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ABSTRACT
Multicast communication in a wireless ad-hoc network can
be established using a tree that spans the multicast sender
and receivers as well as other intermediate nodes. If the net-
work is modelled as a graph, the multicast tree is a Steiner
tree, the multicast sender and receivers correspond to ter-
minals, and other nodes participating in the tree are Steiner
nodes. As Steiner nodes are nodes that participate in the
multicast tree by forwarding packets but do not benefit from
the multicast, it is a natural objective to compute a tree that
minimizes the total cost of the Steiner nodes. We there-
fore consider the problem of computing, for a given node-
weighted graph and a set of terminals, a Steiner tree with
Steiner nodes of minimum total weight. For graph classes
that admit spanning trees of maximum degree at most d, we
obtain a 0.775d-approximation algorithm. We show that this
result implies a 3.875-approximation algorithm for unit disk
graphs, an O(1/α2)-approximation algorithm for α-unit disk
graphs, and an O(λ)-approximation algorithm for (λ + 1)-
claw-free graphs.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; G.2.2 [Graph Theory]: Graph algorithms,
Network problems, Trees

General Terms
Algorithms, Theory

Keywords
Wireless ad-hoc networks, multicasting, Steiner tree

1. INTRODUCTION
Wireless ad-hoc networks have received significant atten-

tion from researchers in the last few years because of their
numerous applications. A wireless ad-hoc network is a multi-
hop network without fixed infrastructure. Due to limited
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resources and the lack of any fixed infrastructure, these net-
works pose numerous challenges. A simple approach to the
study of wireless ad-hoc networks is to model them as unit
disk graphs. A unit disk graph is a graph whose nodes corre-
spond to equisized disks in the plane with an edge between
two nodes if the corresponding disks intersect [8]. Such a
graph is a simplified model of a wireless network consist-
ing of nodes with omnidirectional antennas and equal trans-
mission power. Nodes can communicate directly when they
are in each other’s transmission range. Since the unit disk
graph model is too idealistic, more general graph models
that are a better reflection of real wireless ad-hoc networks
have been proposed. Kuhn et al. [6] employ quasi-unit disk
graphs or α-unit disk graphs, where nodes are adjacent if
their distance is at most α, non-adjacent if their distance is
greater than 1, and can be adjacent or non-adjacent other-
wise. Schmid and Wattenhofer [10] consider bounded inde-
pendence graphs, i.e. graphs where the independence number
of the r-neighborhood of any node is bounded by a polyno-
mial in r. They believe that the model of bounded indepen-
dence graphs “reflects reality quite well and is appropriate
in many situations.”

In this paper, we study node-weighted Steiner trees in
classes of graphs that admit spanning trees of bounded max-
imum degree. This includes unit disk graphs, quasi-unit disk
graphs and bounded independence graphs. The motivation
for our work lies in multicast communication in wireless ad-
hoc networks where one node wants to transmit data to
multiple receivers via multi-hop transmissions. To support
this type of communication, a multicast tree can be used.
Considering the graph model of the network, we can refer
to the sender and the receivers as terminals and a multicast
tree corresponds to a Steiner tree, i.e., a tree that is a sub-
graph of the given network and contains all terminals. We
are interested in finding a good Steiner tree for a given set
of terminals in the graph. In the context of wireless ad-hoc
networks, it is meaningful to seek a Steiner tree that mini-
mizes the number of Steiner nodes, i.e., the number of nodes
that are not terminals but are part of the Steiner tree. The
Steiner nodes correspond to wireless nodes that have no di-
rect benefit from taking part in the multicast tree but whose
resources are used to forward messages towards the multi-
cast receivers. In other words, these are nodes that are not
the intended receivers of a message but only serve as in-
termediate nodes in transmitting the message to the actual
receivers.

We actually consider the weighted version of the prob-
lem, where each node of the network has a given weight



and the goal is to compute a Steiner tree that minimizes
the total weight of the Steiner nodes. This problem vari-
ant is motivated by the fact that some nodes may have low
battery power or may otherwise be less suitable or willing
to forward multicast traffic than others. Such nodes would
be assigned higher weight, and a minimum-weight solution
would then favor low-weight nodes as Steiner nodes. The
unweighted version of the problem, where the goal is to min-
imize the number of Steiner nodes, is the special case of the
weighted version where the terminals have weight 0 and the
non-terminals have weight 1.

