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Abstract—If a set K of nodes in a wireless network want to
set up a routing structure that allows them to communicate with
each other, one possible approach is to use a Steiner tree that
spans all the nodes inK. However, a tree can be disconnected by
the failure of a single link, and so it is desirable to employ other
routing structures that are fault-tolerant. Furthermore, man y
real-world wireless networks are heterogeneous, meaning that
the suitability of nodes for inclusion in the routing structure
varies significantly. Therefore, it is meaningful to assign weights
to the nodes and aim to compute a fault-tolerant routing
structure of minimum total weight. In this paper, we model this
problem as the problem of computing a minimum-weight 2-edge-
connected Steiner subgraph spanning a given set of terminals,
and we propose a constant-factor approximation algorithm for
this problem in wireless networks that are modelled as unit disk
graphs or quasi unit disk graphs.

I. I NTRODUCTION

There are many settings where a group of nodes in a
network want to set up a routing structure that allows effi-
cient communication within the group, for example, multicast
communication or a virtual private network. The simplest
routing structure that can connect a set of nodes is a tree
spanning those nodes, also called aSteiner tree. However, in
scenarios where links are not fully reliable and may fail, a
tree structure has the disadvantage that it can be disconnected
by a single link failure. Therefore, it is desirable to establish
routing structures that have some amount of fault-tolerance.
We refer to subgraphs that span a given set of nodes and that
are not necessarily trees asSteiner subgraphs. We consider the
property of being 2-edge-connected as the criterion for fault
tolerance: A 2-edge-connected graph remains connected even
if an arbitrary edge (link) fails. Hence, we are interested in
determining 2-edge-connected Steiner subgraphs in wireless
networks.

Wireless networks are often heterogeneous, i.e., the nodes
can have different amounts of computing resources, packet
buffer size, remaining battery life, etc. Therefore, the suitabil-
ity for inclusion in a routing subgraph can vary widely between
different nodes. We model this by assuming that each node
of the network is assigned a weight that represents its cost
for inclusion in the Steiner subgraph: Nodes that are more
suitable have smaller weight, and the goal is to compute a
Steiner subgraph with the desired fault tolerance propertyof
minimum total weight.

We consider unit disk graphs (UDG) and quasi unit disk
graphs (quasi-UDG) as families of graphs representing wire-
less networks. Therefore, we study the problem of determining
minimum-weight 2-edge-connected Steiner subgraphs in UDG
and quasi-UDG. We propose a constant-factor approximation
algorithm for this problem.

A. Definitions

The node-weighted 2-edge-connected Steiner subgraph
problem (NW2ECS) is defined as follows. We are given an
undirected graphG = (V,E), whereV is the set of nodes and
E is the set of edges. A nonnegative weightwv is assigned to
each nodev ∈ V . We are also given a set ofterminalsK ⊆ V .
A subgraphG′ = (V ′, E′) of G is a2-edge-connected Steiner
subgraphif it contains all terminals, i.e.,K ⊆ V ′, and there
are at least two edge-disjoint paths inG′ between any pair
of terminals. The objective of NW2ECS is to find a 2-edge-
connected Steiner subgraphG′ such that the total weight of
the nodes inG′, denoted byw(G′), is minimized.

Nodes inG′ that are not terminals are calledSteiner nodes.
We can assume that the terminals have weight0 as they
are present in any solution and their weight increases the
objective value of any solution by the same amount. Therefore,
minimizing the total weight of the Steiner subgraph means
minimizing the total weight of the Steiner nodes inG′.

We remark that it is easy to check whether a given instance
of NW2ECS with graphG = (V,E) and setK of terminals
admits a feasible solution. For this, one only needs to check
whether there are at least two edge-disjoint paths inG between
any pair of vertices inK. This can be done in polynomial
time using standard network flow techniques (see, e.g., [1]).
Therefore, we assume in the rest of the paper that the given
instance of NW2ECS admits at least one feasible solution.

