
Reducing Idle Listening during Data Collection in

Wireless Sensor Networks

Aram Rasul

Department of Computer Science

University of Leicester

Email: amrr1@le.ac.uk

Thomas Erlebach

Department of Computer Science

University of Leicester

Email: te17@le.ac.uk

Abstract—Data collection is one of the predominant operations
in wireless sensor networks. This paper focuses on the problem
of efficient data collection in a setting where some nodes may
not possess data each time data is collected. In that case, idle
listening slots may occur, which lead to a waste of energy and
an increase in latency. To alleviate these problems, successive-
slot schedules were proposed by Zhao and Tang (Infocom 2011).
In this paper, we introduce a so-called extra-bit technique to
reduce idle listening further. Each packet includes an extra bit
that informs the receiver whether further data packets will follow
or not. The extra-bit technique leads to significantly reduced
idle listening and improved latency in many cases. We prove
that every successive-slot schedule is also an extra-bit schedule.
We then consider the special case of linear networks and prove
that the optimal length of a successive-slot schedule (or extra-bit
schedule) is 4N − 6 time slots, where N ≥ 3 is the number of
nodes excluding the sink. Then the proposed extra-bit technique
is compared with the successive-slot technique with respect to
the expected amount of idle listening, and it is shown that the
extra-bit technique reduces idle listening substantially.

I. INTRODUCTION

Advances in technology have led to the invention and
development of small wireless devices, including sensors [1]
which have the capability of sensing, processing, computing
and communication. Wireless Sensor Networks (WSNs) have
captured considerable attention in the research community
recently for their numerous applications in various areas [2],
ranging from military applications to fire detection, healthcare,
environmental monitoring, habitat monitoring and others [3],
[4]. WSNs are inherently multi-hop radio networks [1] that are
comprised of hundreds or thousands of sensors [3], which are
dispersed either randomly in an inhospitable area or deployed
manually in a specific area. During deployment, sensors con-
figure themselves in an ad-hoc fashion, which is a common
mode of operation in WSNs [1], without installing any infras-
tructure, and communication happens either via single-hop or
multi-hop dissemination, depending on the distance between
the sensors.

The requirements for data gathering are application-
dependent. In some applications, such as when the sink needs
to determine the maximum temperature in a specific area, it is
not important that each data packet is delivered to the sink
individually. In this case, the sink does not care about all
the data; if all nodes send their data to the base station, the
result is an over-consumption of energy due to the number of
transmissions. In this case, aggregation can be used to forward
only aggregated values to the sink [4]. However, there are also

many applications in which all packets are important individ-
ually. For instance, when sensors are deployed for structural
monitoring or leak detection, packets need to be collected
from all sensors (collection without aggregation) to learn the
conditions at each individual sensor location, otherwise the
exercise could be a failure [5]. In this paper, we consider the
latter setting, i.e., data collection without aggregation.

Sensors are tiny devices that are resource-constrained, for
example, having limited power, small memory, relatively slow
processors, or limited transceivers. Clearly, WSNs are likely
to be powered by disposable batteries [3]; when these are
exhausted, they cease to function. Therefore, careful control
of energy consumption is a very significant factor in WSNs
and poses many challenges.

In the literature, several reasons have been pointed out
as the cause for wasted energy. The first one is collisions,
which occur when two or more nodes try to transmit their
data to the same destination node simultaneously. Indeed, the
packets collide with each other and the destination node cannot
receive either one correctly [6]. As a result, retransmission
is needed, which leads to the use of more energy to send
out the packets again. Moreover, both primary and secondary
conflicts which cause collisions must be avoided. Primary
conflicts happen either when a node transmits and receives
at the same time, or several nodes send out their packets
simultaneously to the same destination. Secondary conflicts
occur when a receiver is within the transmission range of its
sender and other simultaneous senders at the time of collision.
When this happens, the receiver cannot receive the correct
packet successfully. The second source of energy wastage is
overhearing, which happens when a node hears a packet which
is destined for another node. The third case where energy can
be wasted, and the most relevant to our work, is idle listening.
Idle listening occurs when a node is listening to the channel
to receive a packet but there is the possibility that the sending
node does not have data and remains silent [6], [7], [8].

Hence, several issues should be addressed and considered
carefully when sensors are deployed, such as reducing schedule
length, reducing interference, and saving energy. To this end,
many algorithms and techniques have been proposed and
examined recently.

The contributions of this paper are as follows:

• Extending earlier work on successive-slot sched-
ules [9], [10], we propose an optimization technique,

1

called the extra-bit technique, which reduces idle
listening further and also minimizes latency.

• We prove that the optimal number of time slots for
data collection in a chain using successive-slot or
extra-bit schedules is 4N − 6, where N ≥ 3 is the
number of nodes in the network excluding the sink.

• We show how to calculate the expected amount of
idle listening for extra-bit schedules and successive-
slot schedules in chains and trees where each node has
data with a fixed probability, and we demonstrate that
the expected amount of idle listening is significantly
smaller with the extra-bit technique.