In this paper, we present a 0.775d-approximation algo-
rithm for the problem of computing a Steiner tree with min-
imum total weight of the Steiner nodes for graph classes
that admit spanning trees of maximum degree at most d. In
particular, this yields a 3.875-approximation algorithm for
unit disk graphs, an O(1/α2)-approximation algorithm for
α-unit disk graphs, and an O(λ)-approximation algorithm
for (λ + 1)-claw-free graphs. The latter class of graphs in-
cludes the bounded independence graphs.

1.1 Related Work
Many variants of Steiner tree problems have been studied.

For the Steiner tree problem in graphs, one distinguishes
the edge-weighted version where the goal is to minimize
the total weight of the edges of the Steiner tree, and the
node-weighted version where the goal is to minimize the to-
tal weight of the Steiner nodes. Both versions have also
been studied in the unweighted version, where the goal is
to minimize the number of edges or the number of Steiner
nodes. Note that a Steiner tree has a minimum number of
Steiner nodes if and only if it has a minimum number of
edges. For the study of approximation algorithms, however,
the two objective functions are very different. Researchers
have studied the node-weighted Steiner tree problem [5, 3]
as well as the edge-weighted Steiner tree problem [7, 4, 11,
14, 9]. So far the best known approximation algorithm for
the edge-weighted Steiner tree problem in general graphs is
that of Robins and Zelikovsky [9], achieving approximation
ratio 1.55. For the node-weighted Steiner tree problem in
general graphs, an approximation ratio of 1.35 ln k has been
shown by Guha and Khuller [3].

Besides the Steiner tree problem in graphs, there have
also been studies of geometric Steiner tree problems. In
the Euclidean Steiner tree problem, the terminals are points
in Euclidean space, arbitrary points can be used as Steiner
nodes, the length of an edge is the Euclidean distance be-
tween its endpoints, and the goal is to minimize the total
edge length of the tree. The rectilinear Steiner tree problem
is the Euclidean Steiner tree problem in the plane with the
additional constraint that all edges of the Steiner tree must
be horizontal or vertical. It has been proved that the recti-
linear Steiner tree problem is NP-hard [2]. This implies that
for unit disk graphs, the problem of computing a Steiner tree
with a minimum number of edges (or, equivalently, with a
minimum number of Steiner nodes) is NP-hard [1].

Xu et al. [13] have considered the Steiner tree problem
in unit disk graphs with the goal of minimizing the num-
ber of internal nodes of the Steiner tree. The motivation
for this objective function is that the internal nodes of the
Steiner tree are the nodes that need to actively forward mes-
sages, while the leaves are only receivers. They call this
problem the Minimum Steiner Connected Dominating Set

problem and present an algorithm with approximation ratio
2c + 1, where c is the best known approximation ratio of
the edge-weighted Steiner tree problem in graphs, currently
c = 1.55. A main difference between their objective func-
tion and ours is that terminals that are internal nodes of the
Steiner tree count towards their objective but not towards
ours. Therefore, approximation results for the two problems
do not translate to each other. Furthermore, Xu et al. only
consider the unweighted version of their problem.

Zou et al. [15] consider the node-weighted Steiner tree
problem in unit disk graphs and present a 2.5ρ-approxi-
mation algorithm, where ρ is the best known approximation
ratio for the edge-weighted Steiner tree problem in arbitrary
graphs. With ρ = 1.55 [9], this gives approximation ratio
3.875 for node-weighted Steiner trees in unit disk graphs.
To obtain this result, Zou et al. define the weight of an edge
to be the sum of the weights of the two endpoints and then
apply an algorithm for the edge-weighted Steiner tree prob-
lem. In this paper we follow the same approach, but our
analysis is significantly more general and extends to classes
of graphs such as quasi-unit disk graphs and bounded inde-
pendence graphs.

