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Abstract—If a set K of nodes in a wireless network want to We consider unit disk graphs (UDG) and quasi unit disk
set up a routing structure that allows them to communicate with  graphs (quasi-UDG) as families of graphs representing-wire
each other, one possible approach is to use a Steiner tree that|ess networks. Therefore, we study the problem of detengini

spans all the nodes inK. However, a tree can be disconnected by . . - . .
the failure of a single link, and so it is desirable to employ other minimum-weight 2-edge-connected Steiner subgraphs in UDG

routing structures that are fault-tolerant. Furthermore, many and quasi-UDG. We propose a constant-factor approximation
real-world wireless networks are heterogeneous, meaning that algorithm for this problem.

the suitability of nodes for inclusion in the routing structure

varies significantly. Therefore, it is meaningful to assign weights A. Definitions

to the nodes and aim to compute a fault-tolerant routing . .
structure of minimum total weight. In this paper, we model this The node-weighted 2-edge-connected Steiner subgraph

problem as the problem of computing a minimum-weight 2-edge- prok_JIem (NW2ECS) is defined as f(_’"C’WS- We are given an
connected Steiner subgraph spanning a given set of terminals, undirected grapli = (V, E), whereV is the set of nodes and

and we propose a constant-factor approximation algorithm for E is the set of edges. A nonnegative weight is assigned to
this problem in _vvire_les_s networks that are modelled as unit disk each node € V. We are also given a set tdrminalsk C V.
graphs or quasi unit disk graphs. A subgraphG’ = (V’, E’) of G is a2-edge-connected Steiner
subgraphif it contains all terminals, i.e. KX C V', and there
are at least two edge-disjoint paths @ between any pair
There are many settings where a group of nodes ino&terminals. The objective of NW2ECS is to find a 2-edge-
network want to set up a routing structure that allows effeonnected Steiner subgraglf such that the total weight of
cient communication within the group, for example, mulsica the nodes inG’, denoted byw(G’), is minimized.
communication or a virtual private network. The simplest Nodes inG’ that are not terminals are call&teiner nodes
routing structure that can connect a set of nodes is a tM&e can assume that the terminals have weighas they
spanning those nodes, also calle®tainer tree However, in are present in any solution and their weight increases the
scenarios where links are not fully reliable and may fail, abjective value of any solution by the same amount. Theegfor
tree structure has the disadvantage that it can be discmtheminimizing the total weight of the Steiner subgraph means
by a single link failure. Therefore, it is desirable to eéilb minimizing the total weight of the Steiner nodesdi.
routing structures that have some amount of fault-toleranc We remark that it is easy to check whether a given instance
We refer to subgraphs that span a given set of nodes and tlaNW2ECS with graphG = (V, E') and setK of terminals
are not necessarily trees &teiner subgraphdVe consider the admits a feasible solution. For this, one only needs to check
property of being 2-edge-connected as the criterion folt fawvhether there are at least two edge-disjoint paths between
tolerance: A 2-edge-connected graph remains connected esay pair of vertices inK. This can be done in polynomial
if an arbitrary edge (link) fails. Hence, we are interested itime using standard network flow techniques (see, e.g., [1])
determining 2-edge-connected Steiner subgraphs in wsel&@herefore, we assume in the rest of the paper that the given
networks. instance of NW2ECS admits at least one feasible solution.
Wireless networks are often heterogeneous, i.e., the nodeé graph G = (V, E) is a unit disk graph(UDG) [2] if
can have different amounts of computing resources, packeich vertex corresponds to a point in the Euclidean plane
buffer size, remaining battery life, etc. Therefore, thagahil- and there is an edge between two vertices if and only if
ity for inclusion in a routing subgraph can vary widely betme the Euclidean distance between the corresponding points is
different nodes. We model this by assuming that each nodemost one. In other words, two vertices are adjacent if unit
of the network is assigned a weight that represents its caksks (i.e., topologically closed disks with diametgccentered
for inclusion in the Steiner subgraph: Nodes that are moat¢ the corresponding points intersect. UDG are a simplified
suitable have smaller weight, and the goal is to computettzeoretical model for wireless networks.
Steiner subgraph with the desired fault tolerance propefity For0 < a < 1, a graphG = (V, E) is ana-unit disk graph
minimum total weight. [3] if each vertex corresponds to a point in the Euclideamgla
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and the following holds for every pair, v of vertices: If the assigning suitable edge weights to the given node-weighted
points corresponding te andv have distance at most, then graph and then executing an algorithm for the edge-weighted
there is an edge betweenandv. If the points have distance problem. The analysis of the algorithm then relates the node
larger thani, then there is no edge betweenandv. If the cost of the computed solution to the optimal node cost via
points have distance larger thanbut less than or equal tby the optimal edge cost as a reference value. In this paper, we
then the graph may or may not contain an edge betwesmmd extend this approach to the case2eédge-connected Steiner
v. Graphs that are:-unit disk graphs for some constamtare subgraphs.
also calledquasi unit disk graphsQuasi unit disk graphs are Dai and Wu studied fault tolerance in the construction
considered a more realistic model for wireless networks thaf backbones in a wireless ad hoc network modelled by a
unit disk graphs [3]. unit disk graph [11]. They proposed localized algorithms fo
An algorithm for an optimization problem is called@ backbone construction via k-connectedk-dominating set.
approximation algorithm, or has approximation ratipif it ~ According to their definition, &-connecteds-dominating set
runs in polynomial time and always outputs a feasible sofuti for a given graphG = (V, E) has the following properties: For
(if there is one) with an objective value that is at most adactevery node not in the dominating set, there araeighbors
of p away from the optimal objective value for the given inputin the dominating set, and any two nodes in the dominating
Here,p > 1, and the closep is to 1, the better. set are connected by edge-disjoint paths using only nodes
of the dominating set.
B. Related Work
NW2ECS is related to the classical combinatorial proble®. our Results
known as survivable network design problem or generalized
Steiner network problem, defined as follows: Let an und@ect
graphG = (V, E) with vertex setl” and edge sek be given.
For every edge: € E, there is a nonnegative weight, and
for every pairi,j of vertices inV, there is a connectivity
requirementr; ;. The objective is to find a minimum-cos