The rest of this paper is organized as follows. Section II
discusses related work, while Section III defines our system
model, gives the problem definition, and describes the previous
successive-slot technique. In Section IV, we present the extra-
bit technique, show that successive-slot schedules and extra-
bit schedules are the same family of schedules, and present
and analyze an optimal scheduling algorithm for chains. After
that, a comparison is presented between the extra-bit technique
and the previous approach in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK

WSNs have penetrated into various fields for different
purposes. During data collection many problems arise due to
resource constraints and pose numerous challenges. Therefore,
several algorithms and techniques have been presented to
tackle these challenges from different angles.

The most relevant articles which pertain to our work are
[9], [10] and [11]. Zhao and Tang [9], [10] consider data
collection in trees in a setting where not all sensors have data
in each round, the schedule must be independent of which
sensor nodes have data, and the goal is to reduce idle listening
and latency. They aim to conserve energy and extend the
lifespan of the network. They present a technique called the
successive-slot technique, in which all transmissions of a node
must be made in successive slots starting from the first slot
during which the node is scheduled to transmit by the schedule.
In particular, parent nodes cannot transmit before their child
nodes, and often parents need to listen to their child nodes
one more time after their last transmission, in order to detect
that no more data will come from these child nodes. Then the
parent node can be switched off for all the slots during which
it is scheduled to listen to these child nodes for the remainder
of the data collection.

In [11], Gandham et al. consider minimum latency schedul-
ing for data collection in trees, in a setting where all nodes have
data. They show that the minimum schedule length for data
collection in linear networks is 3N−3, where N is the number
of nodes in the chain, excluding the sink. Their schedule is
not a successive-slot schedule. Furthermore, they also show an
upper bound of max{3nk − 1, N} on the schedule length for
multi-line networks, where nk is the length of the longest line
connected to the sink, and N is the total number of nodes in
the network. For tree networks, they also show an upper bound
of max{3nk− 1, N}, where nk is the number of nodes in the
largest one-hop sub-tree of the root. Similarly, scheduling for

data collection has also been addressed by Choi et al. [12].
They show a lower bound of 3(N−2) time slots for collecting
data in a chain, which matches the result from [11] because
they take N as the number of nodes including the sink.

Dai et al. [13] also address data collection, considering a
multi-sink setting for multi-lines and using a variable inter-
ference model, compared to constant interference distance of
two hops as in the above-mentioned articles. Incel et al. [5]
explain that if all interference is mitigated between nodes
then data collection can be performed in max{2nk − 1, N}
time slots. They also suggested using different frequencies for
data converge-cast. Haibo et al. [14] address data collection
scheduling in a model with different frequencies. Moreover,
they prove a lower bound of 2N − 1 slots for the chain
and show that the maximum number of frequencies that are
required is N/2.

III. SYSTEM MODEL, ARBITRARY SCHEDULES,
SUCCESSIVE-SLOT SCHEDULES

A. System Model and Arbitrary Schedules

Consider a sensor network with a tree topology. The tree
network is represented as a graph G = (V,E), where V is the
set of nodes and E is the set of edges in the network. In other
words, V represents sensors and E represents communication
links between these sensors in the tree network. The sink is
the root of the tree.

We assume that all nodes have a single omnidirectional
transceiver, and all communication among sensors is per-
formed over a single unique frequency channel. Furthermore,
a node cannot send and receive a packet at the same time.
It cannot receive a packet successfully when it hears several
packets simultaneously. That is to say, both primary and sec-
ondary conflicts must be avoided for successful transmission.
We consider TDMA schedules, where time is divided into a
number of slots of equal length. In each slot several packets
can be scheduled, but no conflicting transmissions can be
scheduled in the same time slot.

We want to collect data from the sensor nodes in a way that
minimizes the total number of time slots, while also reducing
idle listening as much as possible. The aim is to achieve
fast data collection and conserve energy. We assume that not
every sensor will have data to be collected in each round of
data collection. Nevertheless, we require a schedule that is
independent of which nodes have data: the same schedule must
be followed no matter whether all nodes have data or only
some nodes have data. If a transmission from node v to its
parent p is scheduled in a particular time slot but no data is
available at v to be sent to p, there will either be idle listening
(i.e., p listens for a transmission from v, but v remains silent)
or, if p already knows that no data will be sent from v in this
time step, the transceivers of v and p can be switched off (and
energy saved).

For a node v ∈ V , we denote by Tv the set of nodes of
the subtree rooted at v, and by |Tv| the cardinality of that set.
The set of children of node v is denoted by C(v).

