
ONLINE CAPACITATED INTERVAL COLORING

LEAH EPSTEIN∗, THOMAS ERLEBACH† , AND ASAF LEVIN‡

Abstract. In the online capacitated interval coloring problem, a sequence of requests arrive
online. Each request is an interval Ij ⊆ {1, 2, . . . , n} with bandwidth bj . We are initially given a
vector of capacities (c1, c2, . . . , cn). Each color can support a set of requests such that the total
bandwidth of intervals containing i is at most ci. The goal is to color the requests using a minimum
number of colors. We present a constant competitive algorithm for the case where the maximum
bandwidth bmax = maxj bj is at most the minimum capacity cmin = mini ci. For the case bmax >

cmin, we give an algorithm with competitive ratio O(log bmax

cmin
) and, using resource augmentation, a

constant competitive algorithm. We also give a lower bound showing that constant competitive ratio
cannot be achieved in the general case without resource augmentation.

Key words. competitive analysis, lower bound, interval coloring with bandwidth

AMS subject classifications. 68W25, 68W40, 68Q17

1. Introduction. Motivated by a routing problem in optical networks, we con-
sider the following problem. We are given a line network with links 1, 2, . . . , n and a
vector of base capacities (c1, c2, . . . , cn). The requests arrive one by one, in an online
fashion, and each request is identified by the interval of links that it uses, Ij = [sj , tj ],
where 1 ≤ sj ≤ tj ≤ n. Moreover, the request Ij is associated with a bandwidth
bj that is the bandwidth request of Ij . Each time a request arrives, a color must be
assigned to it before the next request is revealed. A restriction on the coloring is that
the total bandwidth of all requests that are assigned a common color and contain link
i is at most ci. The goal is to use a minimum number of colors. Naturally, we assume
bj ≤ ci for all i ∈ Ij (otherwise a feasible coloring would not exist).

To elaborate the practical motivation of our study, consider an optical line net-
work, where each color corresponds to a distinct frequency (this frequency is seen as a
color as it is a frequency of light) in which the information flows. Different links along
the line have different capacities, which are a function of intermediate equipment
along the link (e.g., a link with an intermediate repeater may have reduced capacity
for each color as a result of the repeater). Each request uses the same bandwidth
on all links that this request contains. Moreover, requests arrive over time. As the
number of distinct available frequencies is limited, minimizing the number of colors
for a given sequence of requests is a natural objective. Changing the color allocation
of a request causes a setup cost that we would like to avoid, and therefore we restrict
ourselves to the online problem where once a request is allocated a color, this color
allocation cannot be changed.

From a theoretical point of view, the problem is interesting as it extends the
previously studied case of uniform capacities (ci = 1 for all i) to the setting with
arbitrary capacities. For many problems of a similar flavor (both in the online and
offline variants), the setting with arbitrary capacities is significantly more difficult to
deal with than the uniform setting, and new techniques and ideas are often required.
For example, a 3

2 -approximation algorithm for offline coloring of unit-bandwidth paths

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel (lea@math.haifa.ac.il).
†Department of Computer Science, University of Leicester, UK (t.erlebach.mcs.le.ac.uk). Part

of this work was done during a period of study leave granted by University of Leicester.
‡Chaya Fellow. Faculty of Industrial Engineering and Management, The Technion, 32000 Haifa,

Israel (levinas@ie.technion.ac.il).

1



2 L. EPSTEIN AND T. ERLEBACH AND A. LEVIN

in trees with uniform edge capacities follows easily from the known results for the
unit-capacity case [19], but nontrivial new techniques were needed to obtain a 4-
approximation for the case with arbitrary capacities [7]. Similar observations can
be made for the throughput version of such problems (i.e., maximizing the total
bandwidth of requests that can be accepted with one available color). For example,
the only known constant-competitive algorithm for online throughput maximization in
line or ring networks uses randomization and preemption and works only for the case of
uniform edge capacities [3]. For the offline version of these problems, Chakrabarti et al.
remark in [6] that most of the techniques that have been used for the uniform capacity
case do not seem to extend to the case of arbitrary capacities. As another example,
consider offline throughput maximization of connection requests in stars, each request
being associated with a bandwidth, a start time and an end time. Initially a constant-
factor approximation was achieved only for the case of uniform capacities [11], and
additional techniques were necessary to extend this result to arbitrary capacities [2].

In order to analyze our online algorithms for capacitated interval coloring, we
use the common criterion of competitive analysis. For an algorithm A, we denote its
cost by A as well. The cost of an optimal offline algorithm that knows the complete
sequence of intervals in advance is denoted by OPT. We consider the absolute com-
petitive ratio that is defined as follows. The absolute competitive ratio of A is the
infimum R such that for any input, A ≤ R · OPT. If the absolute competitive ratio
of an online algorithm is at most C we say that the algorithm is C-competitive.

Without loss of generality we can assume (by scaling) that mini=1,2,...,n ci = 1.
Therefore, we restrict ourselves to this special case.

The problem studied in this paper is a generalization of the classical online interval
graph coloring problem. If all capacities are 1, all bandwidth requests are 1, and the
number of links in the network is unbounded, we arrive at the standard interval
coloring problem.

Online coloring of interval graphs has been intensively studied. Kierstead and
Trotter [16] constructed an online algorithm that uses at most 3ω − 2 colors where
ω is the maximum clique size of the interval graph. They also presented a matching
lower bound of 3ω − 2 on the number of colors in a coloring of an arbitrary online
algorithm. Note that the chromatic number of an interval graph equals the size of
a maximum clique, which is equivalent in the case of interval graphs to the largest
number of intervals that intersect any point (see [13]). Many papers studied the
performance of First-Fit for this problem [14, 15, 18, 8]. It is shown in [8] that the
performance of First-Fit is strictly worse than the one achieved by the algorithm
of [16].

Generalizations of interval coloring received much attention recently. Adamy and
Erlebach [1] introduced the interval coloring with bandwidth problem (which is also a
special case of our problem). In this problem all capacities are 1 and each interval has
a bandwidth requirement in (0, 1]. As in our problem, the intervals are to be colored
so that at each point, the sum of bandwidths of intervals colored by a certain color
does not exceed the capacity, which is 1. This problem was also studied in [17, 9, 4].
The best competitive ratio known for the problem is 10 [17, 4]. A lower bound strictly
higher than 3 was shown in [9].

Other previous work is concerned with the throughput version of related problems.
In the demand flow problem on the line, each interval is associated with a profit, and
the goal is to maximize the total profit of the accepted intervals without violating any
edge capacity. This corresponds to maximizing the total profit of intervals that can



ONLINE CAPACITATED INTERVAL COLORING 3

receive the same color in our model. For the off-line version of that problem, constant-
factor approximation algorithms have been presented in [6, 7] for the case where
bmax ≤ cmin, where bmax = maxj bj is the maximum requested bandwidth and cmin =
mini=1,...,n ci is the minimum edge capacity. For the general case, approximation ratio
O(log bmax

cmin
) was achieved in [6]. Recently, a quasi-polynomial time approximation

scheme was presented [5].

Our results: In §3 we present our first main result, a constant competitive algo-
rithm for capacitated interval coloring for the case in which the maximum bandwidth
request is at most the minimum capacity, i.e., the case where bmax ≤ cmin. (Note that
this restriction means that the minimum edge capacity anywhere on the line must be
at least as large as the maximum bandwidth of any request. This is stronger than the
standard requirement that bj ≤ ci for all i ∈ Ij .) This is an important special case
that contains the interval coloring problem with bandwidth studied in [1, 17, 4, 9].
This restriction on the maximum bandwidth is common in work on demand flow
problems as well, see e.g. [6, 7]. While our algorithm uses the standard technique of
partitioning the requests into different types and dealing with each type separately, in
our case the different types need to share colors and so the bandwidth sharing scheme
for the colors needs to be designed very carefully.

In §4 we address the general case, i.e., the case where bmax can be larger than cmin.
In §4.1 we design an O(log bmax)-competitive algorithm (the ratio is O(log bmax

cmin
) if the

capacities are not normalized). In §4.2 we show that for any amount ε of resource
augmentation on the capacities (i.e. increasing capacities by a multiplicative factor of
at most 1+ε), we can design a constant competitive algorithm (the ratio is a function
of ε). Finally, in §4.3, we give our second main result, a lower bound showing that no
online algorithm can achieve constant competitive ratio in the general case without
resource augmentation. The basic idea of our lower bound is to adapt the known
logarithmic lower bound for online coloring of trees [12] to our problem. However,
arbitrary trees cannot be represented as interval graphs, and hence we need to use the
capacities and bandwidths in a very intricate way in order to encode the required tree
structures. Furthermore, the construction must be such that the algorithm cannot
benefit from the information that is conveyed by the encoding.

2. Preliminaries. For a set of requests, the load created on a link is the sum
of the bandwidths of the requests containing that link, and the maximum load is the
largest load of all links. In the case of interval coloring without bandwidth, the load
of a link is simply the number of intervals containing that link.