2. PRELIMINARIES
The Node-Weighted Minimum Steiner Tree (NWMST)

problem is defined as follows: Given an undirected graph
G = (V, E) with nonnegative weights wv for v ∈ V and a
subset of nodes K ⊆ V called terminals, compute a Steiner
tree for G and K, i.e., a subgraph T of G that is a tree and
contains all the nodes in K. The objective is to minimize
the total weight of the vertices of T . We can assume without
loss of generality that the terminals have weight 0 (they are
present in any solution and their weight increases the objec-
tive value of any solution by the same amount), so our goal
is to minimize the total weight of the Steiner nodes of T .
For a Steiner tree T , we denote its vertex set and edge set
by VT and ET , respectively. For v ∈ VT , δT (v) denotes the
set of edges in ET that are incident with v. Furthermore,
we denote the set of Steiner nodes of T by S(T ) and the
total weight of these Steiner nodes (or, equivalently, of all
nodes of T ) by w(T ). Throughout the paper we assume that
all leaves of a Steiner tree are terminals, so that all Steiner
nodes are internal nodes with degree at least two. (This as-
sumption can be made because Steiner nodes of degree one
can simply be removed from a Steiner tree.) If the edges of
T are assigned weights according to some weight function c,
the total edge weight of T with respect to edge weights c is
denoted by c(T ).

We say that a class of graphs has spanning-tree degree
bound d if every connected graph in the class admits a spann-
ing-tree of maximum degree at most d. We first derive our
results for classes of graphs with constant spanning-tree de-
gree bound, and then derive results for specific classes of
graphs as corollaries. We consider only classes of graphs
that are hereditary, i.e., if a graph is in the class, then any
induced subgraph of that graph is also in the class.

A graph is a unit disk graph if its nodes can be mapped to
points in the plane such that two nodes are adjacent if and
only if their points have distance at most 1. For 0 < α < 1,
a graph is a quasi-unit disk graph with parameter α, or an α-
unit disk graph, if its nodes can be mapped to points in the
plane such that two nodes are (1) adjacent if their points
have distance at most α, (2) non-adjacent if their points



have distance larger than 1, and (3) can be adjacent or non-
adjacent otherwise. A t-claw in a graph is an induced sub-
graph on t+1 nodes that is isomorphic to K1,t (the star with
one node in the center and t independent leaves). A graph
is (λ + 1)-claw-free if it does not contain a (λ + 1)-claw or,
equivalently, if every node has at most λ independent neigh-
bors. A family of graphs is a family of bounded independence
graphs if there is a polynomial p such that in any graph in
the family, the size of the largest independent set in the r-
neighborhood of any node is bounded by p(r), for any r.
Note that bounded independence graphs are (λ + 1)-claw-
free for λ = p(1). Hence, (λ +1)-claw-free graphs generalize
bounded independence graphs.

As NWMST is NP-hard for unit disk graphs and thus also
for the more general graph classes we consider, we are in-
terested in algorithms that compute provably good approxi-
mate solutions in polynomial time. For ρ > 1, an algorithm
for NWMST is a ρ-approximation algorithm if it runs in
polynomial time and always computes a Steiner tree such
that the total weight of the vertices is at most ρ times the
total weight of the vertices of an optimal Steiner tree.

3. ALGORITHM FOR MINIMIZING THE
WEIGHT OF STEINER NODES

3.1 Algorithm Description
Let an instance of NWMST be given by an undirected

graph G = (V, E) with node weights wv for v ∈ V and a set
K ⊆ V of terminals. Our algorithm assigns a nonnegative
weight c(e) to each edge e of the graph G. The weight of
each edge is set equal to the sum of the weights of the two
nodes with which it is incident:

∀(u, v) ∈ E : c(u, v) = wu + wv

Note that by this definition c(u, v) = 0 if u, v ∈ K, since we
assume wu = 0 for all u ∈ K.

Our algorithm computes a Steiner tree T for graph G and
terminals K with respect to the edge weights c using the
algorithm of Robins and Zelikovsky [9]. Then the algorithm
outputs the tree T as solution to the given instance of NW-
MST.