A schedule S of length (or latency) K is a mapping of time-
slots 1, 2, . . . ,K to sets of transmitting nodes, where S(t) is
the set of nodes scheduled for transmitting in time slot t. As

2

every transmission is from a node to its parent, the schedule
does not need to specify the receivers of the transmissions.
The sink will never be a transmitting node. A schedule S is
feasible if it satisfies the following conditions:

(C1) For every t, the nodes in S(t) can transmit si-
multaneously without conflict. This means that no
two nodes in S(t) have distance two or less in the
tree G.

(C2) Every node v (apart from the sink) is scheduled
exactly |Tv| many times for transmission.

(C3) For i > 1, if the i-th transmission of node v
is scheduled in time slot t, then at least i − 1
transmissions of children of v must have been
scheduled before time slot t.

Condition (C1) models interference constraints. Condition (C2)
is required because each node v must transmit its own data and
the data of all the other nodes in its subtree Tv. Condition (C3)
expresses that node v cannot send more data than its own data
and the data it has already received from its children.

We refer to such a feasible schedule as an arbitrary
schedule as no further restrictions are imposed.

If not all nodes have data, the behavior of a node is as
follows. Whenever the node is scheduled to transmit in the
current time slot, it checks whether it has any data (either
its own data or data received from a child) that has not yet
been sent to the parent. If so, it uses the current time slot
to forward any such data to the parent. Otherwise, it remains
silent in the current time slot. We refer to this node behavior
as local greedy.

B. Successive-Slot Schedules

As observed by Zhao and Tang [9], [10], arbitrary sched-
ules can cause a lot of idle listening if not all nodes have data.
For example, if a node has 10 time slots for transmitting data
to its parent, but only 3 nodes in its subtree have data, then
there will in general be 3 time slots with transmissions and 7
time slots with idle listening. The parent usually cannot turn
off its transceiver to avoid idle listening as it cannot predict
whether a packet will be sent by the child in the current time
slot or not. Zhao and Tang therefore propose a restricted type of
schedule, which they call successive-slot schedule. The special
property of successive-slot schedules is that all transmissions
from a node to its parent will happen in successive slots
starting from the first slot that is assigned to the node for
transmission, provided that local greedy scheduling is used in
each node. A node cannot cause idle listening at the parent in
between two actual transmissions from the node to its parent.
Formally, if node v is scheduled to transmit to its parent in
slots t1, t2, . . . , t|Tv| and if r of the nodes in Tv have data,
the transmissions from v to its parent must be made in time
slots t1, t2, . . . , tr. The advantage of successive-slot scheduling
is that as soon as the parent detects that the child is silent
in a transmission slot, it knows that no further transmissions
from that child will arrive. Therefore, the parent can switch off
its transceiver in all remaining time slots where that child is
scheduled to transmit. Similarly, the sink will know that data
collection has been completed as soon as each child v of the
sink has either sent |Tv| data packets or has been silent in
one time slot. This means that data collection can potentially

be completed earlier (before the end of the full schedule S).
Therefore, successive-slot scheduling can reduce idle listening
(as there can be at most one time slot with idle listening for
each parent-child pair) and schedule latency.

Zhao and Tang prove in [9] that successive-slot schedules
can be characterized as follows.

Lemma 1 ([9]): A feasible schedule S is a successive-slot
schedule if and only if the following condition holds:

(C3′) For each node v and each 1 ≤ i ≤ |Tv|, the i-
th transmission of node v is scheduled after the i-th
transmission of each child c of v with |Tc| > i, and
after the last transmission of each child c of v with
|Tc| ≤ i.

Observe that condition (C3′) implies condition (C3).

Successive-slot scheduling can be applied to data collection
in any tree network. In more general networks, a data collec-
tion tree can be determined in a first step, and successive-slot
scheduling can then be applied to that tree (but the interference
constraints would be derived from the full network).

In a successive-slot schedule, the process of data collection
starts from leaf nodes and proceeds towards the root node
(sink). Generally speaking, a node must listen for transmis-
sions from its child nodes until an idle transmission occurs.
Receiving idle listening from any child node guarantees the
end of transmission from that node, which allows the parent to
turns off its transceiver for any further scheduled transmissions
from that node. Each time the parent node has listened to all its
child nodes and has received at least one packet, it can make
one transmission to its own parent node. This continues until
it has received idle listening from all of its child nodes (or the
child nodes have completed all their transmissions). Finally,
it will transmit the remaining packets to its own parent. This
process continues for all nodes until the specified sink node has
stopped listening to all its children, implying that all packets
have been received.

We observe that if some node in the subtree Tv does not
have data in the current round of data collection, the parent p
of node v needs to listen to v one more time than the number
of actual transmissions from v to p.

Zhao and Tang [9] propose a heuristic that aims at
producing successive-slot schedules with minimum schedule
length. They do not prove bounds on the worst-case schedule
length produced by their algorithm compared to the optimum
schedule length.