As building blocks for our online algorithms we employ algorithm KT , the orig-
inal 3-competitive interval coloring algorithm due to Kierstead and Trotter [16], and
algorithm KTℓb, an adaptation of Algorithm KT that was formulated by Epstein and
Levy [10], using ideas from [4] (see also [17, 9]) in the setting where intervals have
bandwidths but all links of the line have the same capacity. The basic idea of KT is to
assign each interval to a class depending on the load of previously processed intervals
assigned to the same or smaller classes, and to color the intervals in each class simply
using First-Fit. It turns out that the competitive ratio achieved for interval coloring in
this way is better than if First-Fit is applied to all intervals without a prior partition
into classes [8]. Algorithm KTℓb is a natural adaptation of KT to the setting with
bandwidth. The partition into classes is performed based on the load and depending
on a parameter ℓ, and each class is colored using First-Fit. Typically ℓ is chosen in
such a way that a single color is sufficient for the requests assigned to the same class.
The competitive ratio of both algorithms can be analyzed by relating the number of



4 L. EPSTEIN AND T. ERLEBACH AND A. LEVIN

classes to the maximum load of the requests and bounding the number of colors used
for each class.

More formally, the KTℓb algorithm for the online interval coloring with bandwidth
problem is defined as follows. We are given an upper bound b > 0 on the maximum
request bandwidth and a parameter ℓ > 0. The algorithm partitions the requests into
classes and then colors each class using the First-Fit algorithm. The partition of the
requests is performed online so that a request j is allocated to class m where m is
the minimum value so that the maximum load of the requests that were allocated to
classes 1, 2, . . . , m, together with the additional new request, is at most mℓ.

For an interval vi that was allocated to class m, a critical point of vi is a point
q (here, we use the terms point and link synonymously) in vi such that the set of all
the intervals that were allocated to classes 1, 2, . . . , m − 1 prior to the arrival of vi,
together with the interval vi, has total load more than (m − 1)ℓ in q (i.e., q prevents
the allocation of vi to class m − 1).

The following lemmas have been proved in [10] for algorithm KTℓb.
Lemma 2.1. Consider an interval vi that was allocated to class m. For the set

Am of intervals that were allocated to class m, and for every critical point q of vi, the
total load of Am in q is at most b + ℓ.

Lemma 2.2. For every m, the set Am of intervals that were allocated to class m
has a maximum load of at most 2(b + ℓ).

Note that the set Am of intervals assigned to class m can be colored with a single
color if its maximum load does not exceed the capacity of any edge (cf. [17]).

Lemma 2.3. The number of classes used by the algorithm is at most ⌈ω∗

ℓ
⌉, where

ω∗ is the maximum load.
It was shown in [16] that using the above algorithm with b = ℓ = 1 in the case

where all intervals have unit bandwidth (bj = 1 for all j) results in classes that have
maximum load two and can be colored online with three colors per class (the first
class can be colored using a single color), assuming unit edge capacities. (If the
edges have capacity 2, one color suffices for each class. The same obviously holds
also if b = ℓ = 1

2 , all requests have bandwidth equal to 1
2 , and the edges have unit

capacity.) Algorithm KT is exactly this special case of algorithm KTℓb; it is the
classical algorithm by Kierstead and Trotter that requires at most 3ω − 2 colors for
coloring a set of intervals with maximum clique size ω.

3. Algorithm for the case maxj bj ≤ mini=1,2,...,n ci .

3.1. The algorithm. As we assume that mini=1,2,...,n ci = 1, all bandwidth re-
quests are at most 1. We define the level of request Ij = [sj , tj ] to be ⌊log2 mini∈Ij

ci⌋,
i.e. the rounded down base 2 logarithm of the minimum capacity of any link along
the request (we also call such a link with minimum capacity a bottleneck link of the
request).

The main idea of our algorithm is to partition the requests into different types
depending on their level and bandwidth, and to apply an appropriate variant of KTℓb

to each type. As is usual in online problems of this kind, it appears difficult to handle
small requests (having small bandwidth compared to the capacity of the bottleneck
link) and large requests (large bandwidth compared to the capacity of the bottleneck
link) together and still achieve a constant competitive ratio. Therefore, we treat these
two kinds of requests separately using disjoint sets of colors. Furthermore, requests of
the same level can, in a certain sense, be treated like requests on a line with uniform
link capacities because of the way in which their maximum load can be used to derive
a lower bound on the optimal number of colors (see Lemmas 3.5 and 3.6). Hence, we



ONLINE CAPACITATED INTERVAL COLORING 5

Table 3.1

Overview of request classification

Level Bandwidth Classification

0 ≤ 1

4
small request

∈ ( 1

4
, 1] large request (type 2)

1 ≤ 1

4
small request

∈ ( 1

4
, 1

2
] large request (type 2)

∈ ( 1

2
, 1] large request (type 1)

2 ≤ 1

2
small request

∈ ( 1

2
, 1] large request (type 2)

i > 2 ∈ (0, 1] small request

apply KTℓb to the small requests of each level, and we carefully share the capacity
of each link among the small requests of all levels so that the same colors can be
used for small requests of different levels. For the large requests (which exist only on
a small number of levels), one could achieve a constant competitive ratio by simply
treating them as standard intervals and applying algorithm KT , but we obtain a
better constant by distinguishing further types and partially sharing colors between
different levels.

We now give a detailed description of the algorithm. Formally, small and large
requests are defined as follows. A level i > 0 request is small if its bandwidth is at
most 2i−3, and a level 0 request is small if its bandwidth is at most 1

4 . A request that
is not small is a large request. Note that large requests exist only in level 0, 1 and 2.
See Table 3.1 for an overview of the request classification.

Our algorithm first rounds down all capacities to integer powers of 2; this does
not change the classification into levels. Next it performs an online partition of the
requests according to their levels. For all i, the small requests of level i are colored
using an algorithm for online coloring along a line network with identical capacities,
and these capacities are max{1, 2i−1}. For the coloring of these small requests we use
the same set of colors for the requests of all levels. More specifically, requests of level
0 are allocated a capacity of 1 in each color, on every link. Requests of level i > 0 are
allocated a capacity of 2i−1 in each color, on every link. To color the small requests,
note that a small request has bandwidth at most 2i−3 for i > 0 and at most 1

4 for
level 0. Therefore we can apply the algorithm KTℓb from §2, using b = ℓ = 2i−3 for
i > 0 and b = ℓ = 1

4 for level 0. A new class is opened if a new request of some level
opens a new class. Each class is colored using a single color, i.e., given color t, it is
used for all requests assigned to class t, no matter which level they belong to. We
later show that this coloring is valid.

As for large requests, we first define the following types. We define a type 1 large
request to be a level 1 large request with bandwidth requirement that belongs to the
interval

(

1
2 , 1

]

. A large request that is not type 1 is called a type 2 large request. Each
type of large request is packed independently using its own set of colors. We next
describe the packing of each type of large requests.
Type 1 large requests. We round up all bandwidth requests to 1 and then apply
algorithm KT , the online algorithm for interval coloring (without bandwidth) of Kier-
stead and Trotter [16]. However, unlike that algorithm, where each class was colored
using three colors, we can use a single color for each class, similarly to the algorithm
for coloring requests of bandwidth in (1

4 , 1
2 ] in [17], see also §2.



6 L. EPSTEIN AND T. ERLEBACH AND A. LEVIN

Type 2 large requests. We partition the type 2 large requests into three subgroups
according to their levels. For each new open color we allocate a total unit capacity
for all the type 2 large requests of level 0. Moreover for each link whose rounded
capacity is at least two we also allocate a unit capacity for all the type 2 large request
of level 1. For each link whose rounded capacity is at least four we allocate two units
of capacity for all the type 2 large requests of level 2. We then apply the following
algorithms depending on the level of the large request.
A level 0 large request of type 2. We further partition these requests into two
sub-families of requests according to their bandwidth request. The first sub-family
consists of requests with bandwidth in

(

1
4 , 1

2

]

, and the second sub-family consists of

requests with bandwidth in
(

1
2 , 1

]

. For each sub-family we use its own set of colors
(note that all these colors can be used also by large requests of type 2 from levels 1
and 2). For each request in the first sub-family we round up its bandwidth request to
1
2 and then apply algorithm KT, the online algorithm for interval coloring (without
bandwidth) of Kierstead and Trotter, where each class can be packed into a common
color, as is done for type 1. For the second sub-family we also round up its bandwidth
request to 1 and afterwards apply algorithm KT, where each class is packed using
three colors, exactly as in [16].
A level 1 large request of type 2. We recall that such a request has bandwidth
at most 1

2 . We round up its bandwidth request to 1
2 and then apply algorithm KT,

where each class can be packed into a common color.
A level 2 large request of type 2. We round up its bandwidth request to 1 and
then apply algorithm KT, where each class can be packed into a common color.

