scenario where each link fails independently with
some probabilityp, our method of slice computation achieves
with only two slices a level of reliability for which the
previously proposed random link weight perturbation method
requires a substantially larger number of slices. Finally,we
have shown that our approach can be generalized to the setting
of k slices ink-edge-connected networks by computing slices
based on edge-disjoint in-trees.

We remark that ear decompositions can be computed effi-
ciently in parallel [4], indicating that it would be feasible to
incorporate our method of slice computation into a routing
protocol that is executed in a distributed fashion by the nodes
of the network.

Finally, future directions aiming at obtaining a good overall
performance of the path splicing technology have been dis-
cussed.

REFERENCES

[1] M. Motiwala, N. Feamster, and S. Vempala. Path splicing: Reliable
connectivity with rapid recovery. InProc. 6th ACM Workshop on Hot
Topics in Networks (Hotnets-VI), Atlanta, GA, November 2007.

[2] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path splicing.
In Proc. ACM SIGCOMM, pages 27–38, Seattle, WA, 2008. ACM.

[3] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. Chuah, and
C. Diot. Characterization of failures in an IP backbone. InProc.
INFOCOM 04, Hong Kong, China,, March 2004.

[4] V. Ramachandran. Parallel open ear decomposition with applications to
graph biconnectivity and triconnectivity. In J.H. Reif, editor, Synthesis of
Parallel Algorithms, pages 275–340. Morgan-Kaufmann, 1993.

[5] N.T. Spring, R. Mahajan, and D. Wetherall. Measuring ISPtopologies
with rocketfuel. InProc. ACM SIGCOMM, pages 133–145, Pittsburgh,
PA, 2002.

[6] J. Edmonds. Edge-disjoint branchings. In R. Rustin, editor, Combinatorial
Algorithms, pages 91–96. Algorithmics Press, 1972.

[7] P. Tong and E.L. Lawler. A faster algorithm for finding edge-disjoint
branchings.Information Processing Letters, 17:73–76, 1983.