We illustrate successive-slot scheduling using the simple
example shown in Figure 1. There are six nodes; the root is
the sink. Suppose that only two of the leaf nodes have data,
namely C and D. Firstly, B must listen to all its child nodes
to check whether they have data. It is obvious that B must
listen three times. In the first two time slots, B can receive
data from C and D, while in the last time slot no packet is
available and this results in idle listening. This means that B
has only two packets. After that, A is scheduled to listen to B.
In the first and second such slot, A can receive data from B.
Thus, A needs to listen again to B, but in the third such slot
A does not receive any packet from B; therefore, A does not
have to listen to B again after the third listening and turns its

3

S

A

B

C D F

Fig. 1. Data collection, only C,D have data

transceiver off for transmissions from B in the remainder of
the data collection schedule. Although in B two packets are
available, A will also need to listen one more time than the
number of packets, to find out whether any more packets are
available. Similarly, the sink needs to listen to A three times.
In the first two time slots the sink can receive two packets
but in the third slot it does not receive any packet. Therefore,
the sink turns its transceiver off, and the data collection is
completed. In an arbitrary schedule for data collection, it can
be observed that the sink should listen to A five times and A
should listen to B four times. Following the successive-slot
technique by Zhao and Tang [9], when a parent has listened
and not received any packet from the child then it does not
listen again to that child. This reduces idle listening.

IV. EXTRA-BIT SCHEDULES

We propose a technique called the extra-bit technique that
extends the successive-slot technique [9] and reduces idle
listening further. In the successive-slot technique, parent nodes
often have to listen to a child node one more time than the
number of data packets sent by the child node, causing an idle
listening slot. In the extra-bit technique, we can avoid idle
listening in all cases where at least one node in the subtree
has data.

The extra-bit technique adds a single extra bit to each
packet, which indicates to the receiver whether this packet is
the last one being transmitted by the node in the current data
collection round. The value of the bit is set to 0 if the packet
is the last one, indicating that no more packets will be sent
by that node. This tells the receiver that it does not need to
listen any more for transmissions from this node in the current
round of data collection, thus avoiding idle listening. The bit
is set to 1 if the packet is not the last one, which means that
more packets will be sent in later time slots.

According to this technique, when a parent has listened to
its child and checked the extra bit, then it can decide whether
to listen again in further time slots. The process of listening
will be continued until the parent receives a packet where the
extra bit is 0; the parent then stops listening to its child node
and switches its radio off for the rest of the schedule regarding
that node, resulting in energy conservation. The only exception
is if a node has no data to transmit at all; in that case, there
will be one idle listening time slot for the parent.

A successive-slot schedule in which each node always has
the information required to set the extra bit correctly is called
an extra-bit schedule.

A. Equivalence of Extra-Bit and Successive-Slot Schedules

One might expect that extra-bit schedules are more restric-
tive than successive-slot schedules, because whenever a node
sends a packet, it needs to be able to set the extra bit to a
correct value. This means that the node must know whether the
packet being sent is the last one or not. Somewhat surprisingly,
we can show that every successive-slot schedule is an extra-bit
schedule.

Theorem 1: Every successive-slot schedule S is also an
extra-bit schedule.

Proof: Let S be a successive-slot schedule. By Lemma 1,
S satisfies condition (C3′). We prove by induction on the
height of the nodes that each node has sufficient information to
set the extra bit for each transmitted packet. The claim clearly
holds for leaf nodes. Now consider a node v and assume that
the claim has been proved for all children of v. Consider the
i-th transmission of node v, 1 ≤ i ≤ |Tv|, and assume that
v has a packet to transmit. By condition (C3′), each child c
of v has already had at least i transmission slots if |Tc| > i,
or has already had all its transmission slots if |Tc| ≤ i. In
the former case, node v knows whether c has at least i + 1
packets or whether c has already transmitted all its packets.
In the latter case, node v knows that c has already transmitted
all its packets. Node v also knows how many packets it has
already received but not yet forwarded to its parent. From
this information, v can set the extra bit of the current packet
correctly.

For any given tree network, there can be many different
data collection schedules, and also many different extra-bit
schedules or successive-slot schedules. We are interested in
extra-bit schedules of minimum length.

B. Optimal Extra-Bit Schedules for Linear Networks (Chains)

In this section we consider WSNs where sensors are
arranged as a chain, with the sink located at one end of the
chain. We let N denote the number of nodes in the chain,
excluding the sink. We denote the node that is i hops away
from the sink by vi, for 1 ≤ i ≤ N . We also refer to vi as the
i-th node of the chain.

In the schedule we propose, a node will first wait until
it receives the first packet from its child. From this time slot
onward, it will make a transmission once every three steps,
and nodes that are 3, 6, 9, . . . hops further away from the
sink will transmit simultaneously with the node. This process
continues until the only nodes that still have packets are the
two nodes closest to the sink. Then, these two nodes transmit
their remaining packets to the sink, with only one transmission
per time slot.

