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Abstract. For intersection graphs of disks and other fat objects, polynomial-time
approximation schemes are known for the independent set and vertex cover prob-
lems, but the existing techniques were not able to deal with the dominating set
problem except in the special case of unit-size objects. We present approximation
algorithms and inapproximability results that shed new light on the approxima-
bility of the dominating set problem in geometric intersection graphs. On the one
hand, we show that for intersection graphs of arbitrary fat objects, the dominat-
ing set problem is as hard to approximate as for general graphs. For intersec-
tion graphs of arbitrary rectangles, we prove APX-hardness. On the other hand,
we present a new general technique for deriving approximation algorithms for
various geometric intersection graphs, yielding constant-factor approximation al-
gorithms for r-regular polygons, where r is an arbitrary constant, for pairwise
homothetic triangles, and for rectangles with bounded aspect ratio. For arbitrary
fat objects with bounded ply, we get a (3 + €)-approximation algorithm.

1 Introduction

We study the approximability of the minimum dominating set problem in geometric in-
tersection graphs. Given an undirected graph G = (V, E), aset D C V is a dominating
set if every v € V is in D or has a neighbor in D. The aim of Minimum Dominating
Set (MDS) is to compute for a given graph a dominating set of minimum cardinality.
Although for general graphs the approximability of MDS has been settled [15, 8], the
problem is open for numerous graph classes, such as geometric intersection graphs.

Geometric intersection graphs are graphs in which the vertices represent geometric
objects and two vertices are adjacent if the corresponding objects intersect. Studying
approximation algorithms for fundamental graph optimization problems on such graphs
has led to several new techniques, in particular the geometric shifting technique [17],
which can be used to obtain polynomial-time approximation schemes (PTASs) for a
number of problems, such as Maximum Independent Set and Minimum Vertex Cover
in unit disk graphs [18] and in general disk graphs [13, 6, 26]. These algorithms extend
to any constant number of dimensions and arbitrary fat objects (including e.g. squares
or other regular polygons in the two-dimensional case).

Interestingly, as pointed out in [13], these techniques do not seem sufficient for
handling MDS in intersection graphs of objects of different sizes. To the best of our
knowledge, there are no results for intersection graphs of disks, squares, etc. beyond
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the (1 + Inn)-approximation ratio that can be achieved by the greedy algorithm. In
particular, we know of no constant-factor approximation algorithm or approximation
hardness results. In this paper, we address this open problem by studying the minimum
dominating set problem for intersection graphs of different types of fat objects and
providing new insights into its approximability.

In Sect. 3 we present a new general approach to deriving approximation algorithms
for MDS on geometric intersection graphs. We apply it to obtain the first constant-
factor approximation algorithms for MDS on intersection graphs of r-regular polygons,
of pairwise homothetic triangles, and of rectangles of bounded aspect-ratio.

We also obtain a constant-factor approximation algorithm for MDS on disk graphs
of constant ply (see Sect. 4). A surprising corollary of this is a constant integrality gap
for MDS on planar graphs. For disk graphs of bounded ply, this result can be improved
to a (3 + €)-approximation algorithm by using a new variant of the shifting technique.
This algorithm extends to intersection graphs of arbitrary fat objects of bounded ply.

The type of fat objects considered impacts the approximability of MDS: We prove
that for n arbitrary fat objects, approximation ratio (1 — €)Inn is not achievable for
any € > 0, unless NP C DTIME(n®U°glg™)) We also solve an open problem of
Chlebik and Chlebikova [9], who asked whether their APX-hardness results for inter-
section graphs of d-dimensional axis-parallel boxes extend to the case d = 2. We affirm
this by showing that MDS is APX-hard for rectangle intersection graphs.

1.1 Known Results

MDS in general graphs is essentially equivalent to Minimum Set Cover. For n-vertex
graphs, approximation ratio 14In n is achievable by a greedy algorithm, and one cannot
getratio (1 — €) Inn for any € > 0, unless NP C DTIM E(n®(°glogn)) [15,8].