3.2. Analysis. We first show that the solution returned by the algorithm is
feasible, i.e., satisfies the capacity constraints. We actually show that already the
rounded capacity constraints are satisfied. We first consider the colors of the small
requests.

Lemma 3.1. The sum of bandwidths allocated to each link and to each color used
by small requests (for all levels together) is at most its rounded capacity.

Proof. Consider a specific link, and assume that its (rounded) capacity is 2s.
Note that there are intervals that use this link only in levels 0, 1, . . . , s. Given a level
i, by Lemma 2.2, the total bandwidth of intervals colored by one color is at most
2(2i−3 + 2i−3) = 2i−1 for i > 0 and at most 2(1

4 + 1
4 ) = 1 for level 0. The total

bandwidth of intervals with a common color from level i ≤ s that use this link is
therefore at most max{1, 2i−1}. The claim follows by noting that 1+

∑s

i=1 2i−1 = 2s.

Lemma 3.2. The sum of bandwidths allocated to each link and to each color used
by large requests of type 2 (for all levels together) is at most its rounded capacity.

Proof. We fix a color that was used by a large request of type 2.
(i) For a link whose rounded capacity is one, we use this link and this color only

for level 0 requests, and for these requests we allocate at most one unit of capacity
on all the links (that is its rounded capacity).

(ii) For a link whose rounded capacity is two, we use this link and this color
only for level 0 and level 1 requests. The sum of bandwidths allocated to this link
and this color of level 0 requests is at most one unit of capacity. Similarly, the sum of
bandwidths allocated to this link and this color of level 1 requests is at most one unit
of capacity. Therefore, in this case also the sum of bandwidths allocated to each link
and each color used by large requests of type 2 (for all levels) is at most its rounded
capacity.



ONLINE CAPACITATED INTERVAL COLORING 7

(iii) For a link whose rounded capacity is at least four, we note that the total
allocated bandwidth of this color in a fixed link is at most four units of capacity, since
the requests of level 2 are allocated a bandwidth of at most 2 per color.

This completes the proof.

By Lemmas 3.1 and 3.2, using the fact that a color used by large requests of type
1 clearly satisfies the capacity constraints, we conclude the following corollary.

Corollary 3.3. The algorithm constructs a feasible solution.

The next lemma is a trivial consequence of the fact that the colors used to color
small requests of the different levels are shared among the levels.

Lemma 3.4. Let sj be the number of colors used to color the small requests of level
j. Then, the number of colors used by the algorithm for coloring the small requests is
exactly maxj≥0 sj.

We let a critical link of level j be a link with rounded capacity 2j . It is clear that
each interval of level j must contain a critical link of level j. Furthermore, note that
a critical link is not the same as a critical point (defined in §2).

Lemma 3.5. Let p be a link along the line such that the total load of requests of
level i is maximized in p. Then, the load in p is at most twice the maximum load of a
critical link of level i. Moreover, if there are L level i requests that use p, then there
is a critical link q of level i such that there are at least L

2 level i requests that use q.

Proof. Consider the set Sp of intervals that contain p. If p is a critical link of level
i, then the largest load on any critical link of level i is simply the load on p. Next,
consider the situation where this is not the case. If there are no critical links of level
i on the left-hand side of p, then p is contained in a minimal interval [p, p + 1, . . . , b],
where b is a critical link of level i. All intervals of level i that contain link p must
contain link b, since they must contain a critical link. Similarly, if there are no critical
links of level i on the right-hand side of p, then p is contained in a minimal interval
[a, a + 1, . . . , p], where a is a critical link of level i. All intervals of level i that contain
link p must contain link a. In both cases, again the load caused by level i intervals on
the critical link is at least the load on p. Finally, if there is at least one critical link
on each side of p, p is contained in a minimal interval [a, a + 1, . . . , b] such that both
a and b are critical links of level i. Each interval in Sp contains either a or b or both
of them. All intervals in Sp that contain a are added to Sa, and we let Sb = Sp \ Sa.
The set Sa contributes to the load in a, and the set Sb contributes to the load in b.
Therefore, the load in p is at most twice the maximum load of a critical link of level i
(and a similar conclusion holds with respect to the number of requests instead of the
load).

Lemma 3.6. Assume that si = maxj≥0 sj. Then, OPT ≥ si

32 .

Proof. Assume i > 0, and let p be a link along the line such that the total load
of requests of level i is maximized in p. Since color si is used, the load in p is greater
than 2i−3(si − 1) (as a new class is determined by ℓ = 2i−3). Therefore, by Lemma
3.5, the load of some critical link of level i is greater than 2i−4(si − 1) (half the load
of p). Denote by OPTi the minimum number of colors that are necessary to color
the small requests of level i. Since the original capacity (before the rounding) of a

critical link of level i is less than 2i+1, we conclude that OPTi > 2i−4(si−1)
2i+1 = si−1

32 .
Therefore, 32 · OPT ≥ 32 · OPTi > si − 1, and since OPT is integer, we conclude
that 32 · OPT ≥ si. For i = 0, a similar analysis shows the claim.

Using Lemmas 3.4 and 3.6, we establish the following:

Corollary 3.7. The number of colors used to color the small requests is at most
32 · OPT.



8 L. EPSTEIN AND T. ERLEBACH AND A. LEVIN

It remains to analyze the cost caused by the large requests.

Lemma 3.8. Let b be a fixed value that is either 1
2 or 1 and let c be a fixed value

that is either b or 2b. Assume that we are given a subset S of large request of level
i, 0 ≤ i ≤ 2, each with bandwidth in the interval

(

b
2 , b

]

and we first round up the
bandwidth to b and afterwards use Kierstead and Trotter’s algorithm KT with color
capacity c. Then, if b < c the number of colors used to color all the requests of this

family is at most 2 ·
(

2i+2

b
− 1

)

·OPT, and otherwise (if b = c) the number of colors

used to color all the requests of this family is at most 6 ·
(

2i+2

b
− 1

)

· OPT.

Proof. Consider the maximum number L of requests from S that share a common
link and denote this link by p.

(i) If b < c then b = c
2 and we can color each class within Kierstead and

Trotter’s algorithm using one color. Therefore, the number of colors that are used by
the algorithm for coloring the requests of S is at most the largest clique size, which
is L.

(ii) If b = c, then we can color each class within Kierstead and Trotter’s al-
gorithm using three colors. Therefore, the number of colors that are used by the
algorithm for coloring the requests of S is at most 3L.

We next show a lower bound on OPT. By Lemma 3.5, there is a critical link q of
level i with at least L

2 requests from S that contain q. Since the (original) capacity of

q is less than 2i+1 and each request from S has a bandwidth of at least b
2 , we conclude

that each color in the optimal solution may be used for at most 2i+2

b
−1 requests from

S that contain q. Since there are at least L
2 intervals that contain the critical link q,

we conclude that OPT ≥ L

2·
“

2i+2

b
−1

” . Since if b < c the algorithm uses at most L

colors to color S and otherwise it uses at most 3L colors, we conclude that the claim
of the lemma holds.

Lemma 3.9. The number of colors that are used by the algorithm to color all type
1 large requests is at most 14 · OPT.

Proof. By Lemma 3.8, using b = 1, c = 2 and i = 1.

Lemma 3.10. The number of colors that are used by the algorithm to color all
type 2 large requests of level 0 is at most 32 ·OPT.

Proof. By Lemma 3.8, using b = 1
2 , c = 1 and i = 0 we conclude that the

number of colors used by the algorithm to color all type 2 large requests of level 0
with bandwidth in

(

1
4 , 1

2

]

is at most 14 ·OPT. By Lemma 3.8, using b = 1, c = 1 and
i = 0, the number of colors used by the algorithm to color all type 2 large requests of
level 0 with bandwidth in

(

1
2 , 1

]

is at most 18 ·OPT.

Lemma 3.11. The number of colors that are used by the algorithm to color all
type 2 large requests of level 1 is at most 30 ·OPT.

Proof. By Lemma 3.8, using b = 1
2 , c = 1 and i = 1.

Lemma 3.12. The number of colors that are used by the algorithm to color all
type 2 large requests of level 2 is at most 30 ·OPT.

Proof. By Lemma 3.8, using b = 1, c = 2 and i = 2.

Lemma 3.13. The number of colors that are used by the algorithm to color all
type 2 large requests is at most 32 · OPT.

Proof. The colors used to color type 2 large requests of different levels are shared
among the levels. Therefore, the number of colors used to color all type 2 large
requests is the maximum among the numbers of colors used to color type 2 large
requests of level i for i = 0, 1, 2. By Lemmas 3.10, 3.11 and 3.12, this maximum is at



ONLINE CAPACITATED INTERVAL COLORING 9

most 32 ·OPT.
Theorem 3.14. The algorithm is 78-competitive.
Proof. Each color used by the algorithm is used to either color small requests, or

to color large requests of type 1, or to color large requests of type 2. By Corollary 3.7
there are at most 32 ·OPT colors that are used to color small requests. By Lemma 3.9
there are at most 14 · OPT colors used to color large requests of type 1. By Lemma
3.13, there are at most 32 · OPT colors that are used to color large requests of type
2. The claim follows since 32 ·OPT + 14 · OPT + 32 ·OPT = 78 · OPT.