3.2 Analysis of Approximation Ratio
We can analyze our algorithm as follows. Let T be the

Steiner tree computed by the algorithm. Regarding the edge
weights c assigned by our algorithm, we view the weight
c(u, v) = wu + wv of an edge e = (u, v) to be comprised
of two parts: one part, denoted cu(e) = wu, “belongs” to
node u, and the other part, denoted cv(e) = wv, “belongs”
to node v. Note that for any edge e = (u, v) we have c(e) =
cu(e) + cv(e).

Consider an optimal solution to the given instance of NW-
MST, i.e. a Steiner tree for graph G and terminal set K in
which the total weight of the Steiner nodes is minimum.
Denote the weight of the Steiner nodes in this solution by
OPTV . Let us denote the minimum total edge weight (with
respect to edge weights c) of a Steiner tree for graph G
and terminal set K by OPTE. As our algorithm computes
the Steiner tree T by running the algorithm of Robins and
Zelikovsky [9] and then deleting Steiner nodes of degree one,
the total edge weight of the Steiner tree T produced by our
algorithm satisfies c(T ) ≤ 1.55 · OPTE . In the next two

lemmas we relate OPTE to OPTV and c(T ) to w(T ). This
will then allow us to analyze the approximation ratio of our
algorithm.

Lemma 1. For classes of graphs with spanning-tree degree
bound d, OPTE ≤ d · OPTV

Proof. Consider a Steiner tree T ∗ with vertex set VT∗

in which the total weight of the Steiner nodes w(T ∗) is min-
imized, i.e., w(T ∗) = OPTV . Let G′ be the subgraph of G
induced by the vertex set V ∗. Now consider a spanning tree
T ′ for G′ of smallest maximum degree. As the considered
class of graphs is hereditary and has spanning-tree degree
bound d, T ′ has maximum degree at most d. This spanning
tree T ′ of G′ is a Steiner tree for terminal set K in G with
Steiner nodes of degree at most d. As VT∗ = VT ′ , we have
w(T ∗) = w(T ′). Furthermore, we know that an edge with
positive weight is incident to at least one Steiner node. Let
us consider a Steiner node v of weight wv with at most d
neighbors. Each edge e incident to v has weight equal to
the sum of wv and the weight of its other endpoint, and the
part of the weight that belongs to v is cv(e) = wv. We have:

X

e∈δ
T ′ (v)

cv(e) ≤ d · wv

This implies:
X

v∈S(T ′)

X

e∈δ
T ′ (v)

cv(e) ≤ d ·
X

v∈S(T ′)

wv = d · w(T ′)

As the terminals have weight 0 by assumption, the total edge
weight of T ′ is due to the set of Steiner nodes, and we can
calculate as follows:

c(T ′) =
X

v∈V
T ′

X

e∈δ
T ′ (v)

cv(e)

=
X

v∈S(T ′)

X

e∈δ
T ′ (v)

cv(e)

≤ d · w(T ′) = d · w(T ∗) = d · OPTV

Since OPTE ≤ c(T ′), we have OPTE ≤ d · OPTV .

Lemma 2. w(T ) ≤ c(T )/2

Proof. The total edge cost c(T ) of T is the sum, over all
vertices v ∈ VT , of the sum of cv(e) over all edges e incident
with v:

c(T ) =
X

v∈VT

X

e∈δT (v)

cv(e)

Since cv(e) = 0 for v ∈ K, we have:

c(T ) =
X

v∈S(T )

X

e∈δT (v)

cv(e)

Furthermore, every Steiner node v of T has at least two
incident edges, because all leaves of T are terminals. As
cv(e) = wv for every edge e incident with a Steiner node v,
we have:

X

e∈δT (v)

cv(e) ≥ 2 · wv

This yields

2 · w(T ) =
X

v∈S(T )

(2 · wv) ≤
X

v∈S(T )

X

e∈δT (v)

cv(e) = c(T ),

and the lemma follows.
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Theorem 1. For graph classes with spanning-tree degree
bound d, there is a 0.775d-approximation algorithm for the
Node-Weighted Minimum Steiner Tree problem.