As an example, a chain with N = 5 sensor nodes and
a sink node is shown together with an extra-bit schedule of
length 14 in Figure 2. Note that time slot 5 is the only slot
in which two transmissions take place simultaneously. For
illustrative purposes, we partition the schedule into five phases,
where each phase ends with a time slot in which a packet is
transmitted to the sink. In the first phase, five time slots are
required until the sink node receives the first packet. In the
second and third phase, only three time slots are needed until
the sink receives the second and third packet, respectively. Two

4

time slots are used in the fourth phase, and finally one time
slot is used to finish this schedule.

Now suppose that only the last node E has data in a certain
data collection round. Then the schedule shown in Figure 2
will complete data collection after 5 time slots at the end of
the first phase (when the sink receives the packet from A with
the extra-bit set to 0) and has no idle listening periods. For
comparison, if the same schedule is executed as a successive
slot schedule, data collection will be completed only after 8
time slots, and there will be four cases of idle listening (in
steps 5 to 8).

SABCDE

D → C
E → D D → C C → B B → A A→ S

1 2 3 4 5

C → B B → A A→ S
6 7 8

C → B B → A A→ S
9 10 11

B → A A→ S
12 13

A→ S
14

Fig. 2. Extra-bit schedule for a chain with 5 nodes

The shortest extra-bit schedules for the cases N = 1 and
N = 2 can easily be seen to have lengths 1 and 3, respectively.
Next, we prove that for N ≥ 3 the optimal length of an extra-
bit schedule in the chain is 4N − 6. We first give the lower
bound, and then the upper bound.

For arbitrary schedules, it has been shown in [11], [12]
that 3N − 3 time slots are required to complete a converge-
cast in the linear network. This lower bound can be shown
by considering the three nodes closest to the sink. All trans-
missions by these three nodes must be scheduled in different
time slots due to interference. The first node in the chain must
make N transmissions, the second node N − 1 transmissions
and the third node N − 2 transmissions. As a result, at
least N + (N − 1) + (N − 2) = 3N − 3 time slots are
required to complete data collection (and a schedule with
3N − 3 time slots actually exists). We now show that extra-
bit schedules require at least 4N − 6 time slots. We remark
that although extra-bit schedules are longer than the shortest
arbitrary schedules, extra-bit schedules have no or substantially
reduced idle listening periods if not all nodes have data.

Theorem 2: For chains with N ≥ 3 nodes and a sink,
any extra-bit schedule requires at least 4N − 6 time slots to
complete the data collection.

Proof: In the extra-bit technique, a node cannot make a
transmission before it has received the first packet from its
child. This implies that node vN−i cannot make its first trans-
mission before time slot i+1, for 0 ≤ i ≤ N−1. In particular,
there are N − 3 time slots before the first time slot in which
the third node v3 can make its first transmission. The third
node must make N − 2 transmissions, the second node N − 1
transmissions, and the first node N transmissions (see Figure 3
for an illustration). These 3N − 3 transmissions must all be
made in different time slots, and none of them can be made

N − 3 N−2 N−1 N

S123N -2N -1N

Fig. 3. Illustration of lower bound proof for chain with N nodes

Scheduling algorithm for linear network

Input: Chain with N ≥ 3 nodes v1, . . . , vN and sink s
Output: S(t) for t = 1, . . . , 4N − 6

01- S(t)← ∅ for t = 1, . . . , 4N − 6
02- p(i)← 1 for i = 1, . . . , N
03- t← 0
04- Call ScheduleFirstPart()
05- Call ScheduleRest()

06- Procedure ScheduleFirstPart()
07- For i←− N down to 4
08- t←− t+ 1
09- Call parallel(i)
10- End for
11- End procedure

12- Procedure parallel(i)
13- For j ←− i to N increment by 3
14- If (p(j) 6= 0) {

S(t)←− S(t) ∪ {vj}
p(j)←− p(j)− 1
p(j − 1)←− p(j − 1) + 1

}
15- End for
16- End procedure

17- Procedure ScheduleRest()
18- While (p(1) 6= 0) {
19- For i←− 3 down to 1 decrement by 1
20- If (p(i) 6= 0) {

t←− t+ 1
Call parallel(i)

}
21- End for
22- }
23- End procedure

Fig. 4. Extra-bit scheduling algorithm for linear networks

during the first N − 3 time slots. Therefore, the total number
of time slots must be at least (N − 3) + (3N − 3) = 4N − 6.

We now present an algorithm that produces an extra-bit
schedule of length 4N − 6 for chains with N nodes and a
sink. The algorithm is shown in Figure 4. First, it initializes
the schedule’s time slots S(t) (representing the set of nodes
to be scheduled at time t) to be empty, the number of packets
on node vi to p(i) = 1, and the current time slot t to 0. Then
the procedure ScheduleFirstPart is used to schedule the first
transmission of nodes from the last node to the fourth node.
Whenever a node vi is to be scheduled, t is incremented and
the procedure call parallel(i) is used to schedule the node vi as
well as any nodes vi+3, vi+6, . . . that still have a packet. When

5

ScheduleFirstPart is finished, the procedure ScheduleRest is
called. As long as the first node still has a packet, it repeatedly
considers the nodes vi for i = 3, 2, 1 and calls parallel(i) if
node vi still has a packet.