4. Algorithms and lower bound for the general case. In this section, we
deal with the general case where bmax can be larger than cmin.

4.1. An O(log bmax)-competitive algorithm. We denote by bmax the maxi-
mum bandwidth of a request. Let small requests be defined as in §3.1, i.e., as requests
with bandwidth at most 1

4 on level 0 and with bandwidth at most 2i−3 on level i for
i > 0. We further define medium requests as those whose bandwidth bj satisfies
1
4 < bj ≤ 1

2 on level 0 and 2i−3 < bj ≤ 2i−2 on level i for i > 0. Requests that are
neither small nor medium are called large requests.

In order to obtain an O(log bmax)-competitive algorithm, we first note that the
algorithm of the previous section is designed in such a way that it can handle small
requests even if they have bandwidth requests which are larger than 1 and provides a
solution whose cost is at most 32 ·OPT for these requests. This is because the proofs
of Lemmas 3.1 and 3.6 do not use the fact that the maximum bandwidth is at most
1. Therefore, it suffices to consider the medium and large requests. It turns out that
we can let the medium requests of different levels share colors in a similar way as the
small requests, and we will see that they can be colored with 30 ·OPT colors. We will
show that the large requests of each level can be colored with 42 · OPT colors using
algorithm KT, but we cannot share colors between levels for the large requests, and
hence the overall competitive ratio is O(log bmax), since there are O(log bmax) levels
of large requests.

Now we describe the algorithm for medium and large requests in detail. For the
medium requests, we do the following. We use a separate set of colors for medium
requests, but this set of colors is shared by the medium requests of all levels. For each
such color, we set aside different parts of the capacity of each link for each level of
medium requests. On each link, we set aside 1 unit of capacity for medium requests
of level 0. On each link with capacity at least 2i, for i > 0, we additionally set aside
2j−1 units of capacity for requests of level j, for each 1 ≤ j ≤ i. This does not exceed
the capacity of any link. We apply Kierstead and Trotter’s algorithm KT (ignoring
bandwidth requests and capacities) to the medium requests of each level, but using
a single color for each class created by the algorithm; this is possible because each
class has maximum clique size 2, and the bandwidths of two medium requests of level
i, i > 0, add up to at most 2i−1, which is the capacity that has been set aside for
medium requests of level i in each color (and for i = 0, the reasoning is analogous).

Lemma 4.1. The number of colors that the algorithm uses for medium requests
of level i, for any i ≥ 0, is at most 30 ·OPT.

Proof. Consider the medium requests of level i. Let L be the maximum number
of such requests that contain the same link. Algorithm KT opens L classes for this
set of requests. As our algorithm uses a single color for each class, L colors suffice.

By Lemma 3.5, we know that there is a critical link p of level i that is contained in
at least L/2 requests. The capacity of p is less than 2i+1, and each medium request of
level i has a bandwidth request larger than 2i−3. Therefore, even the optimal coloring



10 L. EPSTEIN AND T. ERLEBACH AND A. LEVIN

can assign the same color to less than 2i+1/2i−3 = 16 requests and thus needs at least
L/(2 · 15) colors. So the number of colors used by the algorithm is at most 30 ·OPT.

For the large requests, we again use a separate set of colors. Furthermore, the
large requests of each level use their own set of colors (not shared between levels).
To color the large requests of level i, we disregard the capacities and bandwidth of
the requests, and we color the requests using Kierstead and Trotter’s algorithm KT
assuming unit capacities and unit bandwidths.

Lemma 4.2. For each i ≥ 0, the algorithm uses at most 42 ·OPT colors to color
all the large requests of level i.

Proof. Consider the maximum number L of large requests of level i that share a
common link and denote this link by p. Algorithm KT produces L classes and colors
each class using at most three colors. Therefore, the number of colors that are used
by the algorithm for coloring the large requests of level i is at most 3L.

We next show a lower bound on OPT. By Lemma 3.5, there is a critical link q
of level i with at least L

2 large requests of level i that contain q. Since the capacity of
q is less than 2i+1 and each large request of level i has a bandwidth of at least 2i−2,
we conclude that each color in the optimal solution may be used for at most 7 large
requests of level i that contain q. Therefore, OPT ≥ L

2·7 . The claim follows since the
algorithm uses at most 3L colors.

Putting the parts together, in our algorithm we perform an online partition of
requests into small, medium and large requests, and we color each type of requests
separately using disjoint sets of colors.

Theorem 4.3. There exists an O(log bmax)-competitive algorithm for the general
case of the capacitated interval coloring problem.

Proof. First, observe that the coloring produced by our algorithm is feasible. The
colors for the small requests are feasible by Lemma 3.1. The colors for the medium
requests are feasible because for each link the capacities set aside for different levels
sum up to at most the total capacity of the link. For a color that is used by large
requests of level i, note that we do not color intersecting requests using the same
color, and thus we do not exceed the capacity of any link.

The algorithm uses up to 32 ·OPT colors for small requests, 30 ·OPT colors for
medium requests (as the medium requests of all levels share colors), and 42 · OPT

colors for large requests of each level. The number k of relevant levels of large requests
is O(log bmax), as our algorithm uses colors to color large requests of level i only if
there is at least one large request of level i. The total number of colors used by the
algorithm is bounded by 62 ·OPT + k · 42 ·OPT = O(log bmax) · OPT.

Note that we have assumed cmin = 1 without loss of generality. In the case where
cmin is not normalized to 1, the ratio becomes O(log bmax

cmin
).

4.2. Resource augmentation algorithm. Given a fixed positive number 0 <
ε < 1 such that 1

ε
is an integer, we allow the online algorithm to use colors such that

the total bandwidth of requests that are assigned a common color and contain the
link i is at most (1 + ε)ci. I.e., the online algorithm is allowed to use slightly larger
capacities than the offline algorithm is allowed. Let δ = ε

3 . Observe that ε ≤ 1
2 and

δ ≤ 1
6 .
Define small requests, medium requests, and large requests in the same way as

in §4.1. We perform an online partition of the requests into small requests, medium
requests, and large requests. The small requests and medium requests are colored in
the same way as in §4.1, using a total of at most 62·OPT colors. We next describe the



ONLINE CAPACITATED INTERVAL COLORING 11

algorithm to obtain a coloring of the large requests. The main idea is to partition the
large requests into finer levels (called δ-levels) and to use the slightly increased edge
capacities to let requests in every k-th δ-level, for a suitable constant k depending on
δ, share colors. The details are as follows.

Let c̃i denote ci rounded up to the nearest integer power of 1 + δ. We define
the δ-level of a request [sj , tj ] to be the logarithm with respect to the base 1 + δ of
the minimum rounded capacity of a link along this request, i.e., log1+δ minsj≤i≤tj

c̃i.
Note that the δ-level of a request is different from its level; the level of request j with
interval Ij is still defined as ⌊log2 mini∈Ij

ci⌋.

For each δ-level i of requests, we use algorithm KT (ignoring request bandwidths
and capacities) to compute a packing of its large requests into colors. Note that no
two intersecting intervals are assigned the same color, so we use a capacity of at most
(1 + δ)i on each link. We can adapt the idea of Lemma 4.2 to obtain the following
lemma.

Lemma 4.4. For each i ≥ 0, the algorithm uses at most 54 ·OPT colors to color
all the large requests of δ-level i.

Proof. Consider the maximum number L of large requests of δ-level i that share
a common link and denote this link by p. As in the proof of Lemma 4.2, it follows
that the algorithm uses at most 3L colors on the large requests of δ-level i.

We next show a lower bound on OPT. By a straightforward adaptation of the
proof of Lemma 3.5, it follows that there is a critical link q of δ-level i (i.e., q has
rounded capacity c̃q = (1 + δ)i) that is contained in at least L

2 large requests of δ-
level i. The original capacity cq of q satisfies cq ≤ (1 + δ)i. For each request j of
δ-level i, we have that mink∈Ij

cj > (1 + δ)i−1. This implies that the level of j is at
least ℓ = ⌊log2(1 + δ)i−1⌋. As j is a large request of level ℓ, its bandwidth is at least
2ℓ−2 ≥ (1 + δ)i−1/8. It follows that at most ⌊8(1 + δ)⌋ = 9 large requests of δ-level i
that contain q can share a color, so the optimum coloring needs at least L/18 colors.
As our algorithm uses at most 3L colors, the claim follows.