In this paper, we present a constant-factor approximation
algorithm for NW2ECS in UDG and in quasi-UDG. We
prove the approximation ratio to be at mok for UDG
and O(1/a?) for a-unit disk graphs. Our algorithm uses
ithe given node weights to define suitable edge weights and

subgraph such that there are at least edge-disjoint paths the_n applies a knowlz-approxima_tion algorithm for the edge-
betweeni andj, for all i, j € V [4]. (There are also problem weighted 2-edge-connected Steiner subgraph problem. The

variants concerned with node-disjoint instead of edggoiis Main ingredient of the analysis is a proof showing that in
paths.) The edge-weighted version of taedge-connected UDG and quasrUDQ, there always exists an optlmgl solution
Steiner subgraph problem is a special case of the genedali?ésma” degree._Thls aIIows_ us to derive approximationltesu

Steiner network problemr; ; equals?2 if i,j € K and 0 for the node-weighted version of the problem from a known

otherwise. A2-approximation algorithm for the generalizec®PProximation algorithm for the edge-weighted version.
Steiner network problem was presented by Jain [5]. Hence,
there is a2-approximation algorithm for the edge-weighted Il. COMPUTING 2-EDGE-CONNECTED STEINER
version of the2-edge-connected Steiner subgraph problem for SUBGRAPHS
arbitr_ary graphs, but no kr_10wn constgnt-factor approxiomat A. Algorithm Description
algorithm for the node-weighted version.
A geometric version of the survivable network design prob- Consider an instance of NW2ECS given by an undirected
lem has been studied by Czumaj et al. [6]. Their work yield&aphG = (V, E) with node weightsw, for v € V and a set
a polynomial time approximation scheme for both vertex C V' of terminals. As noted earlier, we assume that= 0
disjoint and edge-disjoint versions in Euclidean graphs.  for all v € K. We assign a nonnegative weigt(e) to each
All of this previous research work is concerned with edgeédgee of the graphG. The weight of each edge is set equal
costs. In wireless networks, it is more meaningful to asgteci t0 the sum of the weights of the two nodes with which it is
costs with the nodes, and therefore we consider the nodecident:
weighted version of the problem. Yuv € E : c(uv) = wy, + w,
For the edge-weighted Steiner tree problem, the best known
approximation algorithm for arbitrary graphs is due to Rwsbi Note thatc(u,v) = 0 if u,v € K. Our algorithm computes a
and Zelikovsky and achieves approximation ratio approx®teiner subgrapti’’ for graphG and terminalg< with respect
mately 1.55 [7], whereas for the node-weighted Steiner tre® edge weights using the2-approximation algorithm by Jain
problem the best known approximation ratio is logarithmif5] for the edge-weighte@-edge-connected Steiner subgraph
in the number of terminals [8]. Therefore, the node-weighteproblem. Then, it outputsy’ as the solution for the given
Steiner tree problem has been studied for restricted graipktance of NW2ECS.
classes that model wireless networks. For UDG3.&75- Note that we can assume th&t' does not contain any
approximation algorithm was presented by Zou et al. [9%teiner nodes of degree less thanbecause such vertices
and for quasi unit disk graphs af@(1/a?)-approximation could be removed from the solution while reducing the cost
algorithm was presented in [10]. These algorithms work nd maintaining feasibility.