The state of the chain (i.e., the number of packets p(j)
stored at each node vj) before the k-th time slot, 1 ≤ k ≤ 4N−
8, of the schedule produced by the algorithm is as follows:

• If k = 4r + 1 for r ≥ 0: p(j) = 0 for j ≥ N +
1 − r, p(j) = 2 for j = N − r − 3m for 1 ≤ m ≤
min{r, (N − r)/3}, and p(j) = 1 for all other j.

• If k = 4r + 2 for r ≥ 0: p(j) = 0 for j ≥ N − r,
p(j) = 2 for j = N − r − 1 − 3m for 0 ≤ m ≤
min{r, (N − r − 1)/3}, and p(j) = 1 for all other j.

• If k = 4r + 3 for r ≥ 0: p(j) = 0 for j ≥ N − r,
p(j) = 2 for j = N − r − 2 − 3m for 0 ≤ m ≤
min{r, (N − r − 2)/3}, and p(j) = 1 for all other j.

• If k = 4r + 4 for r ≥ 0: p(j) = 0 for j ≥ N − r,
p(j) = 2 for j = N − r − 3 − 3m for 0 ≤ m ≤
min{r, (N − r − 3)/3}, and p(j) = 1 for all other j.

Theorem 3: For chains with N ≥ 3 nodes and a sink, the
algorithm shown in Figure 4 computes an extra-bit schedule
of length 4N − 6.

Proof: We observe that the schedule constructed by the
algorithm has the following properties:

• Every node vi makes N + 1− i transmissions.

• Every node vi makes its j-th transmission only after
it has received j packets from its child (or all packets
from the child in case |Tvi+1

| < j).

• The senders of simultaneous transmissions are at least
three hops away from each other, so there is no
interference between them.

Therefore, the schedule is a feasible extra-bit schedule.

The first packet reaches the sink in time slot N . Then one
packet reaches the sink every three time slots, until only the
first two nodes have packets left. This requires 3(N − 3) time
slots, and at that point the first node and the second node
will contain one packet each. It then requires three more time
slots to transmit these to the sink. The total schedule length is
therefore N + 3(N − 3) + 3 = 4N − 6 time slots.

C. Extra-Bit Schedules for Trees

Zhao and Tang [9] presented a heuristic algorithm for
computing successive-slot schedules in trees. By Theorem 1,
these schedules are also extra-bit schedules. We illustrate the
benefits of extra-bit schedules for trees using the example in
Figure 5.

In the extra-bit technique, 8 time slots are needed to
complete data collection if all nodes have data. If we suppose
that only C and E have data, then the beneficial impact
of extra-bit scheduling can be observed: The data collection
process finishes by the end of time slot 4, and there are only
two occurrences of idle listening that happen when A and B
listen to D and F , respectively. The sink listens to each of A
and B only once and infers from receiving a packet with the

S

A B

C D E F

C A D A
SBSASBSASBSABFBE

1 2 3 4 5 6 7 8

Fig. 5. Schedule for data collection when only C,E have data

extra-bit equal to 0 that no further packets will arrive. With
the successive-slot technique, data collection would finish only
after six time slots, and there would be four occurrences of idle
listening.

V. IDLE LISTENING IN SUCCESSIVE-SLOT AND

EXTRA-BIT SCHEDULES

In this section we compare extra-bit scheduling and
successive-slot scheduling in terms of the amount of idle
listening. We observe that the number of occurrences of
idle listening in an extra-bit schedule does not depend on
the particular choice of extra-bit schedule, and similarly for
successive-slot schedules.

A. Idle Listening in Chains and Trees

We determine the number of occurrences of idle listening
in chains and trees, both for the successive-slot technique and
the extra-bit technique.

1) Chain: Consider a chain with N nodes in addition to
the sink. The first node is the node closest to the sink, and the
last node is the node furthest away from the sink.

With the extra-bit technique, we consider several cases for
the amount of idle listening. First, if the last node has data,
then there is no idle listening at all, even if some other nodes
do not have data. Second, if no node has data, then there are
N occurrences of idle listening. Third, if the last node has no
data but some other node has data, then the amount of idle
listening depends on the position of the furthest node from the
sink that has data. For instance, in Figure 2, if node C has
data and nodes D and E do not have data, then idle listening
happens twice, once for a transmission from E to D and once
for a transmission from D to C. For the general case, we can
conclude that the number of occurrences of idle listening is
equal to the number of nodes in the chain minus the position
(distance from the sink) of the last node that has data. Let I
denote the position of the last node that has data (and let I = 0
if no node has data). Then the number of occurrences of idle
listening with extra-bit scheduling is N − I .

