
Query-Competitive Algorithms for Cheapest Set
Problems under Uncertainty

Thomas Erlebach1, Michael Hoffmann1, and Frank Kammer2

1 Department of Computer Science, University of Leicester, England
{te17,mh55}@mcs.le.ac.uk

2 Institut für Informatik, Universität Augsburg, Germany
kammer@informatik.uni-augsburg.de

Abstract. Considering the model of computing under uncertainty where
element weights are uncertain but can be obtained at a cost by query
operations, we study the problem of identifying a cheapest (minimum-
weight) set among a given collection of feasible sets using a minimum
number of queries of element weights. For the general case we present
an algorithm that makes at most d · OPT + d queries, where d is the
maximum cardinality of any given set and OPT is the optimal number
of queries needed to identify a cheapest set. For the minimum multi-cut
problem in trees with d terminal pairs, we give an algorithm that makes
at most d ·OPT + 1 queries. For the problem of computing a minimum-
weight base of a given matroid, we give an algorithm that makes at most
2 ·OPT queries, generalizing a known result for the minimum spanning
tree problem. For each of our algorithms we give matching lower bounds.

1 Introduction

Motivated by applications where exact input data is not always easily available,
we consider cheapest set problems under uncertainty: We are given a set E of
elements, and a collection S of feasible subsets of E, where S may be specified
explicitly or implicitly. Each element e ∈ E has an exact weight (or cost) we, but
initially only an uncertainty area Ae, which is a set that contains we, is known.
We assume that each uncertainty area Ae is either trivial (i.e., a singleton set
containing only we) or an open set with finite lower limit Le and finite upper
limit Ue (for example, an open interval (Le, Ue)). The task is to find a cheapest
set in S, i.e., a set S ∈ S such that

∑
e∈S we is minimized. It may not be possible

to identify a cheapest set based on just the given uncertainty areas. We assume
that it is possible to obtain the exact weight we of an element e ∈ E using a
query operation, but we wish to minimize the number of queries needed.

An algorithm solving the cheapest set problem under uncertainty may make
more queries than absolutely necessary. To assess the quality of an algorithm, we
use competitive analysis, i.e., for the given instance of the cheapest set problem
we compare the number of queries the algorithm makes with the best possible
number of queries, which we denote by OPT . An algorithm for a problem under
uncertainty that is measured competitively with respect to the number of queries

is also called a query-competitive algorithm. We restrict the uncertainty areas to
be open sets or singleton sets because it is easy to see (as shown in [5] for the
minimum spanning tree problem) that there are no query-competitive algorithms
with non-trivial competitive ratio for the uncertainty problems that we consider
if closed intervals are allowed as uncertainty areas.

We consider the cheapest set problem under uncertainty both in the general
case, where the feasible sets can be arbitrary and are specified explicitly as part
of the input, and in special cases that arise when the feasible sets have a certain
structure. In the multi-cut problem for trees, the feasible sets are the sets of edges
that separate the given terminal pairs. In the minimum matroid base problem,
the feasible sets are the bases of a matroid. The minimum spanning tree problem
is a special case of the minimum matroid base problem where the independent
sets of the matroid are the spanning forests of the given graph.

Motivation for studying the cheapest set problem under uncertainty can be
found in numerous application areas. Many optimization problems can be viewed
as the problem of selecting a minimum-weight set among all feasible sets. Espe-
cially in distributed networks or mobile computing, it is often the case that the
exact weight of an element is known only approximately (e.g., an estimate for
the cost of a remote service or congestion of a remote link), but it may be possi-
ble to obtain the exact weight at an extra cost (e.g., a negotiation with a service
provider, or a query message and response exchanged over the network). If the
cost for obtaining the exact weight of an input element by a query is not neg-
ligible, the objective of minimizing the number of queries needed to solve the
problem becomes natural. For example, consider the problem of installing mon-
itoring equipment on links of a tree network so as to monitor all traffic between
d given terminal pairs. The cost of the installation on a specific link depends on
the total traffic on that link (generated by the terminal pairs and by background
traffic), as all packets traversing the link need to be processed. The exact cost of
a link can be determined by conducting traffic measurements, but this may be
costly. The problem of identifying a set of edges of minimum total cost for solving
the monitoring problem, while making a minimum number of traffic measure-
ments on different links, is the multi-cut problem in trees under uncertainty.