Proof. As the algorithm by Robins and Zelikovsky is a
1.55-approximation algorithm for the edge-weighted Steiner
tree problem [9], the total edge cost of the tree T computed
by our algorithm is c(T ) ≤ 1.55 · OPTE . By Lemma 1, we
have OPTE ≤ d ·OPTV , and by Lemma 2, we have w(T ) ≤
c(T )/2. Combining these inequalities, we get w(T ) ≤ (1.55 ·
d/2) · OPTV = 0.775d · OPTV .

3.3 NWMST in Unit Disk Graphs and Other
Graph Classes

In this section, we apply Theorem 1 to several classes of
graphs that are frequently employed to model wireless ad-
hoc networks. First, we obtain directly the result for unit
disk graphs that was presented by Zou et al. in [15].

Corollary 1. (Zou et al. [15]) There is a 3.875-approxim-
ation algorithm for the Node-Weighted Minimum Steiner
Tree problem in unit disk graphs.

Proof. As shown by Wu et al. [12], any connected unit
disk graph admits a spanning tree in which the degree of
every vertex is at most five. By applying Theorem 1 with
d = 5, we obtain approximation ratio 0.775 · 5 = 3.875.

Now we consider quasi-unit disk graphs with parameter α.

Lemma 3. For every 0 < α < 1, the class of α-unit disk
graphs has spanning-tree degree bound at most 6 + 8/α2 +
4
√

2/α.

Proof. Consider any connected α-unit disk graph G =
(V, E). Let the weight wuv of an edge uv ∈ E be the Eu-
clidean distance between the positions of nodes u and v, and
let T be a minimum spanning tree of G with respect to these
edge weights. Consider an arbitrary node u of G. The degree
of node u in T can be calculated as the number of neighbors
that are at distance at most α from u plus the number of
neighbors that have distance greater than α from u. We call
the former type of neighbors the near neighbors, the latter
type the far neighbors. We bound the number of neighbors
of each type separately. First, consider the near neighbors

of u in T . We can use the method of [12] to prove that T
can be chosen so that there are at most 5 such neighbors.

Now consider the far neighbors of node u in T . All such
neighbors lie in a ring around u that is bounded by circles
of radius α and 1 with center u, see Fig. 1. This ring is
contained in a square with side length 2 and center u. We
cover this square using square cells of side length α/

√
2 (and,

thus, diameter α). We claim that each cell can contain at
most one far neighbor of u in T . If a cell contained two
far neighbors v and w of u in T , the weight of T could be
decreased by removing one of the edges uv and uw (both of
which have length more than α), and adding the edge vw
(which has length at most α). Hence, the number of far
neighbors of u is bounded by the number of cells needed to
cover the ring, which is in turn bounded by the number of
cells needed to cover a square of area 2 × 2. This number

of cells is at most

‰

2
α√
2

ı

·
‰

2
α√
2

ı

≤ ( 2
√

2
α

+ 1) · ( 2
√

2
α

+ 1) =

8
α2 + 4

√
2

α
+ 1.

Considering both types of neighbors of u, we get that u
has degree at most 5+8/α2+4

√
2/α+1 = 6+8/α2+4

√
2/α

in T . As the argument can be applied to any node u, the
claim follows.

Corollary 2. For α-unit disk graphs, there is a 0.775 ·
(6 + 8/α2 + 4

√
2/α)-approximation algorithm for the NW-

MST problem.

We remark that this result also applies to disk graphs with
bounded diameter ratio. A disk graph is a graph where each
node corresponds to a disk in the plane and two nodes are
adjacent if the corresponding disks have a non-empty in-
tersection. The diameter ratio of a disk graph is the ratio
between the largest and the smallest diameter of any disk in
the graph. If a disk graph has diameter ratio at most D for
some constant D, we can assume without loss of generality
that the largest disk has diameter 1 and the smallest disk
has diameter at least 1/D. It is easy to see that the graph is
then an α-unit disk graph with α = 1/D. Hence, Lemma 3
and Corollary 2 imply that disk graphs with diameter ra-
tio at most D have spanning-tree degree bound O(D2) and
admit an O(D2)-approximation algorithm for the NWMST
problem.