With the successive-slot technique, idle listening can be
analyzed as follows. If the last node does not have data, the
number of occurrences of idle listening is N as each of the N
nodes will have an idle transmission to its parent. If J is the
position of the last node that does not have data (or J = 0 if
all nodes have data), then the amount of idle listening is J .

6

We observe that the amount of idle listening with extra-
bit scheduling (N − I) is always less than or equal to that
of successive-slot scheduling (J): If I = N , then extra-bit
scheduling has no idle listening while successive-slot schedul-
ing may have up to N − 1 occurrences of idle listening.
If I < N , then J = N and therefore J ≥ N − I . The
most extreme difference between extra-bit scheduling and
successive-slot scheduling occurs if only the last node has
data. In that case, extra-bit scheduling has no idle listening
and successive-slot scheduling has N − 1 occurrences of idle
listening.

2) Tree: In the extra-bit technique, idle listening happens
for a transmission from a node v to its parent if and only if
none of the nodes in Tv have data. The number of occurrences
of idle listening is therefore equal to the number of nodes
whose subtrees have no data. In the successive-slot technique,
idle listening happens for a transmission from a node v to its
parent if and only if at least one node in Tv does not have data.
The number of occurrences is therefore equal to the number
of nodes whose subtrees contain at least one node that does
not have data. It is clear that idle listening for the successive-
slot technique is at least the amount of idle-listening for the
extra-bit technique.

For example, consider the tree in Figure 5 and suppose
that only A, D, B, and F have data. With the extra-bit
technique there are two occurrences of idle listening, one for
the transmission from C to A and one for the transmission
from E to B. With the successive-slot technique, however,
there are four occurrences of idle listening: the same two as for
the extra-bit technique, and in addition one for a transmission
from A to S and one for a transmission from B to S.

B. Expected Amount of Idle Listening

Now, we consider a probabilistic model in which each
node has data with probability p (which is the same for all
nodes), and show how to calculate the expected amount of
idle listening for extra-bit and successive-slot scheduling.

1) Chain: Consider a chain with N nodes v1, . . . , vN ,
indexed in order of increasing distance from the sink.

With the extra-bit technique, there is idle listening for a
transmission from vi to vi−1 if and only if none of the nodes
vj with i ≤ j ≤ N have data. The probability for this event
is (1 − p)N−i+1. The expected amount of idle listening is
therefore:

N∑

i=1

(1− p)N−i+1 =

N∑

i=1

(1 − p)i =
1− p− (1 − p)N+1

p

For example, consider the chain with five nodes from
Figure 2. The expected contributions of the five nodes to idle
listening are as follows:-

1) 1− p for node E
2) (1− p)2 for node D
3) (1− p)3 for node C
4) (1− p)4 for node B
5) (1− p)5 for node A

Fig. 6. Expected amount of idle listening for extra-bit and successive-slot
technique in a chain with 10 nodes

The expected amount of idle listening for the chain of five
nodes is therefore:

1−p+(1−p)2+(1−p)3+(1−p)4+(1−p)5 =
1− p− (1− p)6

p

With the successive-slot technique, there is idle listening
for a transmission from vi to vi−1 if and only if at least one
node vj with i ≤ j ≤ N does not have data. The probability
that all nodes vj with i ≤ j ≤ N have data is pN−i+1. The
probability for idle listening from vi to vi−1 is therefore 1 −
pN−i+1. The expected amount of idle listening is then:

N∑

i=1

(1 − pN−i+1) = N −
N∑

i=1

pi = N −
p− pN+1

1− p

For the example chain with five nodes of Figure 2, the expected
amount of idle listening for the successive-slot technique is:

1− p+ 1− p2 + 1− p3 + 1− p4 + 1− p5 = 5−
p− p6

1− p

Figure 6 shows how the expected amount of idle listening
for extra-bit and successive-slot scheduling in a chain with 10
nodes depends on the probability p. The x-axis represents the
probability p that a node has data and the y-axis represents
the expected amount of idle listening. We observe that the
amount of idle listening for the extra-bit technique is much
smaller than for the successive-slot technique, with equality
happening only for the extreme cases p = 0 (no node has
data, 10 occurrences of idle listening) and p = 1 (all nodes
have data, no idle listening). For a wide range of p, the extra-
bit technique has a significantly lower amount of idle listening.
For example, when p = 80% the expected amount of idle
listening is close to zero for extra-bit scheduling but roughly
6.4 for the successive-slot technique. Starting at p = 1, the
amount of idle listening increases sharply as p decreases with
the successive-slot technique, but only slightly with the extra-
bit technique.