Our results. For the cheapest set problem under uncertainty, we give an algo-
rithm that makes at most d·OPT+d queries, where d is the maximum cardinal-
ity of a feasible set in the given instance. We also give a matching lower bound,
showing that the algorithm is best possible among deterministic algorithms. For
the minimum multi-cut problem for d terminal pairs in trees under uncertainty,
we give an algorithm that makes at most d · OPT + 1 queries, and we prove
a matching lower bound. For the minimum matroid base problem under uncer-
tainty, we give an algorithm that makes at most 2 · OPT queries, generalizing
a known 2-competitive algorithm U-RED for minimum spanning trees under
uncertainty [5]. We remark that the generalisation is not straightforward since
in [5] properties of connected components are considered while the matroid set-
ting requires set oriented proofs. The known lower bound for minimum spanning
trees under uncertainty [5] implies that our algorithm for minimum matroid base

2

is best possible. Some proofs from Sections 4 to 6 are omitted.

Related work. The first study of query-competitive algorithms for problems
under uncertainty that we are aware of is the work by Kahan [9], who gives
query-competitive algorithms with optimal competitive ratio for the problems
of computing the maximum, the median and the minimum gap of n real val-
ues that are constrained to fall into given real intervals. Bruce et al. [2] consider
geometric problems where input points are not known exactly but lie in given un-
certainty areas. They propose the concept of witness set algorithms that, in each
step, query a set S of elements with the property that any query solution must
query at least one element of S. Sets with this property are called witness sets.
The competitive ratio of a witness set algorithm is bounded by the maximum
size of a witness set. Bruce et al. present 3-competitive algorithms for computing
maximal points or the points on the convex hull of a given set of uncertain points
in two-dimensional space [2]. Erlebach et al. [5] give a 2-competitive algorithm
for computing minimum spanning trees in graphs with uncertain edge weights
and show that this is optimal for deterministic algorithms.

Feder et al. study the problem of minimizing the total cost of queries for
the problem of computing an approximation of the value of the median of n
uncertain values [7] or of the length of a shortest path in a graph with uncertain
edge weights [6]. They also consider algorithms that must specify the whole set of
queries in advance, rather than querying uncertain elements one by one as in our
model. Other related work exploring trade-offs between query cost and solution
accuracy includes [13] and [10]. Another line of work considers the problem of
computing, for an input with uncertain elements, the minimum and maximum
possible cost of an optimal solution, over all possible precise values of the input
[12, 4]. In these problems, there is no concept of queries. There are also numerous
other models of optimization under uncertainty, e.g., min-max regret versions of
standard optimization problems [1].

For the standard version of the multi-cut problem in trees, Garg et al. [8]
show that the problem is NP-hard and MAX SNP-hard and admits a 2-approx-
imation (with respect to the cost of the multi-cut). The standard version of the
minimum matroid base problem can be solved by a greedy algorithm, see e.g. [3].
We conclude in Section 7.

2 Preliminaries

Based on the terminology of Section 1 we now formally define the cheapest
set problem under uncertainty (CSU). An instance of the CSU problem is rep-
resented by a quadruple (E,S, w,A) where E is the finite set of elements,
S ⊆ P(E) is a family of subsets of E, w is a real-valued weight function that
maps each element e ∈ E to its precise weight w(e), and A is a function that
maps each element e ∈ E to its uncertainty area A(e). From here on, we write
we and Ae for w(e) and A(e), respectively. Note that for the CSU problem we
allow we to be smaller than 0. The goal of the CSU problem is to find a cheapest
set S, i.e., a set S ∈ S such that

∑
e∈S we ≤

∑
e∈S′ we for all S′ ∈ S, using a

3

minimum number of queries. Let w′ be a function that maps elements to weights
and let A′ be a function that maps elements to uncertainty areas. We say that
w′ is consistent with A′ if w′e ∈ A′e for all e ∈ E. Note that in any instance
(E,S, w,A) of the CSU problem w is consistent with A by definition. For e ∈ E,
we refer to all elements of Ae as potential weights of e. An instance (E,S, w,A)
is solved if there exists a set S ∈ S such that for every weight function w′ that is
consistent with A, S is a cheapest set in the instance (E,S, w′,A). If an instance
is solved and S satisfies the condition stated in the previous sentence, we also
say that S can be identified as cheapest set. An instance that is not solved is
also called unsolved. A query of an element e changes an instance (E,S, w,A) to
(E,S, w,A′) where A′ is the same as A apart from Ae being set to {we}.