Next, we consider the class of (λ+1)-claw-free graphs, for
some constant λ > 1. Recall that bounded independence
graphs are a subset of this class of graphs.

Lemma 4. For every integer λ > 1, the class of (λ + 1)-
claw-free graphs has spanning-tree degree bound at most λ+
1.

Proof. Let G = (V, E) be any connected, (λ + 1)-claw-
free graph. We give an algorithm that constructs a spanning
tree of G with maximum degree at most λ+1. The algorithm
grows a subtree T of G, initially consisting of a single node,
into a spanning tree by repeatedly picking a leaf node v and
adding a maximal independent set of its neighbors outside
T as children of v. More formally, the algorithm can be
described as follows:

1. Let T be the subtree of G consisting of an arbitrary
node u of G.

2. while T is not yet a spanning tree do



(i) Pick any leaf v of T that has at least one neighbor
outside T .

(ii) Compute a maximal independent set I among the
neighbors of v that are not in T .

(iii) Add all nodes of I as children of v to T .

3. return T .

First, we show that the algorithm computes a spanning tree.
The algorithm could only fail to compute a spanning tree if it
reaches a situation in which T is not yet a spanning tree, but
in Step 2(i) there is no leaf of T with a neighbor outside T .
Assume that this happens. Let U be the set of nodes in T
and W the set of nodes outside T . Since G is connected,
there must be a node u ∈ U and a node w ∈ W such that
uw ∈ E. The node u cannot be a leaf of T , because we
assume that no leaf has an edge to a node in W . Hence, u
is an internal node of T . We can assume that u is chosen to
be the deepest node in T that is adjacent to w. In an earlier
step of the algorithm, when the current tree was a subtree
T ′ of T and u was a leaf of T ′, the algorithm has added a
maximal independent set I of u’s neighbors as children of u
to the tree. As w was not added to I , w must be adjacent to
a node in I , and hence w must be adjacent to a child of w.
This is impossible because we have assumed that u is the
deepest node in T that is adjacent to w. We have reached a
contradiction, and hence the situation where the algorithm
fails to compute a spanning tree cannot occur.

Now we analyze the degree of the constructed spanning
tree. As G is (λ + 1)-claw-free, the independent set I com-
puted in Step 2(ii) has cardinality at most λ. Therefore,
every node of T has at most λ children and at most one
parent. Consequently, the degree of every node of the tree
is at most λ + 1.

Corollary 3. There is a 0.775·(λ+1)-approximation al-
gorithm for the NWMST problem in (λ+1)-claw-free graphs.

4. CONCLUSION
Motivated by the problem of computing good multicast

trees in wireless ad-hoc networks, we have considered the
node-weighted Steiner tree problem in several graph models
of wireless networks. Minimizing the weight of the Steiner
nodes is meaningful in this setting because it is desirable
to minimize the cost of the nodes that forward multicast
packets but do not benefit from the multicast transmission
themselves. Furthermore, by allowing arbitrary cost values
we can model the situation where the nodes have various
degrees of willingness or capability to take part in a multicast
tree.

We have shown that the simple approach of defining suit-
able edge weights and then applying an approximation al-
gorithm for the edge-weighted Steiner tree problem yields a
good approximation ratio for the node-weighted Steiner tree
problem in graph classes that admit spanning trees of small
degree. This rather general result has allowed us to obtain
algorithms with constant approximation ratio for popular
graph models of wireless ad-hoc networks that go well be-
yond simple unit disk graphs, namely quasi-unit disk graphs
and bounded independence graphs (or, even more generally,
(λ + 1)-claw-free graphs).

Our algorithm is centralized, but any distributed algo-
rithm for the edge-weighted Steiner tree problem can be used

to obtain a distributed implementation of our algorithm. If
the approximation ratio of the distributed algorithm for the
edge-weighted Steiner tree problem is ρ, our algorithm yields
approximation ratio ρd

2
for graphs with spanning-tree degree

bound d.
One interesting question for future work is whether the

approximation ratio for the node-weighted Steiner tree prob-
lem in unit disk graphs can be improved further and whether
even a polynomial-time approximation scheme exists for the
problem.
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