A graph G = (V,E) is a unit disk graph(UDG) [2] if
each vertex corresponds to a point in the Euclidean plane
and there is an edge between two vertices if and only if
the Euclidean distance between the corresponding points is
at most one. In other words, two vertices are adjacent if unit
disks (i.e., topologically closed disks with diameter1) centered
at the corresponding points intersect. UDG are a simplified
theoretical model for wireless networks.

For 0 < α ≤ 1, a graphG = (V,E) is anα-unit disk graph
[3] if each vertex corresponds to a point in the Euclidean plane



and the following holds for every pairu, v of vertices: If the
points corresponding tou andv have distance at mostα, then
there is an edge betweenu andv. If the points have distance
larger than1, then there is no edge betweenu and v. If the
points have distance larger thanα but less than or equal to1,
then the graph may or may not contain an edge betweenu and
v. Graphs that areα-unit disk graphs for some constantα are
also calledquasi unit disk graphs. Quasi unit disk graphs are
considered a more realistic model for wireless networks than
unit disk graphs [3].

An algorithm for an optimization problem is called aρ-
approximation algorithm, or has approximation ratioρ, if it
runs in polynomial time and always outputs a feasible solution
(if there is one) with an objective value that is at most a factor
of ρ away from the optimal objective value for the given input.
Here,ρ ≥ 1, and the closerρ is to 1, the better.

B. Related Work

NW2ECS is related to the classical combinatorial problem
known as survivable network design problem or generalized
Steiner network problem, defined as follows: Let an undirected
graphG = (V,E) with vertex setV and edge setE be given.
For every edgee ∈ E, there is a nonnegative weightce, and
for every pair i, j of vertices inV , there is a connectivity
requirementri,j . The objective is to find a minimum-cost
subgraph such that there are at leastri,j edge-disjoint paths
betweeni andj, for all i, j ∈ V [4]. (There are also problem
variants concerned with node-disjoint instead of edge-disjoint
paths.) The edge-weighted version of the2-edge-connected
Steiner subgraph problem is a special case of the generalized
Steiner network problem:ri,j equals2 if i, j ∈ K and 0
otherwise. A2-approximation algorithm for the generalized
Steiner network problem was presented by Jain [5]. Hence,
there is a2-approximation algorithm for the edge-weighted
version of the2-edge-connected Steiner subgraph problem for
arbitrary graphs, but no known constant-factor approximation
algorithm for the node-weighted version.

A geometric version of the survivable network design prob-
lem has been studied by Czumaj et al. [6]. Their work yields
a polynomial time approximation scheme for both vertex-
disjoint and edge-disjoint versions in Euclidean graphs.

All of this previous research work is concerned with edge
costs. In wireless networks, it is more meaningful to associate
costs with the nodes, and therefore we consider the node-
weighted version of the problem.

For the edge-weighted Steiner tree problem, the best known
approximation algorithm for arbitrary graphs is due to Robins
and Zelikovsky and achieves approximation ratio approxi-
mately 1.55 [7], whereas for the node-weighted Steiner tree
problem the best known approximation ratio is logarithmic
in the number of terminals [8]. Therefore, the node-weighted
Steiner tree problem has been studied for restricted graph
classes that model wireless networks. For UDG a3.875-
approximation algorithm was presented by Zou et al. [9],
and for quasi unit disk graphs anO(1/α2)-approximation
algorithm was presented in [10]. These algorithms work by

assigning suitable edge weights to the given node-weighted
graph and then executing an algorithm for the edge-weighted
problem. The analysis of the algorithm then relates the node
cost of the computed solution to the optimal node cost via
the optimal edge cost as a reference value. In this paper, we
extend this approach to the case of2-edge-connected Steiner
subgraphs.