Even though geometric intersection graphs have properties exploitable to approx-
imate several problems [13,6,26], only few approximation algorithm are known for
MBDS in such graphs. For unit disk graphs, Marathe et al. [22] gave a constant-factor
approximation algorithm, before a PTAS was presented by Hunt et al. [18] and Nieberg
et al. [25]. MDS in unit disk graphs seems harder in the weighted than in the unweighted
case, but has a constant-factor approximation algorithm by Ambiihl et al. [2].

On the negative side, MDS cannot have an FPTAS (unless P=NP), as it is NP-hard
for geometric intersection graphs (even for simple classes such as unit disk graphs [10]).
Chlebik and Chlebikova [9] have shown that for any d > 3, Minimum Dominating Set
and several other problems are APX-hard on intersection graphs of d-dimensional axis-
parallel boxes. It follows from Marx [23] that Minimum Dominating Set cannot have
an EPTAS (Efficient PTAS) for unit square/disk graphs (unless FPT=W[1]).

Some of our algorithms use e-nets, which were used to approximate geometric op-
timization problems before, e.g. geometric hitting set [5, 14], geometric set cover [11].

2 Preliminaries

A p-approximation algorithm for a minimization problem is an algorithm that runs
in polynomial time and always produces a solution whose value is at most p - OPT,
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where OPT is the optimal objective value. The value p is also referred to as the ap-
proximation ratio. An algorithm that achieves approximation ratio 1 + ¢, for arbitrary
€ > 0, and whose running-time is polynomial in the size of the input for any fixed e,
is called a polynomial-time approximation scheme or PTAS. If its running-time is poly-
nomial also in %, it is called a fully polynomial-time approximation scheme or FPTAS.
A c-asymptotic fully polynomial-time approximation algorithm or c-FPTAA® is an al-
gorithm giving for any € > 0 a feasible solution in time polynomial in % and the size
of the input, such that the objective value of the solution is at most (¢ + €) OPT if the
size of the input is at least c., where c. is a constant depending only on €. If ¢ = 1, it is
called an asymptrotic fully polynomial-time approximation scheme or FPTAS® .

2.1 e-Nets

Our main algorithmic results rely on the availability of small e-nets. Given a universe
U and a family S of n subsets of U (called objects), we say R C S is an e-net for S
if any element © € U covered by more than € |S| sets in S is also covered by R (i.e.,
covered by |JR). The size of the net is equal to the cardinality of R. Suppose that
for objects of a certain type (e.g. disks in the plane), we have a decomposition bound
function f(n) bounding the number of simple regions in a canonical decomposition of
the complement of the union of 7 such objects. Then Clarkson and Varadarajan have
proved the following result.

Theorem 1 ([11]). For any 0 < € < 1, there is an e-net for S of size O(f(1/€) + 1/¢).

Such a net can be found by a randomized algorithm with polynomial expected running
time. For details and a formal definition of f, we refer to [11]. By derandomizing the
algorithm using the method of conditional expectations, we obtain the following result.

Theorem 2. Forany 0 < € < 1, we can find an e-net for S of size O(f(1/€) + 1/e) in
time polynomial in |S|, 1/¢, and f(1/e).

Pseudo-disks (subsets of the plane bounded by simple closed Jordan curves where each
pair of curves intersects at most twice) have a linear decomposition bound function [19,
11], giving a linear sized net.

3 Domination in Geometric Intersection Graphs

We introduce the novel notion of <-dominating sets, which we use with e-nets to ap-
proximate geometric dominating set. Let < be a binary reflexive relation on the vertices
of a graph G = (V, E). An example, say for geometric intersection graphs, is that u < v
if the object representing u is at most as large as the object representing v. We callv € V
=<-larger than v € V if u < v. Denote by N<(u) = {v € V | (u,v) € E,u < v}
the set of <-larger neighbors of u and u’s closed <-larger neighborhood by N<[u] =
N<(u) U {u}.