For each i ≥ 0, we define the type of δ-level i to be i mod 1
δ2 . Therefore, there are

exactly 1
δ2 types. For the large requests of all δ-levels with a common type we use the

same set of colors, whereas for different types we use disjoint sets of colors. Therefore,
the total number of colors used by our algorithm is at most

(

62 + 54 · 1
δ2

)

OPT, and
this provides a constant competitive ratio for all constant values of δ. It remains to
show that we exceed the capacity of a link by a multiplicative factor of at most 1 + ε.

Lemma 4.5. Given a color c that is used to color large requests of type i, and
a link j whose capacity is cj, the total bandwidth of requests that are colored c and
contain j is at most (1 + 3δ) cj = (1 + ε)cj.

Proof. In order to determine the largest δ-level of type i that can have requests

which contain link j, denote by k the maximum integer value so that (1+δ)i+ k

δ2 ≤ c̃j .
Each δ-level that contributes to the load of link j in color c is of type i. Each δ-level
i′ of type i such that i′ ≤ i + k

δ2 adds to the total load of link j at most (1 + δ)i′ and

a δ-level i′ of type i such that i′ > i + k
δ2 adds nothing to the load of link j (such a

request would be invalid in the given network). Therefore, the total load of link j is
at most

k
∑

ℓ=0

(1 + δ)i+ ℓ

δ2 = (1 + δ)i+ k

δ2 ·
k

∑

ℓ=0

(

1

1 + δ

)
ℓ

δ2

≤(1) (1 + δ)i+ k

δ2 ·
∞
∑

ℓ=0

(

1

1 + δ

)
ℓ

δ2



12 L. EPSTEIN AND T. ERLEBACH AND A. LEVIN

≤(2) cj · (1 + δ) ·
∞
∑

ℓ=0

(

1

1 + δ

)
ℓ

δ2

≤(3) cj · (1 + δ) ·
∞
∑

ℓ=0

(

1 −
1

1 + δ

)ℓ

= cj · (1 + δ)2 ≤(4) cj · (1 + 3δ) = (1 + ε)cj

where (1) holds because 1 + δ > 0, (2) holds because (1 + δ)i+ k

δ2 ≤ c̃j ≤ (1 + δ)cj , (3)

holds because
(

1
1+δ

)
1

δ2

≤ 1 − 1
1+δ

(see below), and (4) holds as δ < ε ≤ 1.

We outline a proof that
(

1
1+δ

)
1

δ2

≤ 1 − 1
1+δ

holds for all δ ≤ 1. By substituting

x = 1/δ and taking the inverse on both sides of the inequality, we arrive at the
following equivalent inequality:

(1 + 1/x)x2

≥ x + 1 .

As (1 + 1/x)x ≈ e for large x, we see that the left-hand side of the inequality grows
as ex and thus the inequality clearly holds for large enough x. Furthermore, it is not
difficult to verify that the inequality actually holds for all x ≥ 1. A formal proof can
be obtained by observing that the inequality holds with equality for x = 1, and the
derivative of the left-hand side is greater than 1 for all x ≥ 1.

We obtain the following theorem.
Theorem 4.6. For every constant ε > 0, there is a constant-competitive algo-

rithm for the general case of the capacitated interval coloring problem with resource
augmentation by a factor of 1 + ε.

4.3. Competitive lower bound. We give a lower bound construction showing
that no deterministic algorithm can achieve constant competitive ratio in the general
case (without resource augmentation). Let A be any deterministic online algorithm
for the problem. We imagine the links of the line numbered from left to right, starting
with link 1 as the leftmost link. The capacity of link j is set to 3j , for all j ≥ 1. The
number of links of the line will be determined later.

First, we give an informal outline of the ideas underlying the construction. As a
starting point, consider the known lower bound for online coloring of trees [12]. If one
wants to force a graph coloring algorithm to use color k on a tree, one can recursively
present k−1 smaller subtrees that force the algorithm to use colors 1 to k−1 in different
subtrees, and then present an extra node that is adjacent to k − 1 nodes from the
different subtrees that have been assigned colors 1 to k − 1. When translating this
idea to intervals with bandwidth, the main difficulty is that arbitrary trees cannot
be represented as interval graphs. Instead of subtrees, we use “components,” which
are sequences of intervals that force an algorithm to use a “new” color on the last
interval of the component. Furthermore, that last interval I (and potentially some
other overlapping intervals, which do not affect the construction due to their small
bandwidth) extends far to the right compared to the rest of the component. We can
then place further components (to force the algorithm to use other new colors) inside
that last interval I, because the exponentially increasing capacities of the links of
the line ensure that the bandwidth of I is negligible compared to the bandwidth of
intervals placed in these further components. Thus we can let a number of components
overlap in such a way that their last intervals all intersect and extend further to the
right than the rest of the components. Then an extra interval (corresponding to the
extra node mentioned in the discussion of the tree case above) can be placed to the
right in such a way that it intersects (and is in conflict with) all the last intervals of



ONLINE CAPACITATED INTERVAL COLORING 13

the components, thus forcing the algorithm to use a new color. Hence, the algorithm
can be forced to use an arbitrary number of colors, while the optimal number of
colors remains 2 as can be shown by a constructive offline coloring procedure for the
components.

The formal proof follows. We identify colors with positive integers. Whenever A
uses a new color, and it has used i − 1 distinct colors prior to using that color, the
new color is defined to be color i.

The adversary construction has the following properties:

(i) Each newly presented interval has its left endpoint strictly to the right of
all left endpoints of previously presented intervals.

(ii) Each newly presented interval has a strictly larger bandwidth than all pre-
viously presented intervals. In fact, an interval with leftmost link L has bandwidth
at least 3L − 3L−1 > 3L−1.

(iii) The set of all presented intervals can be colored optimally with two colors.

The adversary strategy makes use of a component (i.e., a subroutine that is used
as part of the construction) denoted by CF (ℓ), where F can be any set of positive
integers (the set of forbidden colors) and ℓ can be any positive integer. The goal
of CF (ℓ) is to force the algorithm to use a color that is not in F . Furthermore,
the interval I on which A uses a color not in F is the last interval presented in the
component. The length of I is at least ℓ. A component CF (ℓ) is placed on a part
of the line whose leftmost link is some link L (i.e., no interval presented in CF (ℓ)
contains a link to the left of L). An instance of CF (ℓ) with leftmost link L is also
called a CF (ℓ) at L. Note that different incarnations of CF (ℓ) may contain different
(non-isomorphic) sets of intervals, as the intervals presented by the adversary depend
on the actions of the on-line algorithm A. The construction of CF (ℓ) for |F | > 1 is
recursive and makes use of smaller components CF ′(ℓ′) for F ′ ⊂ F .

A component CF (ℓ) at L requires a part of the line consisting of g(ℓ, |F |) links, for
a suitable function g (to be determined later). Note that g(ℓ, |F |) ≥ ℓ always holds,
since already the last interval of CF (ℓ) has length at least ℓ.

The adversary construction satisfies the following invariants.

Invariant 1: When the adversary is about to present a CF (ℓ) at L, the total band-
width of all previously presented intervals containing L is at most βL := 3L−1.

Invariant 2: Let R′ be the leftmost among the rightmost ℓ links of the last interval I
of the component CF (ℓ) at L presented by the adversary (i.e., R′ = R− ℓ+1
if R is the rightmost link of I). The construction ensures that the total
bandwidth of intervals from CF (ℓ) that contain R′ is at most 3R′−1 − 3L−1.

After a CF (ℓ) at L has been presented, only intervals with left endpoint R′ (as defined
in Invariant 2) or further to the right will be presented. Note that Invariant 2, together
with Invariant 1, implies that the bandwidth of intervals starting to the left of R′

and containing R′ is at most 3L−1 + (3R′−1 − 3L−1) = 3R′−1, so that Invariant 1
automatically holds again for components placed at R′ or further to the right.

For F = ∅, a CF (ℓ) at L consists of a single interval of length ℓ + 1 with leftmost
link L and bandwidth 3L−βL. The length of the part of the line required for a CF (ℓ)
with |F | = 0 is thus g(ℓ, 0) = ℓ + 1.

As another simple case to start with, consider the case F = {f1} for some positive
integer f1. The adversary first presents an interval I1 of length ℓ + 1 with leftmost
link L and bandwidth 3L − βL. If A assigns a color different from f1 to I1, the
component CF (ℓ) is finished (and I1 is the last interval of that component). If A
assigns color f1 to I1, the adversary next presents an interval I2 of length ℓ+1 whose



14 L. EPSTEIN AND T. ERLEBACH AND A. LEVIN

leftmost link is the rightmost link R of I1. The bandwidth of I2 is 3R−βL. Algorithm
A must color I2 with a color different from f1, because I1 and I2 cannot receive the
same color (their bandwidths add up to 3L−βL +3R−βL = 3R +(3L−2 ·3L−1) > 3R

and both intervals contain link R). The component CF (ℓ) is finished, and I2 is its last
interval. Note that I1 has rightmost link R and hence does not overlap the rightmost
ℓ links of I2. Therefore, the bandwidth occupied by this CF (ℓ) on its rightmost ℓ
links (starting with link R + 1) is bounded by 3R − βL, showing that Invariant 2 is
satisfied. The length of the part of the line required for the CF (ℓ) with |F | = 1 is
thus g(ℓ, 1) = 2ℓ + 1.