B. Analysis of Approximation Ratio Consider any cuC that separates andw. The nodev is

First, we analyze the algorithm for arbitrary graph classé§nnected to each of the nodesindw via two edge-disjoint
that have the following property, for some constdnt paths.
(P;) Any 2-edge-connected graph in the class containse Case 1:.C separates andwv, i.e.,v is located on the side
a spannin@-edge-connected subgraph of maximum  of C wherew is located. We know that there are at least

vertex degreel. two edge-disjoint paths betweanand v. So, there are
In subsequent sections, we will then show that UDG and quasi- at least two edges going acroSs which means that the
UDG satisfy this property. size of C' is at least2.

Assume that the grapti = (V, E) of the given instance « Case 2w is on the side of” whereu lies. There are two
of NW2ECS belongs to a class of graphs with property).(P disjoint paths between andw, andC'is a cut separating
Consider an optimal solution to this instance. The weight of these two nodes. Again, the size @fis at least2.
the Steiner nodes in this solution is denoted®yT'y-. Let us In either case, there are at least two edges in th€’cts the
denote the minimum total edge weight (with respect to edge@oice ofC was arbitrary, we have that any cut that separates
weightsc) of a2-edge-connected Steiner subgraph for gréph + andw has size at leagt By Menger’s theorem, this implies
and terminal sef{’ by OPT . As our algorithm computes thethat there are at leagtedge-disjoint paths betweenand w.
Steiner subgrapti”’ by running the2-approximation algorithm [
of Jain [5] for the edge-weighted version of the problem, If there are two edge-disjoint paths between two nodes
the total edge weight ofi’, denoted byc(G”), thus satisfies andv, we also say that andv are in a cycle
¢(G") < 2- OPTg. We analyze the approximation ratio by
relating OPTg to OPTy and ¢(G') to w(G’), using an C. Unit Disk Graphs
adaptation of analogous results for the Steiner tree pmoble Lemma 4:Every 2-edge-connected unit disk graph has a

(9], [10]. 2-edge connected spanning subgraph of maximum degree at
Lemma 1:For classes of graphs satisfying,fPit holds most12.
that OPTp < d- OPTy Proof: Let G = (V, F) be a2-edge-connected unit disk

Proof: Let G* be the optimal solution to the node-graph. We show how to construc2eedge-connected spanning
weighted problem. By property {§, G* contains a spanning subgraphG’ of small degree. First, we determine a minimum
2-edge-connected subgragh, of maximum node degreé. spanning treel’ (with respect to edge weights that represent
The total node weight of+, is equal to that of7*, as the set the Euclidean distance between the endpoints of the edge).
of nodes is the same. The total edge weightiafis at most Then, we add edges f6 so that it becomeg-edge-connected.

d- OPTy, because the weight of each edge is the sum of th®e construction can be stated more formally as follows:

We|ght§ of its two end vertices and eaph verte>_< contrlbmes t(i) Compute a minimum spanning tréE with respect to

the weight of at mosd edges. Hence, is a feasible solution edge weights given by Euclidean distance, and initialize

of edge weight at most - OPT'y, and the optimal solution G =T

with respect to edge weights cannot have larger weighm
Lemma 2:w(G’) < ¢(G")/2

Proof: As every Steiner node off has degree at least . i
two in G’ and ¢(uv) = w, + w, for all edgesuv, we have - !f G’ U {e} puts at least on/e bridge edge fra
that every Steiner node contributes its weight once to tine su into a cycle, then add to G".
of all node weights but at least twice to the sum of all edgdere, an edge o’ is a bridge edge (or simply a bridge) if
weights. Henceg(G') > 2w (G"). m the removal of the edge disconnec¥s. An edge is a bridge