Callaset D C V a <-dominating set if for any u € V,u € D or there is a <-larger
neighbor of w in D, i.e. D N N<[u] # . In light of the following theorem, we will be
interested in binary reflexive relations < where the <-factor (the size of a minimum =<-
dominating set divided by the size of a minimum dominating set) is at most a constant.
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Theorem 3 (Main Theorem). Let G be the intersection graph of a set S = {s, C
R? | uw € V(G)} of closed topological balls with decomposition bound function f. Let
=< be a binary reflexive relation on the vertices of G with =-factor ¢y such that for any
vertex u there exist cy points in s, jointly hitting all objects s, with v € N<(u). If
the size of a minimum dominating set of G is k, then we can find in polynomial time a
dominating set of size O(f(2¢1c2k) + c102k).

Proof. Solve the LP-relaxation of the <-dominating set problem. The integer LP is

Zi=min ) 7y
St D pensuy T = 1 (Vuev)
z, € {0,1} MueV).

Observe that 2z} < ¢; k. In the relaxation, the last constraint is replaced by x,, > 0 (Vu €
V). Let z* be a vector attaining the optimum fractional value z*. Since for any vertex
 all objects s, with v € N<(u) can be hit by ¢z points in s,, each s,, contains a point
psuchthat}’ . x> 1/cs.

Now construct a set S’ from S by taking [z} - |S|/z*] copies of each object s,,.
Following the previous observation, this means that for any object s € S there is a
point p in s such that at least |S|/(ce2z*) objects of S’ contain p. Furthermore,

(' = Sev [ - 181/2] < ey L+ - 181/2) = S|+ B S oy @ = 2I8].

Applying Theorem 2, we find a set R’ C S’ of size O(f(2co2*) + 2¢22*) such that any
point covered by more than |S’|/(2¢c22*) objects of S’, and thus also any point covered
by at least |S|/(c22*) objects of §’, is covered by R’. Then R’ intersects each object of
S and thus R’ is a dominating set of G. It has size

O(f(2¢22") 4 2¢22*) < O(f(2¢227) + c227) < O(f(2¢102k) + c1e2k).
Following Theorem 2, R’ can be found in polynomial time. a

Hence the integrality gap®of the LP relaxation of <-MDS is O(c; f(2¢22%)/2* +c1c2).
In the remainder, we do not distinguish between a vertex v € V' and the geometric
object s,, it represents, i.e., v can refer both to the vertex and to the geometric object.
Before we can apply Theorem 3, we need more concrete relations <. Consider the
intersection graph of a set S of closed topological balls in R?. Define a relation =<|gp,
such that u <|¢p v if and only if the Lebesgue measure of u is at most the Lebesgue
measure of v. Clearly, <|¢p is a (total) preorder (i.e. <|¢p is reflexive and transitive).
The following two easy lemmas are sufficient to show that the <| ¢p -factor is a constant
for many intersection graph classes. We use N (u) to denote the set {v | (u,v) € E}.

Lemma 1. Let < be a binary reflexive relation on the vertices of G such that for any
vertex u a minimum <-dominating set for U, = {v | v £ u,v € N(u)} has size at
most c. Then the <-factor is at most ¢ + 1.

The observation here is that if D is a dominating set of G’ and D,, is a minimum =-
dominating set for U,,, then D U UuE p Dy is a X-dominating set. In fact, a bound on
the size of a minimum =<-dominating set for U, is only needed for vertices u appearing
in a particular minimum dominating set.
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Lemma 2. Let =< be a total preorder on the vertices of G s.t. for any vertex u the size
of any independent set of N<(u) is bounded by c. Then the <-factor is at most ¢ + 1.

These lemmas also hold for the fractional <-factor (the ratio of the value of the opti-
mum fractional <-dominating set and fractional dominating set). By Thm. 3, the inte-
grality gap® of MDS is O(f(2c2c32*)/2* +cacs) if the fractional <-factor is at most c3.

3.1 Regular Polygons

We apply Theorem 3 to give constant-factor approximation algorithms for Minimum
Dominating Set on intersection graphs of regular polygons. We assume the polygons
are pairwise homothetic: one polygon can be obtained from another by scaling and
translating (i.e. rotations are not allowed). Applying results of Kim, Kostochka, and
Nakprasit [20] (bounding sizes of independent sets in neighborhoods of larger objects)
and Lemma 2, we can show that the <| ¢y, -factor is at most 5 for intersection graphs of
homothetic parallelograms and at most 6 for intersection graphs of homothetic copies
of any other planar convex object (including disks and regular polygons).