Dai and Wu studied fault tolerance in the construction
of backbones in a wireless ad hoc network modelled by a
unit disk graph [11]. They proposed localized algorithms for
backbone construction via ak-connectedk-dominating set.
According to their definition, ak-connectedk-dominating set
for a given graphG = (V,E) has the following properties: For
every node not in the dominating set, there arek neighbors
in the dominating set, and any two nodes in the dominating
set are connected byk edge-disjoint paths using only nodes
of the dominating set.

C. Our Results

In this paper, we present a constant-factor approximation
algorithm for NW2ECS in UDG and in quasi-UDG. We
prove the approximation ratio to be at most12 for UDG
and O(1/α2) for α-unit disk graphs. Our algorithm uses
the given node weights to define suitable edge weights and
then applies a known2-approximation algorithm for the edge-
weighted 2-edge-connected Steiner subgraph problem. The
main ingredient of the analysis is a proof showing that in
UDG and quasi-UDG, there always exists an optimal solution
of small degree. This allows us to derive approximation results
for the node-weighted version of the problem from a known
approximation algorithm for the edge-weighted version.

II. COMPUTING 2-EDGE-CONNECTEDSTEINER

SUBGRAPHS

A. Algorithm Description

Consider an instance of NW2ECS given by an undirected
graphG = (V,E) with node weightswv for v ∈ V and a set
K ⊆ V of terminals. As noted earlier, we assume thatwv = 0
for all v ∈ K. We assign a nonnegative weightc(e) to each
edgee of the graphG. The weight of each edge is set equal
to the sum of the weights of the two nodes with which it is
incident:

∀uv ∈ E : c(uv) = wu + wv

Note thatc(u, v) = 0 if u, v ∈ K. Our algorithm computes a
Steiner subgraphG′ for graphG and terminalsK with respect
to edge weightsc using the2-approximation algorithm by Jain
[5] for the edge-weighted2-edge-connected Steiner subgraph
problem. Then, it outputsG′ as the solution for the given
instance of NW2ECS.

Note that we can assume thatG′ does not contain any
Steiner nodes of degree less than2, because such vertices
could be removed from the solution while reducing the cost
and maintaining feasibility.
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B. Analysis of Approximation Ratio

First, we analyze the algorithm for arbitrary graph classes
that have the following property, for some constantd:

(Pd) Any 2-edge-connected graph in the class contains
a spanning2-edge-connected subgraph of maximum
vertex degreed.

In subsequent sections, we will then show that UDG and quasi-
UDG satisfy this property.

Assume that the graphG = (V,E) of the given instance
of NW2ECS belongs to a class of graphs with property (Pd).
Consider an optimal solution to this instance. The weight of
the Steiner nodes in this solution is denoted byOPTV . Let us
denote the minimum total edge weight (with respect to edge
weightsc) of a2-edge-connected Steiner subgraph for graphG
and terminal setK by OPTE . As our algorithm computes the
Steiner subgraphG′ by running the2-approximation algorithm
of Jain [5] for the edge-weighted version of the problem,
the total edge weight ofG′, denoted byc(G′), thus satisfies
c(G′) ≤ 2 · OPTE . We analyze the approximation ratio by
relating OPTE to OPTV and c(G′) to w(G′), using an
adaptation of analogous results for the Steiner tree problem
[9], [10].

Lemma 1:For classes of graphs satisfying (Pd), it holds
that OPTE ≤ d · OPTV

Proof: Let G∗ be the optimal solution to the node-
weighted problem. By property (Pd), G∗ contains a spanning
2-edge-connected subgraphGd of maximum node degreed.
The total node weight ofGd is equal to that ofG∗, as the set
of nodes is the same. The total edge weight ofGd is at most
d ·OPTV , because the weight of each edge is the sum of the
weights of its two end vertices and each vertex contributes to
the weight of at mostd edges. Hence,Gd is a feasible solution
of edge weight at mostd · OPTV , and the optimal solution
with respect to edge weights cannot have larger weight.