Theorem 1:For classes of graphs satisfying;jPthe algo- if and only if it is not contained in any cycle. Putting a bridg
rithm described in Section II-A is dapproximation algorithm €dge into a cycle means turning the edge from a bridge edge

(ii) For all edgese € E that are not inl’, in order of non-
decreasing length:

for NW2ECS. into an edge that is not a bridge.
Proof: Combining the previous lemmas, we get that We observe that after the construction has considered an
w(G') <¢(G')/2 < OPTg <d- OPTy. m edgeuv in the for-loop, either it has added the edge or there

Before we consider UDG and quasi-UDG, we state theere already two edge-disjoint paths betweeandv in G'. In
following auxiliary lemma that follows directly from Menge  either case, we have that after an edgehas been processed,
theorem. u andv are in a cycle.

Lemma 3:If there are at least two edge-disjoint paths Itis easy to see that iff is 2-edge-connected, the graph
betweenu andv, and at least two edge-disjoint paths betweegproduced by the construction #sedge-connected. It remains
v andw, then there are also at least two edge-disjoint pathsanalyze the maximum node degree of the fidalConsider
betweenu andw. an arbitrary node:. We divide the surrounding area afinto

Proof: Recall that by Menger’s theorem (see, e.g., [1]kix equal60° sectors. We choose the sectors in such a way
for any pair of distinct nodes and y, the size (number of that none of the neighbors af in G lies on the boundary
edges) of the minimum cut betweanandy is equal to the between two sectors. Note that each sector contains at most
maximum number of edge-disjoint paths betwaeandy. one node that is a neighbor afin the spanning tred". (If



(a) Case 1 (b) Case 2(iii)(a) (c) Case 2(iii)(b)

Fig. 1. lllustration of cases in the proof of Lemma 4. Edge§ilmre drawn solid, other edges dashed.

there were two neighbors ef in the same sector, one of the (iii) If zw is in T and zv is not in T: There can be two

two edges joiningu and these neighbors could be replaced
by the shorter edge between these two neighbors to give a
spanning tree of smaller cost, a contradiction.) The degfee
u in the finalG’ is the sum of the number of adjacent nodes of
u in all six sectors. We claim that has at mosg neighbors in
each sector ir;’. To prove this, consider the following cases.

Case 1:Consider a&0° sector ofu that does not contain a
spanning tree neighbor af Assume that there are two nodes
f and d in the sector such that the construction has added
edges between and these two nodes @'. See Figure 1(a).
Let ¢ be a third node in the sector that the construction
considers. Ifef anded are inT, thenufedu is a cycle in
G’ containinge andu, soeu is not added.

Now assume that at least one of the two edggsanded)
is notinT. Let us assumej is not inT. (The case thatd is
not inT' is analogous.) The construction adds edges in order of
increasing length, sef is considered beforeu. This means
that e and f are already in a cycle wheew is considered.
Furthermore,f andu are in a cycle because the construction
has added the edgfu and there is also a path connectifig
andu in T. By Lemma 3, ifu and f are in a cycle ang’ and
e are in a cycle, them ande are also in a cycle. Therefore,
the construction does not addas third neighbor of..

Case 2:u has one neighbov in the sector such thatv €
T. Assume that the construction has addedas a second

different ways in whichw is connected tou,v via a
path inT. (Furthermore, ifz lies on that path then:
andu are in a cycle and:u does not get added @’
by the construction. Hence, we assume in the following
thatx does not lie on the path il betweernw andu, v.)

(@) The path inT' from w to u,v reachesv before
u. See Figure 1(b). Observe thatand v are in a
cycle asuw has been added t6’. Moreover, the
construction considersr beforeux is considered.
Thereforep andx are already in a cycle when the
construction considergx. By Lemma 3, ifu and
v are in a cycle and andx are in a cycle, then
u andzx are also in a cycle. Thus, the construction
does not add:u.