For even regular polygons (i.e. 2r-regular polygons), 2r points suffice to hit all
=Leb-larger neighbors of a vertex (take the corners* of the polygon). As pairwise ho-
mothetic regular polygons are pseudo-disks, we can apply Theorem 3 with a linear
decomposition bound to yield the following.

Theorem 4. Let r > 0 be an integer. There is a polynomial-time O(r)-approximation
algorithm for Minimum Dominating Set on intersection graphs of pairwise homothetic
2r-regular polygons.

Corollary 1. Minimum Dominating Set on square intersection graphs is in APX.

Although Theorem 4 also works for intersection graphs of 2-regular polygons (i.e. in-
terval graphs), a linear-time exact algorithm exists in this case [7].

The < ¢p relation does not seem sufficient to give a constant-factor approximation
algorithm for odd regular polygons, as it is not possible to hit all <| ¢y, -larger neighbors
of a vertex by a constant number of points inside the object, even though a constant
number of points outside the object would suffice. The algorithm of Theorem 3 does
not seem to extend to this case. However, we can introduce a more restrictive relation
=< such that v < v if in addition to © =< g v, v also covers a constant fraction of
the boundary of u or covers a corner of u. For this relation, a constant number of points
inside an object suffices to hit all <-larger neighbors. We can also show it has a constant
=-factor for odd regular polygons. Detailed analysis reveals the restriction that u <|¢p
v is not necessary. So for two vertices u, v € V, define u <y,3 v if and only if v contains
a corner of u or v covers at least one third of a side of u. We first consider triangles.

Theorem 5. There is a polynomial-time O(1)-approximation algorithm for Minimum
Dominating Set on intersection graphs of pairwise homothetic equilateral triangles.

3 The integrality gap is the ratio of the optimum integral and optimum fractional value of an LP.
* To disambiguate between vertices of a graph and vertices of a polygon, vertices of a polygon
will be referred to as corners.
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Fig. 1. Triangles u, v¢, vr, and  Fig.2. A cut-off disk d; Fig.3. The intersection graph of
w of the proof of Theorem 5. and the disks d,, for el- Theorem 15. If (v1,v2) € E, then
The two dots represent p and ements © € U of Theo- the shaded rectangle Sy 5 is in G.
the barycenter of w. rem 13.

Proof. All =<4,3-larger neighbors of a vertex can be hit by 9 points inside the triangle
(its three corners and two points equidistantly on each side). To apply the <43 relation
with Theorem 3, we show that the <13 -factor is at most 7. Let S be a set of equilateral
triangles with base parallel to the z-axis. Consider a triangle w that is not fully contained
in any other triangle of Sand let U = {v | v A3 u,v € N(u)}. Foranyv € U, u
does not contain a corner of v. Hence all v € U must contain a corner of u. Look at
one particular corner of u, say the left corner, and let U; C U be the set of triangles
intersecting it. Now let v; be a vertex in U; such that the top corner of v; has the largest
distance to the altitude® of the left corner of w. Similarly, let v, € Uj be a vertex such
that the right corner of v, has the largest distance to this altitude (see Fig. 1). We claim
v, Uy, and u form a <y,3 -dominating set for Uj.

Let w be a vertex in U;. We may assume w has no corner in vy, v,., or u. Then w
contains a corner of v;, v, and u. Furthermore, by the choice of v; and v,, w cannot
fully contain either v; or v.., as the top (right) corner of w would be further from the
altitude than the top (right) corner of v; (v,.). Triangles v, v,., and u share a common
point p inside w (the leftmost corner of u). There must be a side of w such that p is at
least as far from this side as the barycenter® of w. Suppose w.l.0.g. that v,. protrudes this
side. Then the corner of v, in w is at least as far from this side as p, and thus at least
as far from the side as the barycenter of w. An easy calculation shows that v,. covers at
least one third of the side of w.