Lemma 2:w(G′) ≤ c(G′)/2
Proof: As every Steiner node ofG′ has degree at least

two in G′ and c(uv) = wu + wv for all edgesuv, we have
that every Steiner node contributes its weight once to the sum
of all node weights but at least twice to the sum of all edge
weights. Hence,c(G′) ≥ 2w(G′).

Theorem 1:For classes of graphs satisfying (Pd), the algo-
rithm described in Section II-A is ad-approximation algorithm
for NW2ECS.

Proof: Combining the previous lemmas, we get that
w(G′) ≤ c(G′)/2 ≤ OPTE ≤ d · OPTV .

Before we consider UDG and quasi-UDG, we state the
following auxiliary lemma that follows directly from Menger’s
theorem.

Lemma 3: If there are at least two edge-disjoint paths
betweenu andv, and at least two edge-disjoint paths between
v and w, then there are also at least two edge-disjoint paths
betweenu andw.

Proof: Recall that by Menger’s theorem (see, e.g., [1]),
for any pair of distinct nodesx and y, the size (number of
edges) of the minimum cut betweenx and y is equal to the
maximum number of edge-disjoint paths betweenx andy.

Consider any cutC that separatesu andw. The nodev is
connected to each of the nodesu andw via two edge-disjoint
paths.

• Case 1:C separatesu andv, i.e.,v is located on the side
of C wherew is located. We know that there are at least
two edge-disjoint paths betweenu and v. So, there are
at least two edges going acrossC, which means that the
size ofC is at least2.

• Case 2:v is on the side ofC whereu lies. There are two
disjoint paths betweenv andw, andC is a cut separating
these two nodes. Again, the size ofC is at least2.

In either case, there are at least two edges in the cutC. As the
choice ofC was arbitrary, we have that any cut that separates
u andw has size at least2. By Menger’s theorem, this implies
that there are at least2-edge-disjoint paths betweenu andw.

If there are two edge-disjoint paths between two nodesu
andv, we also say thatu andv are in a cycle.

C. Unit Disk Graphs

Lemma 4:Every 2-edge-connected unit disk graph has a
2-edge connected spanning subgraph of maximum degree at
most12.

Proof: Let G = (V,E) be a2-edge-connected unit disk
graph. We show how to construct a2-edge-connected spanning
subgraphG′ of small degree. First, we determine a minimum
spanning treeT (with respect to edge weights that represent
the Euclidean distance between the endpoints of the edge).
Then, we add edges toT so that it becomes2-edge-connected.
The construction can be stated more formally as follows:

(i) Compute a minimum spanning treeT with respect to
edge weights given by Euclidean distance, and initialize
G′ = T .

(ii) For all edgese ∈ E that are not inT , in order of non-
decreasing length:

– if G′ ∪ {e} puts at least one bridge edge fromG′

into a cycle, then adde to G′.

Here, an edge ofG′ is a bridge edge (or simply a bridge) if
the removal of the edge disconnectsG′. An edge is a bridge
if and only if it is not contained in any cycle. Putting a bridge
edge into a cycle means turning the edge from a bridge edge
into an edge that is not a bridge.

We observe that after the construction has considered an
edgeuv in the for-loop, either it has added the edge or there
were already two edge-disjoint paths betweenu andv in G′. In
either case, we have that after an edgeuv has been processed,
u andv are in a cycle.

It is easy to see that ifG is 2-edge-connected, the graphG′

produced by the construction is2-edge-connected. It remains
to analyze the maximum node degree of the finalG′. Consider
an arbitrary nodeu. We divide the surrounding area ofu into
six equal60◦ sectors. We choose the sectors in such a way
that none of the neighbors ofu in G lies on the boundary
between two sectors. Note that each sector contains at most
one node that is a neighbor ofu in the spanning treeT . (If
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Fig. 1. Illustration of cases in the proof of Lemma 4. Edges inT are drawn solid, other edges dashed.

there were two neighbors ofu in the same sector, one of the
two edges joiningu and these neighbors could be replaced
by the shorter edge between these two neighbors to give a
spanning tree of smaller cost, a contradiction.) The degreeof
u in the finalG′ is the sum of the number of adjacent nodes of
u in all six sectors. We claim thatu has at most2 neighbors in
each sector inG′. To prove this, consider the following cases.