We say that an element whose area of uncertainty is trivial (i.e., a singleton
set) is a certain element while an element whose area of uncertainty is non-trivial
is an uncertain element. For X ⊆ E, we denote by XU the set of its uncertain
elements and by XC the set of its certain elements.

For every instance (E,S, w,A), a query solution is a set of elements that
when queried results in a solved instance. A query solution of minimum car-
dinality is called an optimal query solution, and the size of an optimal query
solution is denoted by OPT . Throughout this paper, we consider only instances
where each area of uncertainty is trivial or a (bounded) open set. For an ele-
ment e ∈ E, we write Le for the lower limit and Ue for the upper limit of the
uncertainty area of e. If e has a trivial uncertainty area, then Le = Ue = we.
For any set T ⊆ E, we let Tmin =

∑
e∈T Le. Note that Tmin is a lower bound

on the exact weight of the set T . Tmax is defined analogously via Ue instead of
Le. Furthermore, we sometimes write Tw for

∑
e∈T we. We say that T ∈ S lies

within the uncertainty bounds of S ∈ S if for any potential weights of the ele-
ments in T there exist potential weights of the elements in S \ T such that S is
cheaper than T and (other) potential weights of the elements in S \ T such that
T is cheaper than S. Note explicitly that the definition implies T 6= S.

For an instance (E,S, w,A) the input of an algorithm is (E,S, A). The aim is
to make queries until the resulting instance is solved. The quality of an algorithm
is measured by the number of queries it makes compared to OPT of the initial
instance. As introduced in [2], for a given instance a set of elements is a witness
set if the instance cannot be solved without querying at least one element of the
set. Let I ′ be an instance that has resulted from querying some elements in an
instance I. Then a witness set of I ′ is also a witness set of I. Hence, we have the
following observation, which can be shown using similar arguments as in [2]:

Observation 1. If an instance I is solved by an algorithm that queries all ele-
ments of all sets U1, U2, . . . , Ul where Ui is a witness set of the instance resulting
from I after querying U1, . . . Ui−1, then the value OPT for the instance I is at
least l. If only k of the l sets Ui are witness sets, then the value OPT for the
instance I is at least k.

Definition 2. For an instance I = (E,S, w,A), a set S ∈ S is called a Robust
Potential Cheapest (RPC) set, if for any potential weights of elements in E\S,

4

there exist potential weights for the elements in S such that S is a cheapest set
among all sets in S.

We also refer to an RPC set of an instance (E,S, w,A) as an RPC set in S
if the instance is clear from the context. The following observation is a direct
consequence of the definition. The next lemma is needed to prove Lemma 5.

Observation 3. Let S be an RPC set of an instance I. Then we have that
Smin = min{Xmin | X ∈ S}. Further, if S contains only certain elements, I is
solved and S is a cheapest set for the instance I.

Lemma 4. A set S is an RPC set if, for all X ∈ S\{S}, either 1. or 2. holds:
1. Smin < Xmin, or
2. Smin = Xmin and XU 6⊂ SU , i.e., XU is not a proper subset of SU .

Proof. Let w′ denote an arbitrary choice of potential values for E \ S.
Consider any X ∈ S for which Condition 1 holds. As the potential values

for S can be chosen arbitrarily close to their lower limits (since the uncertainty
areas are open sets), there exist potential values wX

e for e ∈ S such that S is not
more expensive than Xmin and thus not more expensive than Xw′ .