Let |F | = k for some k > 1. The idea underlying the construction of CF (ℓ)
is to repeatedly use components CF ′(ℓ′) for suitable subsets F ′ ⊂ F to force A to
use all colors from F on intervals that all intersect on a common link; then, a new
interval that contains that link and is in conflict with the previous intervals containing
that link is presented and must receive a color outside F . On the other hand, if the
algorithm already uses a color outside F to color an interval presented in one of the
recursive constructions CF ′(ℓ′), the construction of CF (ℓ) finishes right away. We
can assume (by induction) that Invariant 2 has been shown to hold for the recursive
constructions CF ′(ℓ′) that are used in the construction of CF (ℓ), and we will show
that Invariant 2 holds again for CF (ℓ).

C{1,2,3}(ℓ)

C{1,2}(ℓ)

C{1}(ℓ)

ℓ

C∅(ℓ)
1

2

3

4

5

Fig. 4.1. Example illustrating the construction of the component CF (ℓ) that is used in the lower
bound, here for F = {1, 2, 3, 4}. The boxes with rounded corners inside the larger box represent the
smaller components used in the construction of C{1,2,3,4}(ℓ). The last interval in each component
is drawn in bold and labelled with the color assigned to it by the algorithm in this example. The
last interval of the construction is in conflict with the four last intervals of the smaller components
and is assigned color 5 by the algorithm. For C{1,2}(ℓ) and C{1,2,3}(ℓ), only the last interval of
the component is shown. Note that each component is placed inside the last interval of the previous
component, no matter whether that interval extends until the right end of that component or not.

ℓ

C{1}(ℓ)

C∅(ℓ)
1

3

C{1,3}(ℓ)5

Fig. 4.2. Different example for the construction of C{1,2,3,4}(ℓ). Here, the algorithm uses color
3 on the last (and only) interval of C{1}(ℓ), so that the adversary next presents a C{1,3}(ℓ). The
algorithm uses color 5 already for one of the intervals of C{1,3}(ℓ), so that the construction finishes
early.

Assume that F = {f1, f2, . . . , fk}. We will show how to construct CF (ℓ) on a part
of the line with leftmost link L. The construction proceeds in rounds. There will be
at most k rounds (numbered from 0 to k− 1), and after the last round one additional
final interval may be presented. Illustrations are given in Figs. 4.1 and 4.2.

For round 0, let F0 = ∅. First, the adversary presents a CF0
(ℓ0) for suitable



ONLINE CAPACITATED INTERVAL COLORING 15

ℓ0 ≥ ℓ starting at L. If A assigns a color outside F to the last (and only) interval of
C∅(ℓ0), the construction of CF (ℓ) is finished. Otherwise, we can assume w.l.o.g. that
A assigns color f1 to the last interval I0 of C∅(ℓ0). Let R0 be the rightmost link of I0.
Let R′

0 = R0 − ℓ0 + 1. The remaining rounds up to round k − 1 will take place inside
the rightmost ℓ0 links of I0; only the final interval that may be presented after round
k − 1 extends beyond the right end of I0. Thus ℓ0 must be chosen large enough. We
will determine the exact size of ℓ0 later.

For round 1, let F1 = {f1}. The adversary presents a CF1
(ℓ1) starting at L1 = R′

0.
Observe that the total bandwidth of intervals presented earlier that contain R′

0 is
bounded by 3R′

0−1: bandwidth at most 3L−1 from intervals presented before the
current CF (ℓ) (by Invariant 1), and bandwidth at most 3R′

0−1−3L−1 from the CF0
(ℓ0)

that was presented in round 0. The last interval I1 of CF1
(ℓ1) receives some color c.

If c /∈ F , the construction of CF (ℓ) is finished. If c ∈ F , we can assume w.l.o.g. that
c = f2.

In general, assume that round j of the construction of CF (ℓ) has finished and the
last interval Ij of the CFj

(ℓj) presented in round j has received color fj+1. Let Rj be
the rightmost link of Ij . Let R′

j = Rj − ℓj + 1. Arguing as above, we know that the

total bandwidth of intervals containing R′
j that were presented so far is at most 3R′

j−1.
Let Fj+1 = {f1, f2, . . . , fj+1}. The adversary presents a CFj+1

(ℓj+1) at Lj+1 = R′
j .

This component will be placed completely inside the rightmost ℓj links of Ij . The last
interval Ij+1 of CFj+1

(ℓj+1) receives some color c. If c /∈ F , the construction of CF (ℓ)
is finished. If c ∈ F , we can assume w.l.o.g. that c = fj+2. This finishes round j + 1.

After round k − 1, either the construction has finished early and we are done
(Fig. 4.2 shows an example), or the algorithm has used colors f1, f2, . . . , fk on the
intervals I0, I1, . . . , Ik−1 that were the last intervals of the components CFj

(ℓj) for
j = 0, . . . , k − 1. In the latter case, let Rk−1 be the rightmost link of Ik−1. Note
that Rk−1 is also contained in I0, . . . , Ik−2. The adversary presents an interval Ik

with leftmost link Rk−1, length ℓk, and bandwidth 3Rk−1 − βL. Note that Ik is in
conflict with I0, . . . , Ik−1 on link Rk−1, as each of I0, . . . , Ik−1 has bandwidth at least
3L − 3L−1 = 3L − βL > βL. Therefore, the algorithm A must assign a color outside
F to Ik, and the construction of CF (ℓ) is finished (Fig. 4.1 shows an example). ℓk is
chosen in such a way that the interval Ik extends ℓ links further to the right than
any of the previous intervals presented as part of this component CF (ℓ). Note that
no other interval (other than Ik) from this CF (ℓ) overlaps the rightmost ℓ links of Ik.
Let Rk be the rightmost link of Ik, and let R′

k = Rk − ℓ + 1. The total bandwidth
of intervals from this CF (ℓ) that overlap the rightmost ℓ links of Ik is equal to the
bandwidth of Ik, which is less than 3R′

k−1 − 3L−1. Therefore, Invariant 2 is satisfied
for this CF (ℓ).

As we know that previously presented intervals of total bandwidth at most 3L−1

contain the link L (by Invariant 1), we can conclude that the total bandwidth of
intervals overlapping the rightmost ℓ links of Ik is bounded by 3L−1 + 3R′

k−1 − βL =
3R′

k−1, so that Invariant 1 continues to hold for components placed at R′
k or further

to the right.

It is clear that the component CF (ℓ) forces the algorithm to use a color outside
the set F . Furthermore, the construction of CF (ℓ) also ensures that Invariant 2 holds
for it, i.e., that the total bandwidth of intervals from the CF (ℓ) that overlap the
rightmost ℓ links of its last interval is at most 3R′−1 − 3L−1, where R′ is the leftmost
among the rightmost ℓ links of the last interval. If the last interval is presented after
round k − 1, this follows as discussed above. If the construction ends early, the last



16 L. EPSTEIN AND T. ERLEBACH AND A. LEVIN

interval of the CF (ℓ) is also the last interval of a component CFj
(ℓj) placed at some

link Lj in the construction. By induction, we know that the intervals of the CFj
(ℓj)

that overlap the rightmost ℓj links of its last interval have total bandwidth at most

3R′

j−1 − 3Lj−1, where R′
j is the leftmost among the rightmost ℓj links of the last

interval. Furthermore, the total bandwidth of intervals from the CF0
(ℓ0), CF1

(ℓ1),
. . . , CFj−1

(ℓj−1) placed to the left of the CFj
(ℓj) that overlap R′

j is bounded by

3Lj−1 − 3L−1 (since Invariant 2 holds for all these components). Therefore, the total
bandwidth of intervals from the CF (ℓ) that overlap the rightmost ℓj links of the last

interval is at most 3Lj−1 − 3L−1 + 3R′

j−1 − 3Lj−1 = 3R′

j−1 − 3L−1, establishing that
Invariant 2 holds for the CF (ℓ).

In the following, we first calculate the lengths ℓj for j = 0, . . . , k that are needed
in the construction of a CF (ℓ); from this we derive that the length g(ℓ, k) of the part
of the line that is needed to place a CF (ℓ), for ℓ > 0, with |F | = k is g(ℓ, k) = ℓ+1 for
k = 0 and g(ℓ, k) = ak(ℓ+1)−1 for k > 0, where the sequence an for n ≥ 0 is defined
by a0 = 1 and an+1 = 1 +

∏n
i=0 ai. Afterwards, we will show that the set of intervals

of any CF (ℓ) can be colored with 2 colors by an optimal offline algorithm. Finally,
we put everything together to obtain the lower bound on the competitive ratio.