Case 1:Consider a60◦ sector ofu that does not contain a
spanning tree neighbor ofu. Assume that there are two nodes
f and d in the sector such that the construction has added
edges betweenu and these two nodes toG′. See Figure 1(a).
Let e be a third node in the sector that the construction
considers. Ifef and ed are in T , then ufedu is a cycle in
G′ containinge andu, so eu is not added.

Now assume that at least one of the two edges (ef anded)
is not inT . Let us assumeef is not inT . (The case thated is
not inT is analogous.) The construction adds edges in order of
increasing length, soef is considered beforeeu. This means
that e and f are already in a cycle wheneu is considered.
Furthermore,f andu are in a cycle because the construction
has added the edgefu and there is also a path connectingf
andu in T . By Lemma 3, ifu andf are in a cycle andf and
e are in a cycle, thenu and e are also in a cycle. Therefore,
the construction does not adde as third neighbor ofu.

Case 2:u has one neighborv in the sector such thatuv ∈
T . Assume that the construction has addedw as a second
neighbor ofu in the sector. Note that the distance fromu
to w is at least as large as the distance fromu to v, because
otherwise the edgevu would not be in any minimum spanning
tree. (It would be the longest edge in the cycleuvwu.) Assume
x is another node in the sector and the construction considers
the edgexu.

(i) If xv andxw are inT : Thenxvuwx is a cycle. So, the
construction does not addxu.

(ii) If xw is not in T (and xv may or may not be inT ):
Before consideringxu, the construction has considered
xw. From then on,u andw are in a cycle. Furthermore,
w andx are in a cycle. Therefore, by Lemma 3,u and
x are in a cycle, and the edgexu is not added by the
construction.

(iii) If xw is in T and xv is not in T : There can be two
different ways in whichw is connected tou, v via a
path in T . (Furthermore, ifx lies on that path thenx
and u are in a cycle andxu does not get added toG′

by the construction. Hence, we assume in the following
thatx does not lie on the path inT betweenw andu, v.)

(a) The path inT from w to u, v reachesv before
u. See Figure 1(b). Observe thatu andv are in a
cycle asuw has been added toG′. Moreover, the
construction considersvx beforeux is considered.
Therefore,v andx are already in a cycle when the
construction considersux. By Lemma 3, ifu and
v are in a cycle andv and x are in a cycle, then
u andx are also in a cycle. Thus, the construction
does not addxu.

(b) The path inT from w to u, v reachesu before
v. See Figure 1(c).vx is considered beforeux. If
the construction addsvx, thenu andx lie on the
cycle consisting of the edgevx and the path inT
betweenv andx, soux does not get added. Ifvx
is not added, this shows thatuv is not a bridge. (If
uv was a bridge, the addition ofvx would have put
it into a cycle, and hence the construction would
have addedvx.) Hence,v andx are in a cycle, and
u andv are in a cycle. By Lemma 3,u andx are
in a cycle, and the construction does not addux.

We have shown that in each of the six sectors, it is
impossible that the construction adds an edge to a node that
would become a third neighbor tou in that sector. Therefore,
the finalG′ is a2-edge-connected spanning subgraph in which
each node has at most12 neighbors.

By applying Theorem 1 withd = 12, we obtain the
following corollary.

Corollary 1: There is a12-approximation algorithm for
NW2ECS in unit disk graphs.