Consider any X ∈ S for which Condition 2 holds. If XU = SU , the weights of
X and S are equal (and hence S is not more expensive than X) for all potential
values for e ∈ S. Therefore, assume that XU 6= SU . As XU is not a proper
subset of SU , there must exist an element e∗ in XU \ SU = (X \ S)U . Let
S′ = S \ X and X ′ = X \ S. Note that e∗ ∈ (X ′)U . By Condition 2, we also
have S′min + (S ∩ X)min = Smin = Xmin = X ′min + (S ∩ X)min, and hence
S′min = X ′min. As w′e∗ > Le∗ and e∗ ∈ X ′, we can choose values wX

e for the
elements e ∈ S′ such that S′wX < X ′w′ . For any choice of values wX

e for the
elements of S ∩X, we then have SwX < Xw′ .

Combining the arguments from the two previous paragraphs, we have that
for each set X ∈ S\{S}, there exist values wX

e for e ∈ S such that S is not more
expensive than X. If we now choose w∗e = minX∈S\{S} w

X
e , the weights w∗e for

e ∈ S are such that S is not more expensive than any of the sets in S \ {S}. As
the choice of w′ was arbitrary, we have shown that S is an RPC set. ut

Lemma 5. Every instance of the CSU problem has at least one RPC set.

Proof. We find an RPC set as follows: Initially, we choose any S such that
Smin ≤ Xmin for all X ∈ S. As long as there exists a set X ∈ S \ {S} with
Xmin = Smin and XU ⊂ SU , set S := X. This process must terminate as |SU |
decreases in each step. In the end, S will be an RPC set by Lemma 4. ut

Lemma 6. An instance is solved if and only if all cheapest sets are identified.
Moreover, in such an instance, Smin = Xmin and SU = XU for any two cheapest
sets S and X.

Proof. As the instance is solved, there is at least one set S that can be identified
as a cheapest set. Let X be another cheapest set. Assume that S contains an

5

uncertain element e that is not in X. As all non-trivial areas of uncertainty are
open, there is a potential value for e that is higher than we. So Sw has the
potential to increase while Xw remains the same, and potentially Xw < Sw. A
contradiction to Sw being identified as a cheapest set.

Similarly, assume that X contains an uncertain element e that is not in S.
As all non-trivial areas of uncertainty are open there is a potential value for e
that is lower than we. So Xw has the potential to decrease while Sw remains the
same, and potentially Xw < Sw. A contradiction.

Consequently, XU = SU . Since Sw = Xw, the sum of all certain elements in
S and in X must also be the same, and Smin = Xmin. Hence, if S is identified
as a cheapest set, then also X must be identified as a cheapest set. ut

Lemma 7. Let I = (E,S, w,A) be an instance of the CSU problem. If S is an
RPC set but not a witness set of I, then S is a cheapest set and XU = SU for
each cheapest set X of I.

Proof. Let I ′ be the instance obtained after querying E \ S in I. As S is not a
witness set, the instance I ′ must be solved. Since S was an RPC set in I and no
element of S was queried, S is also an RPC set in I ′ and hence S is potentially
a cheapest set in I ′. As I ′ is solved, by Lemma 6 we have that S must be
identified either as being a cheapest set or as not being a cheapest set in I ′. As
S is potentially a cheapest set in I ′, it can only be the case that S is identified
as a cheapest set in I ′. Hence, S is a cheapest set of I.

Let X be another cheapest set in I, and therefore also in I ′. As I ′ is solved,
Lemma 6 implies that Xmin = Smin and XU = SU in I ′. Assume that an element
of X was queried by the query of E \ S. Then Xmin in I must be smaller than
Xmin in I ′ as all non-trivial areas of uncertainty are open. Hence, we must have
Xmin < Smin in I. This contradicts S being an RPC set in I. So no element of
X was queried by E \ S, and we have that XU = SU also in I. ut

3 Cheapest Set

We denote the maximum number of elements in any set of S by d. Let us define
algorithm SIMPLE for the CSU problem as an algorithm that, while the instance
is not solved, queries all elements of an RPC set. First, we need the next lemma.

Lemma 8. Let S ∈ S be an RPC set in S and let T ∈ S be such that T lies
within the uncertainty bounds of S. Then S is a witness set.

Proof. Assume that S is not a witness set. Then S is a cheapest set by Lemma 7,
and E \ S is a query solution. Let I ′ be the instance after querying E \ S. As
no element of S has been queried, T still lies within the uncertainty bounds of
S. Hence T is still potentially cheaper than S and S cannot be identified in I ′

as a cheapest set. So by Lemma 6, I ′ cannot be a solved instance. This is a
contradiction to E \ S being a query solution. So, S must be a witness set. ut

Theorem 9. Algorithm SIMPLE makes at most d ·OPT + d queries.