2) Tree: Consider a tree whose set of nodes (excluding the
sink) is V . With the extra-bit technique, idle listening happens
for a transmission from node v to its parent if and only if none

7

S

A B

C D E F I

G K L

Fig. 7. Example tree for calculation of expected amount of idle listening

Fig. 8. Expected amount of idle listening for extra-bit and successive-slot
technique in the tree of Figure 7

of the nodes in Tv have data, which happens with probability
(1−p)|Tv|. The expected amount of idle listening is therefore:

∑

v∈V

(1 − p)|Tv|

With the successive-slot technique, idle listening happens if
at least one node in Tv does not have data, so the expected
amount of idle listening is:

∑

v∈V

(1 − p|Tv|)

For a concrete example, consider the tree shown in Fig-
ure 7. In this tree, there are five nodes with subtree size 1,
three nodes with subtree size 2, and two nodes with subtree
size 5. With the extra-bit technique, the expected amount
of idle listening in this example is therefore 5(1 − p) +
3(1 − p)2 + 2(1 − p)5. On the other hand, the successive-
slot technique has an expected amount of idle listening of
5(1− p) + 3(1− p2) + 2(1− p5).

Figure 8 shows how the expected amount of idle listening
for both techniques for the tree of Figure 7 depends on p.
Again, both techniques produce the same amount of idle
listening only if p = 0 (no node has data) and p = 1 (all
nodes have data, zero idle listening). While decreasing p from
1 to 0, the expected amount of idle listening increases more
quickly for the successive-slot technique than for the extra-bit
technique.

VI. CONCLUSION

We have proposed an optimized scheduling technique for
data collection in sensor networks for scenarios where not all
sensor nodes have data in each round of data collection. Our
extra-bit technique is aimed specifically at increasing energy
efficiency by reducing the amount of idle listening. Reduced
idle listening helps to preserve energy and prolong network
lifetime. Furthermore, we have shown how to construct extra-
bit schedules for chains that have minimum schedule length.
We have also shown how to compute the amount of idle lis-
tening in chain and tree networks for the previous successive-
slot technique and for our new extra-bit technique. We have
analyzed the expected amount of idle listening in a model
where each node has data with probability p, showing that
the extra-bit technique reduces idle listening substantially
compared to the successive-slot technique.

REFERENCES

[1] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of
wireless micro-sensor network models,” ACM Mobile Computing and

Comunications Review, vol. 6, no. 2, pp. 28–36, 2002.

[2] X. Chen, X. Hu, and J. Zhu, “Minimum data aggregation time problem
in wireless sensor networks,” in Proceedings of the First International

Conference on Mobile Ad-hoc and Sensor Networks (MSN’05), ser.
LNCS 3794. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 133–142.

[3] A. Wadaa, S. Olariu, L. Wilson, M. Eltoweissy, and K. Jones, “Training
a wireless sensor network,” Mobile Netw. Appl., vol. 10, no. 1-2, pp.
151–168, Feb. 2005.

[4] R. Rajagopalan and P. K. Varshney, “Data-aggregation techniques in
sensor networks: A survey,” IEEE Communications Surveys & Tutorials,
vol. 8, no. 4, pp. 48–63, 2006.

[5] O. D. Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapudi,
“Fast data collection in tree-based wireless sensor networks,” IEEE

Transactions on Mobile Computing, vol. 11, no. 1, pp. 86–99, January
2012.

[6] S. Kumar and S. Chauhan, “A survey on scheduling algorithms for wire-
less sensor networks,” International Journal of Computer Applications,
vol. 20, no. 5, pp. 7–13, April 2011.

[7] A. Bharathidasan and V. Anand Sai Ponduru, “Sensor networks: An
overview,” Department of Computer Science, University of California,
Davis, Tech. Rep., 2002.

[8] K. Sohraby, D. Minoli, and T. Znati, Wireless sensor networks: Tech-
nology, protocols, and applications. Hoboken, NJ: John Wiley & Sons,
2007.

[9] W. Zhao and X. Tang, “Scheduling data collection with dynamic traffic
patterns in wireless sensor networks,” in Proceedings of INFOCOM

2011. IEEE, April 2011, pp. 286–290.

[10] ——, “Scheduling sensor data collection with dynamic traffic patterns,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 4,
pp. 789–802, April 2013.

[11] S. Gandham, Y. Zhang, and Q. Huang, “Distributed time-optimal
scheduling for convergecast in wireless sensor networks,” Comput.

Netw., vol. 52, no. 3, pp. 610–629, Feb. 2008.

[12] H. Choi, J. Wang, and E. A. Hughes, “Scheduling for information
gathering on sensor network,” Wirel. Netw., vol. 15, no. 1, pp. 127–
140, Jan. 2009.

[13] X. Dai, P. E. Omiyi, K. Bür, and Y. Yang, “Interference-aware converge-
cast scheduling in wireless sensor/actuator networks for active airflow
control applications,” Wireless Communications and Mobile Computing,
vol. 14, no. 3, pp. 396–408, February 2014.

[14] H. Zhang, P. Soldati, and M. Johansson, “Optimal link scheduling
and channel assignment for convergecast in linear WirelessHART net-
works,” in Proceedings of the 7th International Symposium on Modeling

and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT

2009). IEEE, June 2009, pp. 1–8.

8