Similarly, two triangles can be chosen for the other two corners of u. This gives a
=1/3-dominating set for U of size at most 7. There is a minimum dominating set D
such that no triangle in D is strictly contained inside another triangle of S. As we can
find a <1/3-dominating set for U of size at most 7 for any u not fully contained in some
other triangle of S, it follows similar to Lemma 1 that the <4/3-factor is at most 7. O

> An altitude of a triangle 7 is the line through a corner of 7, perpendicular to the side opposite
the corner.

® The barycenter or centroid of a triangle is the intersection point of the three straight lines
going through a corner of the triangle and the midpoint of the opposite side.
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For odd regular polygons with a larger number of sides, a similar proof as in The-
orem 5 bounds the <4,3-factor. However, we can do better. Define a relation <4,» such
that v <4, v if and only if v contains a corner of u or v covers at least half of a side
of u. Using the <1/ relation yields the following result.

Theorem 6. For any v € Z~1, there is a polynomial-time O(r?)-approximation algo-
rithm for MDS on intersection graphs of pairwise homothetic (2r+1)-regular polygons.

Our results imply O(1)-approximation algorithms for Minimum Connected/Total Dom-
inating Set on intersection graphs of r-regular polygons, for constant . Also the results
imply a constant bound on the integrality gap of the LP relaxation for these problems,
as the bounds on the integral <|¢p-, =1/3-, and =4/» -factors extend easily to their frac-
tional variants by the fractional versions of Lemma 1 and 2.

3.2 More General Objects

The proof of Theorem 5 also goes through for pairwise homothetic triangles in general.
Alternatively, one can use an affine transformation to map pairwise homothetic triangles
into an equivalent set of pairwise homothetic equilateral triangles (i.e. two mapped
triangles intersect if and only if they do so in the original set) and then apply Theorem 5.

Theorem 7. There is a polynomial-time O(1)-approximation algorithm for Minimum
Dominating Set on intersection graphs of pairwise homothetic triangles.

We also consider intersection graphs of axis-parallel rectangles whose aspect-ratio
(the ratio of the length of the longer side over that of the shorter side) is bounded by
an integer constant c. It is easy to see that any rectangle with aspect-ratio at most ¢ can
be represented as the union of at most ¢ squares. Hence the union of n axis-parallel
rectangles of aspect-ratio at most c is also the union of cn axis-parallel squares. This
implies that the decomposition bound function is O(cn) (as squares are pseudo-disks).
Furthermore, a <| ¢ -larger rectangle intersecting a rectangle » must contain a corner
ofuora %-fraction of a side of u. Hence O(c) points in u suffice to hit all <| ¢y -larger
rectangles intersecting v and the < g, -factor is O(c). Now apply Theorem 3.

Theorem 8. For any c > 1, there is a polynomial-time O(c?)-approximation algorithm
for MDS on intersection graphs of axis-parallel rectangles with aspect-ratio at most c.

These methods do not seem to extend to intersection graphs in higher dimensions.

4 Disk Graphs of Bounded Ply

We do not know how to use the above approach to obtain a constant-factor approxima-
tion algorithm for Minimum Dominating Set in general disk graphs, even though the
=Leb -factor is 6. However, this low =< ¢ -factor can be used to give an approximation
algorithm if the ply of the set of disks is bounded. The ply of a set of objects is the
maximum over all points p of the number of objects strictly containing p [24].

Using Theorem 3, we can give an O(+y)-approximation algorithm for MDS on disk
intersection graphs of ply ~. Different techniques however can improve the hidden con-
stant of this result and make it explicit.
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Theorem 9. The integrality gap of the LP relaxation of Minimum Dominating Set on
disk intersection graphs of ply vy is at most 54 - . If the ply is 1, the gap is at most 42.
Hence the gap of the LP relaxation of MDS on planar graphs is at most 42.