6

Proof. Let t be the number of sets queried by the algorithm. For 1 ≤ i ≤ t, let
Si be the set queried by the algorithm in the ith iteration of the while-loop. We
claim that there is at most one i ∈ {1, . . . , t} such that Si is not a witness set
in iteration i. Choose i as small as possible such that Si is not a witness set in
iteration i. (If no such i exists, all t sets are witness sets, and the claim holds.)
By Lemma 7, Si is a cheapest set in iteration i. Assume for contradiction that
there exists j > i such that Sj is not a witness set. Again by Lemma 7, Sj is also
a cheapest set and SU

i = SU
j before iteration i. As SU

i was queried at iteration i,
at iteration j the set Sj does not contain uncertain elements. By Observation 3,
the instance is solved before iteration j. A contradiction.

The algorithm queries t sets of which at least t − 1 are witness sets. Hence,
OPT ≥ t− 1 and the algorithm makes at most dt ≤ d ·OPT + d queries. ut

In the following, we want to reduce the number of queries for variants of
the CSU problem that satisfy a special property. The next lemma allows us to
determine a witness set for any unsolved instance of the CSU problem.

Lemma 10. Let S, T ∈ S such that S is an RPC set in S and T is potentially
cheaper than S. Then S ∪ T is a witness set.

Proof. Assume that S ∪ T is not a witness set. Then it is possible to solve the
instance without querying any element of S∪T . As S ⊆ S∪T , S is not a witness
set either. By Lemma 7, S is a cheapest set. If we do not query any element of
S ∪T , T is potentially cheaper than S, and S cannot be identified as a cheapest
set. So there is at least one cheapest set that cannot be identified. By Lemma 6,
we cannot solve the instance, a contradiction. ut

We say that a variant (special case) of the CSU problem has the 1-gap prop-
erty if, for every unsolved instance (E,S, w,A) of that problem, there exist
S, T ∈ S such that (1) S is an RPC set in S, (2) T is potentially cheaper than
S, and (3) |S ∪ T | ≤ d + 1. We now show that the following algorithm U-SET
for 1-gap CSU problems makes at most d ·OPT + 1 queries.

Algorithm 1: Algorithm U-SET for 1-gap CSU problems

1: while instance is not yet solved do
2: if there exist S, T ∈ S such that S is an RPC set

and T lies within the uncertainty bounds of S then query S
3: else query all uncertain elements of S ∪ T where S is an RPC set

and T is a potentially cheaper set than S such that |S ∪ T | ≤ d+ 1

Lemma 11. When Step 3 in algorithm U-SET is executed any time except the
first time, the set S must contain a certain element.

Proof. The first situation that we consider is when Step 3 is executed for the
first time. Let us call the RPC set X and the set that is potentially cheaper
Y . The second situation we consider is when Step 3 is executed another time
(second, third, and so on). This is after the first, so X ∪Y has been queried and

7

the algorithm now takes an RPC set S. Let us assume that S consists only of
uncertain elements. Then X and S must be disjoint. All elements of S had in
the first situation the same uncertainty information as in the second situation,
and S did not lie within the uncertainty bounds of X in the first situation. As
X and S are disjoint and X was an RPC set, X could have been potentially
cheaper than S for any weights of the elements of S in the first situation. So as S
did not lie within the uncertainty bounds of X, there must exist some potential
weight for the elements in S such that S cannot be cheaper than X. Since X
and S are disjoint, for any potential weight of elements in X, the set S can be
more expensive than X. In the second situation X ∪Y has been queried and the
weight of X is known precisely. So even for the queried set X, S can still be more
expensive than X. Since S is an RPC set, S can also be cheaper than X. Thus,
the queried set X lies with in the uncertainty bounds of S. Thus, in the second
situation, the algorithm would execute Step 2 and not Step 3. A contradiction.
Hence, our assumption that S does not contain any certain elements is false. ut

Theorem 12. For any uncertainty set problem with the 1-gap property, there
exists an algorithm that makes at most d ·OPT + 1 queries.