Before we begin the technical analysis, we give a concrete example for the ex-
ecution of the adversary strategy by showing the construction of a CF (1) for F =
{1, 2, 3, 4} against the First-Fit coloring algorithm. For this construction, a line with
g(1, 4) = 2a4 − 1 = 85 links is needed. The list of intervals is as follows. For each
interval we specify the indices of the first and last link, its bandwidth requirement,
its color (1 or 2) in an optimal coloring, and the color that First-Fit assigns to it:

1. [1, 84], 31 − 30, 2, 1.
2. [2, 43], 32 − 31, 1 ,1.
3. [43, 84], 343 − 31, 2, 2.
4. [44, 71], 344 − 343, 1, 1.
5. [45, 58], 345 − 344, 2, 1.
6. [58, 71], 358 − 344, 1, 2.
7. [71, 84], 371 − 343, 2, 3.
8. [72, 83], 372 − 371, 1, 1.
9. [73, 78], 373 − 372, 2, 1.

10. [78, 83], 378 − 372, 1, 2.
11. [79, 82], 379 − 378, 2, 1.
12. [80, 81], 380 − 379, 1, 1.
13. [81, 82], 381 − 379, 2, 2.
14. [82, 83], 382 − 378, 1, 3.
15. [83, 84], 383 − 371, 2, 4.
16. [84, 85], 384 − 30, 1, 5.

4.3.1. Calculating the lengths. Recall that g(ℓ, k) denotes the length of the
part of the line that is needed to place a CF (ℓ) for |F | = k. We have seen that
g(ℓ, 0) = ℓ + 1 and g(ℓ, 1) = 2ℓ + 1.

During the construction of a CF (ℓ), we need that ℓj ≥ ℓ for 0 ≤ j ≤ k − 1, since
the last interval of each component CFj

(ℓj) could potentially be the last interval of the
CF (ℓ). Furthermore, we need each ℓj to be large enough so that all the components
CFj′

(ℓj′) for j′ > j fit inside a range of length ℓj .
We get the following conditions:

(i) ℓk−1 ≥ ℓ. This must hold as the last interval of the CFk−1
(ℓk−1) could be the

last interval of CF (ℓ). We have no other condition on ℓk−1, so we can choose ℓk−1 = ℓ.



ONLINE CAPACITATED INTERVAL COLORING 17

The space on the line that is required by the CFk−1
(ℓk−1) is then g(ℓk−1, k − 1).

(ii) ℓk−2 ≥ g(ℓk−1, k − 1), since a CFk−1
(ℓk−1) needs to be placed inside a part

of length ℓk−2. We also need ℓk−2 ≥ ℓ, but this is redundant since g(ℓk−1, k − 1) ≥
ℓ. Thus, we can choose ℓk−2 = g(ℓk−1, k − 1), and the space for CFk−2

(ℓk−2) is
g(ℓk−2, k − 2).

(iii) For any j, we can choose ℓj = g(ℓj+1, j + 1) and get that the space for
CFj

(ℓj) is g(ℓj, j).
(iv) The total space for the CF (ℓ) is then g(ℓ0, 0) + ℓ, because space g(ℓ0, 0)

suffices for the component CF0
(ℓ0), all other components CFj

(ℓj) for 1 ≤ j ≤ k − 1
are placed inside it, and the final interval that is potentially presented after round
k−1 extends by ℓ links further to the right. So we obtain g(ℓ, k) = g(ℓ0, 0)+ ℓ, where
ℓ0 can be calculated as outlined above.
The above description represents an inductive definition of the function g. To sum-
marize, we have g(ℓ, 0) = ℓ + 1. For any k ≥ 1, if we assume that g(ℓ′, k′) is already
defined for all positive ℓ′ and 0 ≤ k′ < k, the following equations allow us to determine
g(ℓ, k):

ℓk−1 = ℓ

ℓj = g(ℓj+1, j + 1) for 0 ≤ j ≤ k − 2

g(ℓ, k) = g(ℓ0, 0) + ℓ

To get an explicit representation of g(ℓ, k), we proceed as follows. Define the sequence
an for n ≥ 0 by a0 = 1 and an+1 = 1 +

∏n
i=0 ai. We have a0 = 1, a1 = 2, a2 = 3,

a3 = 7, a4 = 43, etc. This sequence is known as Sylvester’s sequence or the sequence
of Euclid numbers. For n ≥ 1, it satisfies an+1 = a2

n − an + 1. It is known that

an = ⌊c2n−1

⌋ + 1, where c ≈ 1.59791 (see [20], sequences A000058 and A007018).
Lemma 4.7. For ℓ > 0 we have g(ℓ, k) = ℓ+1 for k = 0 and g(ℓ, k) = ak(ℓ+1)−1

for k > 0.
Proof. The claim for k = 0 is clear. Let k > 0. Assume that the claim has

been shown for g(ℓ, k′) for all k′ < k. Consider the calculation of the values ℓj that
determine g(ℓ, k). We have ℓk−1 = ℓ. We claim that

ℓj = aj+1aj+2 · . . . · ak−1(ℓ + 1) − 1

for j = 0, . . . , k − 1. For j = k − 1 the claim is true (considering the product
aj+1 · . . . · ak−1 to be empty and equal to 1). Consider some j < k− 1. We know that
ℓj = g(ℓj+1, j + 1). With ℓj+1 = aj+2aj+3 · . . . · ak−1(ℓ + 1) − 1 and g(ℓj+1, j + 1) =
aj+1(ℓj+1 + 1) − 1, we obtain

ℓj = aj+1((aj+2aj+3 · . . . · ak−1(ℓ + 1) − 1) + 1) − 1

= aj+1aj+2aj+3 · . . . · ak−1(ℓ + 1) − 1,

showing the claim. So we get that ℓ0 = a1a2a3 · . . . · ak−1(ℓ + 1) − 1 and

g(ℓ, k) = g(ℓ0, 0) + ℓ

= ℓ0 + 1 + ℓ

= (a1a2a3 · . . . · ak−1)(ℓ + 1) − 1 + 1 + ℓ

= (a1a2a3 · . . . · ak−1 + 1)(ℓ + 1) − 1

= ak(ℓ + 1) − 1

This shows that the statement of the lemma is true for g(ℓ, k).



18 L. EPSTEIN AND T. ERLEBACH AND A. LEVIN

4.3.2. The optimal coloring. We need to show that the intervals in a CF (ℓ)
presented by the adversary can be colored with 2 colors by an optimal offline algo-
rithm.

A brief outline of how such a coloring can be obtained is as follows. By leaving
enough free capacity in both colors, we will ensure that the coloring of a CF (ℓ) at
L does not constrain the coloring of intervals starting to the left of L in any way.
Now, consider a CF (ℓ) at L. Let R be the rightmost link of its last interval I. Let
R′ = R−ℓ+1 be the link at which later components could potentially be placed. Call
the set of intervals from CF (ℓ) that contain R′ and are different from I the siblings
of I. We can prove by induction on the size of F that every CF (ℓ) can be colored
with 2 colors in such a way that all intervals from the CF (ℓ) containing R′ (these are
the last interval of CF (ℓ) and its siblings) are assigned the same color. Furthermore,
the coloring is such that in each of the two color classes, there is a free capacity of
at least 3L−1 on all links of the component. Assuming that the inductive hypothesis
holds for the components CF ′(ℓ′) that were part of the construction of the CF (ℓ), we
can then obtain a coloring for CF (ℓ) by coloring these components from right to left.

Now we give a detailed proof. Our coloring method ensures that the coloring of
intervals in a CF (ℓ) at L is essentially independent of the coloring of intervals with
left endpoint smaller than L (which will be colored later). By construction, the total
bandwidth of intervals with left endpoint smaller than L that contain L is bounded
by βL = 3L−1. Furthermore, we will color the intervals with left endpoint L or larger
in such a way that a free capacity of at least βL is left for each of the two colors on
every edge used by such intervals. Hence, once the set of intervals with left endpoint
L or larger is colored, the remaining intervals (with left endpoint smaller than L) can
be colored independently without any danger of conflict.

Consider any component CF (ℓ) placed at some link L (i.e., with leftmost link L).
Let R be the rightmost link of its last interval I. Let R′ = R−ℓ+1 be the link at which
later components could potentially be placed. Recall that the intervals from CF (ℓ)
that contain R′ and are different from I are called the siblings of I. Let E denote
the rightmost link in the part of the line assigned to CF (ℓ), i.e. E = L + g(ℓ, |F |)− 1.
Note that all intervals presented after CF (ℓ) will have their left endpoints on R′ or to
the right of it. The total bandwidth of intervals presented before CF (ℓ) that contain
L is at most 3L−1, by Invariant 1. The total bandwidth of intervals from CF (ℓ) and
from intervals presented earlier that contain R′ is then at most 3R′−1, by Invariant 2.