Proof (Sketch). We transform the minimum = ¢, -dominating set problem on the input
graph to a Minimum Set Cover (MSC) instance in which the element frequency is at
most maxyev |N< ., [u]|. Following a result of Hochbaum [16], the integrality gap of
the MSC instance is at most the element frequency. But then the integrality gap of the
original problem is at most the fractional < ep -factor times max,ev [ N< , [u][- Using
an area bound, one can show that the closed =<|¢p-larger neighborhood of a disk in a
set of disks of ply v has size at most 9 - y [24]. If the ply is 1, the size is at most 7. The
theorem then follows from the fact that the fractional < ¢y, -factor for disk graphs is 6.
The bound for planar graphs follows immediately from the above and the fact that
planar graphs are disk graphs of ply 1 [21,24]. a

A PTAS for MDS on planar graphs is known [3], but we are not aware of any previous
results on the integrality gap of the LP relaxation for this class of graphs.

By using Bar-Yehuda and Even’s approximation algorithm for MSC instances of
bounded element frequency [4], we can give a linear-time (54 - +y)-approximation algo-
rithm for Minimum Dominating Set on disk intersection graphs of ply ~.

We can improve on the O(+y) ratio given above by using the shifting technique. One
way is to approximate Minimum = ¢, -Dominating Set.

Theorem 10. Minimum =< ¢p-Dominating Set on disk graphs of bounded ply, i.e. of ply
v =~y(n) = o(logn), has an FPTAS®. Hence Minimum Dominating Set on disk graphs
of bounded ply has a 6-FPTAA®.

The proof of Theorem 10 is omitted. Instead we use similar ideas to give a simpler
algorithm for Minimum Dominating Set with better approximation ratio. The algorithm
uses a new variant of the classic geometric shifting technique [17, 26]. Assume the disks
in a set D are scaled such that the smallest disk has radius % Partition the disks into
levels. A disk with radius 7 has level j (j € Z>) if 27! < r < 27. The level of the
largest disk is denoted by I. Define D_; as the set of disks in D having level j. Similarly,
D> ; denotes the set of disks having level at least j, and so on.

For each level j, define a grid by lines y = hk2’ and 2 = vk2’ (h,v € Z) for
some k > 9 (an odd multiple of 3), whose value we determine later. The grid partitions
the plane into squares of size k27 x k27, called j-squares. A j-square is contained in
precisely one (j + 1)-square and each (j + 1)-square contains exactly four j-squares.
Let D° denote the set of disks intersecting a j-square S and D"(%) the set of disks

intersecting the boundary of S. Similarly, D'(%) = DS — DP(5) is the set of disks fully

)

inside .S. Combinations such as Di(js should be self-explanatory. The level of a square

S is denoted j(S). Let D’ = (Jg Di(ﬁ)s) be the set of disks intersecting the boundary

of a j-square at their level.

Theorem 11. Let D be a set of n disks of ply v, k > 9 an odd multiple of 3, and
OPT a minimum dominating set. Then in time O(k>n? 332k7/m 916k /m416(k+1)y/m)

we can find a set DS C D dominating D — D* = Jg Dif()s) such that |DS| <
s
25 |OPTZ g

, where the union and the sum is over all squares S.
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The proof of this theorem is quite involved and is omitted due to space limitations.
The shifting technique is applied in the following novel way. For an integer a (0 <
a < k — 1), a line of level j is active if it has the form y = (hk + a2!77)27 or
x = (vk + a277)27 (h,v € Z). The active lines partition the plane into j-squares as
before, but are shifted w.r.t. a. However, we can still use the algorithm of Theorem 11.
Let DS, denote the set returned by the algorithm for the j-squares induced by a
and let D? be the set D for these j-squares (0 < a < k — 1). We join three such sets
to ensure we dominate the entire graph. So let DS f’ = DS;UDS; 13U DSy o3 for
eachi = 0,...,k/3 — 1. This is properly defined, as k is a multiple of 3. Denote the
smallest DS? by DS?

min*

Theorem 12. There is a 3-FPTAA® for Minimum Dominating Set on disk graphs of
bounded ply, i.e. of ply v = v(n) = o(logn). If v = O(1), there is a (3 + ¢)-
approximation algorithm for any fixed ¢ > 0.