Proof. By Lemmas 8 and 10, all sets of queries performed by the algorithm are
witness sets. By Lemma 11, the algorithm requests a set of queries of size d+1 at
most once, and all other query sets are of size at most d. Hence, by Observation
1, the algorithm makes at most d · (OPT − 1) + d+ 1 queries. ut

4 Minimum Multicut in Trees

We now consider the minimum multicut problem in trees under uncertainty
(MMCTU). An instance of it is given by a tuple (E, (G,D), w,A), where G is an
undirected tree with edge set E, D is a set of d terminal pairs that need to be
cut, w maps each edge e ∈ E to its actual weight we > 0, and A maps each e ∈ E
to its uncertainty area Ae. The family S of feasible sets is not given explicitly,
but is determined by G and D: A set S ⊆ E is feasible if removing the edges
in S from the tree G separates all terminal pairs in D. In other words, S is the
family of all possible multicuts for the given terminal pairs. Multicuts containing
more than d edges can be ignored because they must contain redundant edges,
so we only need to consider multicuts consisting of at most d edges.

Let S be a potential minimum multicut. Then each element in S cuts at least
one terminal pair that is not cut by any other element of S. By considering the
elements of S = {s1, . . . , s|S|} one by one, a partition P = {P1, P2, . . . , P|S|} of
D is formed, where Pi is the set of terminal pairs that are cut by si and not
by any s1, . . . , si−1. We say P is a partition induced by S. We also say that the
element si ∈ S leads to the element Pi ∈ P .

Lemma 13. Let P and Q be two partitions of a finite set K. If, for all proper
subsets P ′ of P and Q′ of Q,

⋃
X∈P ′ X 6=

⋃
X∈Q′ X, then |P |+ |Q| ≤ |K|+ 1.

Lemma 14. The MMCTU problem has the 1-gap property.

8

Proof. Let I = (E, (G,D), w,A) be an unsolved instance of the MMCTU prob-
lem. Let S be an RPC set of I. Let FS be the family of multicuts that are
potentially cheaper than S. Let T ∈ FS be such that |T\S| ≤ |T ′\S| for all
T ′ ∈ FS . Let D′ be the set of pairs that are not cut by S ∩ T . So, let P be a
partition of D′ induced by S\T and let Q be a partition of D′ induced by T\S.

Assume that there exist proper subsets P ′ of P and Q′ of Q with
⋃

X∈P ′ X =⋃
X∈Q′ X. Let S′ be the set of elements in S that lead to elements in P ′ and

similarly T ′ be the set of elements in T that lead to elements in Q′. Note that the
pairs of D\D′ are cut by S\S′ as well as by T\T ′. So the sets Mix = S′∪ (T\T ′)
and Mix ′ = T ′ ∪ (S\S′) are also cuts of all pairs in D. Since

S′min + (S\S′)min = Smin

S is an RPC set
≤ Mix ′min = T ′min + (S\S′)min,

we have S′min ≤ T ′min. We now consider two cases.

Case 1. If S′max ≤ T ′min, then Mix is always cheaper than T . As T was poten-
tially cheaper than S, Mix also must be potentially cheaper than S. Moreover,
|Mix\S| = |(T\S)\T ′| < |T\S|, which is a contradiction to our choice of T .
Case 2. If S′max > T ′min, then S can be more expensive than Mix ′. This means
that Mix ′ is potentially cheaper than S, and |Mix ′\S| = |T ′| < |T\S|. The
existence of Mix ′ contradicts our choice of T .

Thus, no proper subsets P ′ of P and Q′ of Q as described above exist. Hence,
by Lemma 13, |S∆T | ≤ |D′|+1. As |S∩T | ≤ d−|D′| we get |S∪T | ≤ d+1. ut

Lemma 14 and Theorem 12 give us the following.

Theorem 15. For the MMCTU problem, there exists an algorithm that makes
at most d ·OPT + 1 queries.

5 Minimum Matroid Base

We present an algorithm for the minimum matroid base under uncertainty
(MMBU) problem using at most 2 · OPT queries. We first recall the basic no-
tation of matroids (see, e.g., [3]). A matroid M = (E, I) consists of a set of
elements E and a set of independent sets I ⊆ P(E) such that the following
properties are satisfied.