Lemma 4.8. Every CF (ℓ) can be colored with 2 colors such that all intervals
from the CF (ℓ) containing R′ (these are the last interval of CF (ℓ) and its siblings)
are assigned the same color. Furthermore, the coloring is such that in each of the two
color classes, there is a free capacity of at least 3L−1 on all links from L to E.

Proof. We prove the claim by induction on |F |. Consider the case |F | = 0.
CF (ℓ) consists of a single interval of bandwidth 3L − 3L−1 and obviously satisfies the
properties.

Assume |F | = k > 0. Consider the last interval I of CF (ℓ). If I was presented
after round k − 1 (i.e., if the algorithm has used only colors 1 to k in the components
CFj

(ℓj) for j = 0, . . . , k−1), assign color 1 to I, and assign color 2 to all intervals from
CF (ℓ) that intersect I. Note that the latter are the last intervals of the components
CFj

(ℓj) that were used in the construction of CF (ℓ), and their siblings. As I has
bandwidth 3Rk−1 − 3L−1, where Rk−1 is its leftmost link, we have that color 1 has
a free capacity of 3L−1 on all links of I. Furthermore, the total bandwidth of the
remaining intervals from the CF (ℓ) that contain Rk−1 is at most 3Rk−1−1 − 3L−1 (a



ONLINE CAPACITATED INTERVAL COLORING 19

consequence of Invariant 2), and hence we have a free capacity of at least 3L−1 also
for color 2 on all links of I. We will argue about the free capacity in each of the two
colors on the links to the left of I below.

If I was not presented after round k − 1, the construction has ended early and I
was actually the last interval of one of the components CFj

(ℓj). In this case, assign
color 2 to I and to all intervals of CF (ℓ) overlapping any of the rightmost ℓj links
of I. These intervals are the last intervals of the components CFj

(ℓj) used in the
construction of CF (ℓ), and their siblings.

In both cases, we have assigned color 2 to the last intervals and their siblings in
all the components CFj

(ℓj) that have been used in the construction of CF (ℓ). By the
induction hypothesis, each of these CFj

(ℓj) has a coloring with two colors in which the
last interval and its siblings receive the same color. Hence, we can use that coloring
(after exchanging colors 1 and 2 if necessary) to complete the coloring of CF (ℓ).

We have to show that the coloring is feasible and leaves a free capacity of at least
3L−1 in each of the two colors. Let Lj denote the leftmost link of CFj

(ℓj), i.e., the
CFj

(ℓj) is placed at Lj. By the induction hypothesis, we know that the coloring of
CFj

(ℓj) leaves a free capacity of 3Lj−1 in each of the two colors. Furthermore, the total
bandwidth of intervals from all CFj′

(ℓj′) for j′ < j together that overlap Lj is bounded

by 3Lj−1−3L−1 (because Invariant 2 holds for all these components). Therefore, each
of the two colors will still have a free capacity of at least 3Lj−1−(3Lj−1−3L−1) = 3L−1

on all links of CFj
(ℓj), as required. The argument applies to all CFj

(ℓj) used in the
construction of CF (ℓ), and so we have that the coloring is feasible and satisfies the
claimed properties.

4.3.3. Lower bound result. By Lemma 4.8, we know that any CF (ℓ) can
be colored optimally with at most two colors. For any k ≥ 1, we can let F =
{1, 2, . . . , k − 1} and place a CF (1) starting at link 1. The on-line algorithm A uses
at least k colors on this instance, while the optimum can color all intervals with 2
colors. This shows that A cannot have competitive ratio better than k/2. As k is
arbitrary, we obtain the following theorem. Note that the number of links needed to

place a CF (1) is g(1, k) = 2ak − 1 = 2(⌊c2k−1

⌋ + 1) − 1, where c ≈ 1.59791. Thus
k = Θ(log log n), where n is the length of the line, and k = Θ(log log log cmax), since
the capacity of link i is 3i.

Theorem 4.9. There is no deterministic on-line algorithm for capacitated inter-
val coloring with non-uniform capacities that achieves a constant competitive ratio.
Moreover, the competitive ratio of any deterministic on-line algorithm for the problem
is at least Θ(log log n) for lines of length n and at least Θ(log log log cmax) for lines
with maximum edge capacity cmax and minimum edge capacity 1.

5. Concluding remarks. We have considered the problem of online capacitated
interval coloring with bandwidth. For the case bmax ≤ cmin, we have presented a 78-
competitive algorithm. For the general case, we have given an O(log bmax

cmin
)-competitive

algorithm and, using resource augmentation by a factor of 1 + ε, a constant competi-
tive algorithm. Note that it is not difficult to design an O(n)-competitive algorithm
(without resource augmentation). This can be done by partitioning the requests into
at most n sets, each of which contains all requests for which the bottleneck link (i.e.,
the link of smallest capacity) is link i. We are left with n disjoint instances of bin
packing, and we can run e.g. First-Fit on each set.

We have also presented a lower bound showing that no deterministic online al-
gorithm can have competitive ratio better than O(log log n) or O(log log log cmax

cmin
) for



20 L. EPSTEIN AND T. ERLEBACH AND A. LEVIN

the general case.
It is possible to consider special cases of the problem, for which the lower bound

possibly does not hold. Candidates for such cases are variants which are easy variants
of bin packing.

REFERENCES

[1] U. Adamy and T. Erlebach, Online coloring of intervals with bandwidth, in Proceedings of
the First International Workshop on Approximation and Online Algorithms (WAOA’03),
LNCS 2909, 2003, pp. 1–12.

[2] U. Adamy, T. Erlebach, D. Mitsche, I. Schurr, B. Speckmann, and E. Welzl, Off-
line admission control for advance reservations in star networks, in Poceedings of the
Second Workshop on Approximation and Online Algorithms (WAOA’04), LNCS 3351,
2005, pp. 221–224.

[3] R. Adler and Y. Azar, Beating the logarithmic lower bound: Randomized preemptive dis-
joint paths and call control algorithms, in Proceedings of the 10th Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA’99), 1999, pp. 1–10.

[4] Y. Azar, A. Fiat, M. Levy, and N. Narayanaswamy, An improved algorithm for online
coloring of intervals with bandwidth, Theoretical Computer Science, 363 (2006), pp. 18–27.

[5] N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber, A quasi-PTAS for unsplittable
flow on line graphs, in Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC’06), 2006, pp. 721–729.

[6] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar, Approximation algorithms for
the unsplittable flow problem, in Proceedings of the 5th International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization (APPROX’02), LNCS 2462, 2002,
pp. 51–66.

[7] C. Chekuri, M. Mydlarz, and F. Shepherd, Multicommodity demand flow in a tree, in Pro-
ceedings of the 30th International Colloquium on Automata, Languages, and Programming
(ICALP’03), LNCS 2719, 2003, pp. 410–425.

[8] M. Chrobak and M. Ślusarek, On some packing problems relating to dynamical storage
allocation, RAIRO Journal on Information Theory and Applications, 22 (1988), pp. 487–
499.

[9] L. Epstein and M. Levy, Online interval coloring and variants, in Proceedings of the 32nd
International Colloquium on Automata, Languages and Programming (ICALP’05), LNCS
3580, 2005, pp. 602–613.

[10] , Online interval coloring with packing constraints, Theoretical Computer Science, 407
(2008), pp. 203–212.

[11] T. Erlebach, Call admission control for advance reservation requests with alternatives, in
Proceedings of the 3rd Workshop on Approximation and Randomization Algorithms in
Communication Networks (ARACNE’02), Carleton Scientific, 2002, pp. 51–64.

[12] A. Gyárfás and J. Lehel, On-line and first-fit colorings of graphs, Journal of Graph Theory,
12 (1988), pp. 217–227.

[13] T. R. Jensen and B. Toft, Graph coloring problems, Wiley, 1995.
[14] H. A. Kierstead, The linearity of first-fit coloring of interval graphs, SIAM Journal on Discrete

Mathematics, 1 (1988), pp. 526–530.
[15] H. A. Kierstead and J. Qin, Coloring interval graphs with First-Fit, SIAM Journal on Dis-

crete Mathematics, 8 (1995), pp. 47–57.
[16] H. A. Kierstead and W. T. Trotter, An extremal problem in recursive combinatorics,

Congressus Numerantium, 33 (1981), pp. 143–153.
[17] N. S. Narayanaswamy, Dynamic storage allocation and online colouring interval graphs, in

Proceedings of the 10th Annual International Conference on Computing and Combinatorics
(COCOON’04), 2004, pp. 329–338.

[18] S. V. Pemmaraju, R. Raman, and K. R. Varadarajan, Buffer minimization using max-
coloring, in Proceedings of 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’04), 2004, pp. 562–571.

[19] P. Raghavan and E. Upfal, Efficient routing in all-optical networks, in Proceedings of the
26th Annual ACM Symposium on Theory of Computing (STOC’94), 1994, pp. 134–143.

[20] N. Sloane, On-line encyclopedia of integer sequences, 1996–2005. Available on-line at
http://www.research.att.com/∼njas/sequences/Seis.html.