Proof. We first show DS? is a dominating set of D, for any i € {0,...,k/3 — 1}.
A level j disk is in D if and only if it intersects an active line of level j for a. We
know ([26], Lemma 9) that any disk intersects an active horizontal line for at most
two (consecutive) values of a and an active vertical line for at most two (consecutive)
values of a. As k > 9 is an odd multiple of 3, k/3 > 1, and thus i,¢ + k/3,i + 2k/3
are non-consecutive integers (modulo k). Hence any disk is in at most two of the sets
D?,Df+k/3, D§’+2k/3. Theorem 11 shows that DS, is a dominating set for D — Db.
Given the previous argument, (D — D?) U (D — Df+k/3) U (D - D?+2k/3) = D. Then
DS? is a dominating set of D.

We now prove | DS, | < (34 35) |OPT|. A level j disk is in DY for at most 4
values of a ([26], Lemma 9). Therefore 3"} |D5| < 4|D|and -¥_) |OPT N D} <
4|OPT|.

Also, for fixed a, any level j disk intersects at most 4 j-squares. Hence |DS,| <

S ‘OPTij(S)‘ < |OPT|+3|OPT N'Dt| and thus

k/3-1 k—1
1k|DSS. < >0 IDSY| < Y (IOPT|+3|0PT N DY) < (k+12)|OPT|.

=0 a=0

Then DS2,, < (34 38)|OPT|. Choose k as the smallest odd multiple of 3 greater

than 9 and % and apply Theorem 11 to get the (3 + €)-approximation for constant ply
and fixed e. The 3-FPTAA® is obtained along similar lines using methods of [26]. O

Analogously, we can obtain 3-FPTAA®’s for arbitrary fat objects of bounded ply. The
algorithms of this section extend to d-dimensional fat objects for any constant d. We
do not know if the shifting technique can be used to give a constant approximation (or
even a PTAS) for MDS on disk graphs of arbitrary ply, because (1) there is no upper
bound on the number of ‘large’ disks intersecting a j-square in the dominating set, and
(2) we cannot track which j-square is ‘responsible’ for dominating a disk intersecting
more than one j-square on its level. We avoided (1) by assuming bounded ply and (2)
by considering =| ¢p -dominating sets (Thm. 10), or by disregarding the domination of
disks intersecting a boundary on their level and combining three result sets (Thm. 12).



10 Thomas Erlebach and Erik Jan van Leeuwen

5 Hardness results

The approximation schemes [6, 13,26] for Maximum Independent Set and Minimum
Vertex Cover on disk intersection graphs extend easily to fat object intersection graphs.
It is unlikely that an approximation algorithm for MDS would extend this way, as on
intersection graphs of fat objects that are almost disks, MDS becomes hard to approxi-
mate. A convex subset s of R? is a-fat for some v > 1 if the ratio between the radii of
the smallest disk circumscribing s and the largest disk inscribed in s is at most o [12].

Theorem 13. For any o > 1 and any € > 0, MDS on a-fat object intersection graphs
is not approximable within (1 — €)Inn, unless NP C DTTM E(nC(oglogn)),

Proof. Reduce from Minimum Set Cover (MSC). For instance x of MSC with universe
U and collection F = {Si,...,Sn} of subsets of U, construct instance y of MDS on
a-fat object intersection graphs as in Fig. 2. Each u € U corresponds to a ‘small’ disk
d,. Each S; corresponds to a disk d; with the top replaced by a polyhedral structure
such that d; intersects d,, if and only if v € S;. Packing the d, close together makes
the fatness of the construction arbitrarily close to 1. As any object dominated by a d,, is
also dominated by a d; for which u € S;, we have |OPT,| = |OPT,|. Constructing y
takes time polynomial in |U| and m. The theorem follows from Feige [15, 8]. a

An object has constant description complexity if it is a semialgebraic set defined by a
constant number of polynomial (in)equalities of constant maximum degree [12]. The
objects modeling the S; are the intersection of a disk with a polyhedron (each d; can
be described by one quadratic inequality and | S| + 1 linear inequalities) and might not
have constant description complexity. So for constant description complexity objects,
better approximation ratios than In n could be attained. However, we can prove APX-
hardness by reducing from Minimum k-Set Cover, the variant of MSC where \Sj| <k
for any S; € F. This problem is APX-hard for k = 3 (follows e.g. from [1]). Using the
same gadget as before, the objects of Theorem 13 have constant description complexity.