Non-emptiness: ∅ ∈ I,
Heredity: Every subset of a set in I is also in I,
Exchange: If S, T ∈ I and |S| < |T |, then ∃e ∈ T such that S ∪ {e} ∈ I.

Each element has a real-valued weight, which may be negative. A subset of
E that is not independent is called dependent. A circuit of M is a dependent
set over E such that all its proper subsets are independent. A set S ⊆ E is
called a base of M if S is independent and for any e ∈ E \ S the set S ∪ {e} is
dependent. We write circuit (or base) of M over E′ ⊆ E for a circuit (or base)
of (E′, {S ∩E′|S ∈ I}). When M is clear from the context, we write just circuit
or base over E′. The following observation is well known.

9

Observation 16. Every base of a matroid M has the same number of elements.

Let M be a matroid with a weight function w that assigns each e ∈ E a
weight we. M is then called a weighted matroid. A minimum base of M is a base
such that the sum of the weights of its elements is minimum among all bases of
M . An instance of the MMBU problem is given by a tuple (E, I, w,A), where
M = (E, I) is a matroid, w maps each e ∈ E to its (actual) weight we, and A
maps each e ∈ E to its uncertainty area Ae.

Lemma 17. Let C be a circuit of M , and let B be a base of M containing an
element e ∈ C. Then there exists an element f ∈ C such that (B \ {e}) ∪ {f} is
a base of M .

It follows from the previous lemma that:

Corollary 18. Let C be a circuit of M , and let e be an element in C with a
highest weight among all elements in C. Then a minimum base of E \{e} is also
a minimum base of E.

Before introducing the algorithm we define an order of elements denoted by
<e. Let f and g be two elements in E. We say f <e g if Lf < Lg or (Lf = Lg

and Uf < Ug). Edges with the same upper and lower weight limit are ordered
arbitrarily. We also say E is indexed by <e if {e1, . . . , en} = E where ei <e ei+1.
Based on the order <e and the resulting indexing, the first circuit created by tak-
ing the lowest indexed elements of any set E′ ⊆ E is called the first circuit of E′.

Algorithm 2: U-RED2

1: fix <e; index E by <e; set E′ := E
2: repeatedly remove an element b from E′ that is a highest element of

some circuit C of E′, i.e., that satisfies Lb ≥ Uc for all c ∈ C \ {b}
3: if E′ is independent then
4: stop and output E′ as a minimum base of M
5: else
6: set C := the first circuit over E′

7: set h := an element in C with a maximum upper limit
8: set f := an element in C\{h} that could be potentially higher than h
9: query the witness set {f, h} and restart

Algorithm U-RED2 is shown in Algorithm 2. In Step 2, it repeatedly removes
an element that can be identified as a highest element in a circuit, based on just
the uncertainty areas that are known to the algorithm at that time. In Step 9,
we query {f, h}. The basic idea to prove that {f, h} is a witness set is as follows:
By the choice of h and f , on the one hand, h could be a highest element of C
and would then be excluded from any minimum base over E. On the other hand,
even if all elements except h and f are queried, C being the first circuit implies
that for each circuit C ′ 6= C containing h, C ′ contains an element higher than
Lh, i.e., h could be part of any minimum base over E. So, we must query at
least one element in {f, h}.

10

Lemma 19. The set {f, h} in the algorithm U-RED2 is a witness set.

Lemma 20. Once the algorithm does not restart, E′ is a minimum base of M .

Proof. The set E′ is independent and hence does not contain any circuits. Thus,
E′ is the only, and therefore also minimum, base over E′. Since E′ was derived
from E by removing only highest elements of a circuit, by a repeated application
of Corollary 18, E′ is a also a base for E. ut

Finally we note that OPT ≥ k where k is the number of times the algorithm
restarts. Since the number of queries requested by the algorithm is 2k, U-RED2
makes at most 2 ·OPT queries.

Theorem 21. The U-RED2 algorithm solves the minimum matroid base under
uncertainty problem with at most 2 ·OPT queries.