(b) The path inT from w to u,v reachesu before
v. See Figure 1(clz is considered beforex. If
the construction addsz, thenw andx lie on the
cycle consisting of the edger and the path i’
betweenv andz, soux does not get added. tfx
is not added, this shows that is not a bridge. (If
uv was a bridge, the addition ef: would have put
it into a cycle, and hence the construction would
have addedzx.) Hencew andx are in a cycle, and
u andv are in a cycle. By Lemma 3; andz are
in a cycle, and the construction does not add

neighbor ofu in the sector. Note that the distance fram We have shown that in each of the six sectors, it is
to w is at least as large as the distance fraro v, because impossible that the construction adds an edge to a node that
otherwise the edgeu would not be in any minimum spanningwould become a third neighbor toin that sector. Therefore,

tree. (It would be the longest edge in the cyelevu.) Assume  the final G’ is a2-edge-connected spanning subgraph in which

x is another node in the sector and the construction consideith node has at mos2 neighbors. u
the edgeru. By applying Theorem 1 withd = 12, we obtain the
(i) If zv andzw are inT: Thenzvuwz is a cycle. So, the following corollary.
construction does not add. Corollary 1: There is al2-approximation algorithm for

(i) If zw is not in T (and zv may or may not be i) NW2ECS in unit disk graphs.

Before considering:u, the construction has considered
zw. From then ony andw are in a cycle. Furthermore,

D. a-Unit Disk Graphs

w andx are in a cycle. Therefore, by Lemma3,and Lemma 5:For every0 < o < 1, every 2-edge-connected
x are in a cycle, and the edge: is not added by the a-UDG has a2-edge-connected spanning subgraph of node
construction. degree at most4 + 16/a? + 8v/2/a.



of u is at most twice the number of cells, and the number of

cells is at most
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The total number ohear and far neighbors ofu is at most
124+ 16/a? +8v2/a +2 = 14+ 16/a® + 82/« ]

1

By applying Theorem 1 withl = 14 + 16 /a2 +8v/2/a we

obtain the following corollary.

1
|
1
j Neighbours of u in a cell

Corollary 2: There is an approximation algorithm with
approximation ratiol4 + 16/a® + 8v2/a = O(1/a?) for
NW2ECS ina-unit disk graphs.

I1l. CONCLUSION

Proof: Apply the same construction as in the proof Motivated by the computation of fault-tolerant routingustr
of Lemma 4 to produce &-edge-connected spanning subtures in wireless networks, we have considered the node-
graphG’. To analyze the neighborhood of a node in@n weighted 2-edge-connected Steiner subgraph problem and
UDG, we use the same framework as in [10]. The neighbogsesented a constant-factor approximation algorithm fat u
of a nodeu are classified agmear (within distance at most disk graphs and quasi unit disk graphs. The key in the arsalysi
a from u) andfar (distance greater tham) neighbors. The was to show that for the considered classes of graphs, there
proof of Lemma 4 can be used to show thalhas at mosi2 exists an optimal solution of small node degree.
near neighbors in the fin&l’. In the remainder of the proof, For the node-weighted Steiner tree problem, constanoifact
we consider only far neighbors. To bound the number of fapproximation algorithms have also been found for the class
neighbors, we cover 2x 2 square containing all neighbors ofof () + 1)-claw-free graphs, for constant [10]. These are
u using squares of side lengtfy+/2 calledcells see Figure 2. graphs in which each node has at masteighbors that are
Note that any two nodes in the same cell have distance at mpairwise non-adjacent. In the future we plan to extend our
a and hence are adjacent. We show that the number of fgrproximation results for NW2ECS to that class of graphs
neighbors ofu in the final G’ is at most twice the number of as well. Furthermore, it would be interesting to study other
cells. After computing a minimum spanning tréethere is at variants of fault tolerance requirements, ekgedge-connected
most one neighbor of in every cell. We show that if a cell Steiner subgraphs fok > 2 or k-vertex-connected Steiner
contains a neighbor af in 7', then at most one more node insubgraphs.
that cell can be added as a neighbomdby our construction,
and otherwise, at most two neighbors can be added to

Consider three nodes w, x in a cell and assume that in the

Fig. 2. Neighbors ofu in an a-unit disk graph
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