Theorem 14. For any o« > 1, MDS on a-fat, constant description complexity object
intersection graphs is APX-hard. Hence it has no PTAS (unless P=NP).

These results say something about intersection graphs of fat objects in general, and
of fat almost disks in particular. But we can easily prove similar results for almost
squares, almost bounded aspect ratio rectangles, almost triangles, etc. Basically, if we
slightly relax the shape constraints for a given object, Minimum Dominating Set on the
intersection graphs of such relaxed objects is hard to approximate.

The above reductions can also be used to prove the hardness of other problems,
including Minimum Connected Dominating Set and Minimum Total Dominating Set.
Furthermore, by replacing each disk d,, in the reductions by a point, we obtain theorems
equivalent to Theorem 13 and 14 for the Inn-hardness of Geometric Set Cover on
general a-fat objects and a-fat almost disks, almost squares, etc. and APX-hardness if
these objects have constant description complexity.

Finally, we solve an open problem of Chlebik and Chlebikova [9] by proving that
Minimum Dominating Set is APX-hard for intersection graphs of 2-dimensional boxes.
The reduction can be extended to Minimum Connected/Total Dominating Set, to ellipse
intersection graphs, and to Geometric Set Cover on rectangles and ellipses.
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Theorem 15. MDS on rectangle intersection graphs (MDSr) is APX-hard.

Proof. We give an L-reduction from the APX-hard [1] problem Minimum Vertex Cover
on graphs G = ({v1,...,v,}, F) of degree three (MVC3) to MDS in a rectangle in-
tersection graph G’. Rectangles R? and RY represent vertex v;, and are connected by
three plates, the largest of which is the big plate P; (see Fig. 3). Edge (v;, v;) € E for
i < j corresponds to rectangle S; ; in the intersection of rectangles R} and R;‘.

Let C be a minimum vertex cover of G and let k = |C|. Construct a set D from
C by adding R and R? to D for each v; € C and adding P; for each v; ¢ C. By
the construction of D, all R?, RY, and all plates are dominated. As C'is a vertex cover,
D dominates each S; ;. Since the graph has degree three, |C| > n/4, and thus |D| <
21C|+ (n—|C]) =n+k < 5k.

Let D be a dominating set of G’. We can assume that D contains only rectangles
of type R, R?Y and P;. Construct a set C' from D by adding v; to D if R or RY
is in D. Because D dominates all S; ;, C is a vertex cover. Let R?[D] be the set of
rectangles for v; for which both Rf and R} occurin D, R! [D] the set for v; for which
only one of R? and R? occurs in D, and P[D)] the set of big plates in D. To dominate
all small plates, | P[D]|+ |R*[D]| /2 > n. Then |D| > |P[D]|+ |R'[D]| + | R*[D]| >
n+ |R'D]| + |R?[D]| /2 > n+ k. Hence OPTps,(G') = n + k. Suppose | D| =
OPTwnpsr(G') + ¢, for a certain ¢ > 0. Then |D| = n + k + c and thus |R'[D]| +
|R%D]| /24 n < n+k+ ¢, implying |C| — OPTayves(G) < c 0

6 Conclusion

The immediate open question is whether Minimum Dominating Set admits a constant-
factor approximation algorithm or even a PTAS for disk graphs of arbitrary ply. The
hardness results of Sect. 5 show that for objects whose boundaries can intersect an
arbitrary number of times, MDS is very hard to approximate. On the contrary, if object
boundaries intersect at most twice (i.e. the objects are pseudo-disks), the decomposition
bound is linear and at least for cases such as r-regular polygons with constant r or
rectangles with bounded aspect-ratio, we get constant-factor approximation algorithms.
An intriguing question is whether MDS on disk graphs is harder to approximate than
for other intersection graph classes such as intersection graphs of squares, or whether
the algorithmic ideas can be extended to disks or maybe even to arbitrary pseudo-disks
(the decomposition bound starts to fail ‘naturally’ beyond pseudo-disks).
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