6 Competitive Lower Bounds

In this section we present lower bounds on the competitive ratio of online algo-
rithms for cheapest set under uncertainty as well as its special cases.

An algorithm is called strongly ρ-competitive if ALG ≤ ρOPT for all in-
stances of the problem, and weakly ρ-competitive if there is a constant c such
that ALG ≤ ρOPT + c for all instances. Here, ALG is the number of queries
made by the algorithm, and OPT is the size of an optimal query solution. A
lower bound on the best possible competitive ratio of weakly competitive algo-
rithms is also a lower bound for strongly competitive algorithms. We can prove
lower bounds for weakly competitive algorithms, covering both the multiplica-
tive ratio ρ and the additive constant c. The proofs use only singleton sets and
open intervals as areas of uncertainty.

Definition 22. We say that a variant of the cheapest set problem with uncer-
tainty has (deterministic) lower bound λOPT + δ if the two conditions hold:
- Any algorithm that satisfies ALG ≤ ρOPT +O(1) for all instances has ρ ≥ λ.
- Any algorithm that satisfies ALG ≤ λOPT + c for all instances has c ≥ δ.

Theorem 23. CSU (MMCTU) has a lower bound of d·OPT +d (of d·OPT +1).

Finally, we remark that the lower bound proof in [5] implies the following:

Theorem 24. MMBU has a lower bound of 2 ·OPT .

7 Conclusion

In this paper, we have studied online and offline variants of cheapest set prob-
lems under uncertainty. While our lower bounds are tight for deterministic al-
gorithms, an interesting direction for future research is to determine whether

11

query-competitive algorithms with better ratios are possible using randomiza-
tion. Another direction would be to identify further variants of cheapest set
problems whose structure admits better competitive ratios than the general case.
Acknowledgements. We would like to thank Gerhard Woeginger for pointing
out that Lemma 13 can be proved using Theorem 1 in [11]. The first author
would also like to thank Anita Maring for helpful discussions about lower bound
examples for the general cheapest set problem. The second author would like
to thank the University of Leicester to support this research in granting him
academic study leave.

References

1. Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of
combinatorial optimization problems: A survey. European Journal of Operational
Research 197(2), 427–438 (2009)

2. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies for
geometric computing with uncertainty. Theory of Computing Systems 38(4), 411–
423 (2005)

3. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. John Wiley and Sons, New York (1998)

4. Dorrigiv, R., Fraser, R., He, M., Kamali, S., Kawamura, A., López-Ortiz, A.,
Seco, D.: On minimum-and maximum-weight minimum spanning trees with neigh-
borhoods. In: Erlebach, T., Persiano, G. (eds.) 10th International Workshop on
Approximation and Online Algorithms (WAOA 2012). pp. 93–106. LNCS 7846,
Springer (2013)

5. Erlebach, T., Hoffmann, M., Krizanc, D., Mihalák, M., Raman, R.: Computing
minimum spanning trees with uncertainty. In: Albers, S., Weil, P. (eds.) 25th In-
ternational Symposium on Theoretical Aspects of Computer Science (STACS’08).
LIPIcs, vol. 1, pp. 277–288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Germany (2008)

6. Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing
shortest paths with uncertainty. Journal of Algorithms 62(1), 1–18 (2007)

7. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the
median with uncertainty. SIAM Journal on Computing 32(2), 538–547 (2003)

8. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

9. Kahan, S.: A model for data in motion. In: 23rd Annual ACM Symposium on
Theory of Computing (STOC’91). pp. 267–277 (1991)

10. Khanna, S., Tan, W.C.: On computing functions with uncertainty. In: 20th Sym-
posium on Principles of Database Systems (PODS’01). pp. 171–182 (2001)

11. Lindström, B.: A theorem on families of sets. Journal of Combinatorial Theory (A)
13, 274–277 (1970)

12. Löffler, M., van Kreveld, M.J.: Largest and smallest tours and convex hulls for
imprecise points. In: Arge, L., Freivalds, R. (eds.) 10th Scandinavian Workshop on
Algorithm Theory (SWAT’06). pp. 375–387. LNCS 4059, Springer (2006)

13. Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation
queries over replicated data. In: 26th International Conference on Very Large Data
Bases (VLDB’00). pp. 144–155 (2000)

12