D. α-Unit Disk Graphs

Lemma 5:For every0 < α < 1, every 2-edge-connected
α-UDG has a2-edge-connected spanning subgraph of node
degree at most14 + 16/α2 + 8

√
2/α.
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α

Fig. 2. Neighbors ofu in an α-unit disk graph

Proof: Apply the same construction as in the proof
of Lemma 4 to produce a2-edge-connected spanning sub-
graph G′. To analyze the neighborhood of a node in anα-
UDG, we use the same framework as in [10]. The neighbors
of a nodeu are classified asnear (within distance at most
α from u) and far (distance greater thanα) neighbors. The
proof of Lemma 4 can be used to show thatu has at most12
near neighbors in the finalG′. In the remainder of the proof,
we consider only far neighbors. To bound the number of far
neighbors, we cover a2×2 square containing all neighbors of
u using squares of side lengthα/

√
2 calledcells, see Figure 2.

Note that any two nodes in the same cell have distance at most
α and hence are adjacent. We show that the number of far
neighbors ofu in the finalG′ is at most twice the number of
cells. After computing a minimum spanning treeT , there is at
most one neighbor ofu in every cell. We show that if a cell
contains a neighbor ofu in T , then at most one more node in
that cell can be added as a neighbor ofu by our construction,
and otherwise, at most two neighbors can be added tou.

Consider three nodesv, w, x in a cell and assume that in the
minimum spanning tree, there is no neighbor ofu in this cell.
Assume thatv and w have already been added as neighbors
of u in this cell and we are now considering the edgeux. We
claim that the construction would not addx as third neighbor
of u. To show this, we can use arguments analogous to Case
1 of the proof of Lemma 4: Ifvx andwx are both inT , then
we have a cycleuvxwu and therefore,xu does not get added
to T . If at least one ofvx and wx is not in T , assume that
vx is not in T . Then the algorithm considersvx beforexu
is considered, so by the timexu is consideredv and x are
already in a cycle. By Lemma 3, ifu and v are in a cycle
andv andx are in a cycle, thenu andx are also in a cycle.
Therefore, the construction does not addx as third neighbor
of u.

Now consider the case thatu has one neighborv′ in T in
the cell, a second nodew′ has been added as neighbor ofu
in this cell, and we are now considering the edgeux′ for a
third nodex′ in this cell. Here, the same arguments apply as
we have described in Case 2 of the proof of Lemma 4, and it
again follows thatux′ is not added.

Thus, we get that in every cell,u has at most two far
neighbors in the end. Therefore, the number of far neighbors

of u is at most twice the number of cells, and the number of
cells is at most
⌈

2
α√
2

⌉

·
⌈

2
α√
2

⌉

≤ (
2
√

2

α
+ 1) · (2

√
2

α
+ 1) =

8

α2
+

4
√

2

α
+ 1 .

The total number ofnear and far neighbors ofu is at most
12 + 16/α2 + 8

√
2/α + 2 = 14 + 16/α2 + 8

√
2/α.

By applying Theorem 1 withd = 14+16/α2 +8
√

2/α we
obtain the following corollary.

Corollary 2: There is an approximation algorithm with
approximation ratio14 + 16/α2 + 8

√
2/α = O(1/α2) for

NW2ECS inα-unit disk graphs.

III. C ONCLUSION

Motivated by the computation of fault-tolerant routing struc-
tures in wireless networks, we have considered the node-
weighted 2-edge-connected Steiner subgraph problem and
presented a constant-factor approximation algorithm for unit
disk graphs and quasi unit disk graphs. The key in the analysis
was to show that for the considered classes of graphs, there
exists an optimal solution of small node degree.

For the node-weighted Steiner tree problem, constant-factor
approximation algorithms have also been found for the class
of (λ + 1)-claw-free graphs, for constantλ [10]. These are
graphs in which each node has at mostλ neighbors that are
pairwise non-adjacent. In the future we plan to extend our
approximation results for NW2ECS to that class of graphs
as well. Furthermore, it would be interesting to study other
variants of fault tolerance requirements, e.g.,k-edge-connected
Steiner subgraphs fork > 2 or k-vertex-connected Steiner
subgraphs.
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