
Minimum Activation Cost Node-Disjoint Paths
in Graphs with Bounded Treewidth

Hasna Mohsen Alqahtani and Thomas Erlebach

Department of Computer Science, University of Leicester, Leicester, UK.
{hmha1|t.erlebach}@leicester.ac.uk

Abstract. In activation network problems we are given a directed or
undirected graph G = (V,E) with a family {fuv : (u, v) ∈ E} of mono-
tone non-decreasing activation functions from D2 to {0, 1}, where D is
a constant-size subset of the non-negative real numbers, and the goal
is to find activation values xv for all v ∈ V of minimum total cost∑

v∈V xv such that the activated set of edges satisfies some connectiv-
ity requirements. We propose algorithms that optimally solve the min-
imum activation cost of k node-disjoint st-paths (st-MANDP) problem
in O(tw((5 + tw)|D|)2tw+2|V |3) time and the minimum activation cost
of node-disjoint paths (MANDP) problem for k disjoint terminal pairs
(s1, t1), . . . , (sk, tk) in O(tw((4 + 3tw)|D|)2tw+2|V |) time for graphs with
treewidth bounded by tw.

1 Introduction

In activation network problems, we are given an activation network, which is a di-
rected or undirected graph G = (V,E) together with a family {fuv : (u, v) ∈ E}
of monotone non-decreasing activation functions from D2 to {0, 1}, where D is
a constant-size subset of the non-negative real numbers. The activation of an
edge depends on the chosen values from the domain D at its endpoints. An
edge (u, v) ∈ E is activated for chosen values xu and xv if fuv(xu, xv) = 1.
An activation function fuv for (u, v) ∈ E is called monotone non-decreasing if
fuv (xu, xv) = 1 implies fuv (yu, yv) = 1 for any yu ≥ xu, yv ≥ xv. The goal
is to determine activation values xv ∈ D for all v ∈ V so that the total acti-
vation cost

∑
v∈V xv is minimized and the activated set of edges satisfies some

connectivity requirements. As activation network problems are computationally
difficult in arbitrary graphs, it is meaningful to investigate whether restricted
graph classes admit efficient algorithms. In this paper we consider the prob-
lems of finding minimum activation cost k node-disjoint st-paths (st-MANDP)
and finding minimum activation cost node-disjoint paths (MANDP) between k
disjoint terminals pairs, (s1, t1), . . . , (sk, tk), for graphs of bounded treewidth.
Throughout this paper we consider undirected simple graphs.

The problem of finding k node/edge-disjoint paths between two nodes s and
t in a given graph can be solved in polynomial time using network flow tech-
niques [1], but no polynomial-time algorithm is known for the network activation
setting. The problem of finding node/edge-disjoint paths (NDP/EDP) between

2 Hasna Mohsen Alqahtani and Thomas Erlebach

k terminals pairs, (s1, t1), . . . , (sk, tk), in a given graph is NP-complete if k is
part of the input [5] (and already for k = 2 in directed graphs [4]). However,
the problem is polynomial-time solvable for undirected graphs when k is fixed
[11]. Scheffler [12] gave a linear-time algorithm that follows a classical bottom-
up approach to solve the NDP problem for arbitrary k in graphs of bounded
treewidth. In this paper we adapt Scheffler’s algorithm [12] to the activation
network version of node-disjoint path problems and devise polynomial-time op-
timal algorithms for solving the MANDP problem and the st-MANDP problem
in graphs of bounded treewidth.

Related work. Activation network problems were introduced recently by Pan-
igrahi [10]. The problem of finding the minimum activation st-path (MAP) can
be solved optimally in polynomial-time [10]. However, the minimum activa-
tion edge-disjoint st-paths (st-MAEDP) problem is NP-hard [10]. The minimum
spanning activation tree (MSpAT) problem is NP-hard to approximate within
a factor of o(log n). The MSpAT problem is a special case of the problems of
finding the minimum Steiner activation network (MSAN) and the minimum
edge/node-connected activation network (MEAN/MNAN) (activating a network
with k edge/node-disjoint paths between every pair of vertices). Therefore, these
problems are also NP-hard to approximate within o(log n). As mentioned in [10],
there exist O(log n)-approximation algorithms for MSpAT, and for MEAN and
MNAN in the case of k = 2. There is a 2-approximation algorithm for the st-
MANDP problem and a 2k-approximation algorithm for the st-MAEDP problem
[8]. The st-MAEDP and st-MANDP problems when k = 2 have been studied
recently by the authors [2]. They show that a ρ-approximation algorithm for the
minimum activation 2 node-disjoint st-paths (st-MA2NDP) problem implies a
ρ-approximation algorithm for the minimum activation 2 edge-disjoint st-paths
(st-MA2EDP) problem. They also obtained a 1.5-approximation algorithm for
the st-MA2NDP problem and hence for the st-MA2EDP problem. Furthermore,
they showed that the st-MANDP problem for the restricted version of activation
networks with |D| = 2 and a single activation function for all edges can be solved
in polynomial time for arbitrary k (except for one case of the activation function,
in which they require k = 2). However, the st-MAEDP problem remains NP-
hard under this restriction [10, 2]. It is not yet known whether the st-MANDP
and st-MAEDP problems for an arbitrary constant-size D and fixed k ≥ 2 are
NP-hard.

Activation network problems can be viewed as a generalization of several
known problems in wireless network design such as power optimization problems.
In power optimization problems, we are given a graph G = (V,E) and each edge
(u, v) ∈ E has a threshold power requirement θuv. In the undirected case we say
the edge (u, v) is activated for chosen values xu and xv if each of these values is
at least θuv, and in the directed case it is activated if xu ≥ θuv. [7] shows that a
simple reduction to the shortest st-path problem can solve the minimum power
st-path (MPP) problem in polynomial time for directed/undirected networks.
The problem of finding minimum power k node-disjoint st-paths (st-MPkNDP)
in directed graphs can be solved in polynomial time [6, 13]. However, the mini-

Minimum Activation Cost Node-Disjoint Paths 3

mum power k edge-disjoint st-paths (st-MPkEDP) problem is unlikely to admit
even a polylogarithmic approximation algorithm for both the directed and undi-
rected variants [6]. In power optimization, the MSpAT problem is APX-hard and
the MEAN and MNAN problems have 4-approximation and 11/3-approximation
algorithms, respectively. See [2, 8–10] for further motivation and applications of
activation network problems.

Our results. We propose algorithms that optimally solve the st-MANDP
problem in O(tw((5 + tw)|D|)2tw+2|V |3) time and the MANDP in O(tw (4 +
3tw)2tw+2 |D|2tw+2 |V |) time for graphs with treewidth bounded by tw.

This paper is organized as follows. In Section 2, we introduce some notations
and definitions used throughout this paper. In Section 3, we propose an exact
algorithm that solves the st-MANDP problem on graphs with bounded treewidth
tw in polynomial-time. Section 4 presents an optimal algorithm that solves the
MANDP problem on graphs with bounded treewidth in linear-time.

2 Preliminaries

The class of graphs of bounded treewidth [11] has attracted attention due to the
fact that many NP-complete problems for arbitrary graphs are polynomial or
even linear time solvable in graphs of bounded treewidth.

Definition 1. A tree-decomposition for a given graph G = (V,E) is a pair
(X , T) of a tree T = (I, F) and a family {Xi}i∈I of subsets of V (called bags)
satisfying the following two conditions: (1) For every edge (v, w) ∈ E, there
exists an i ∈ I with v ∈ Xi and w ∈ Xi. (2) For every vertex v ∈ V , the nodes
i ∈ I with v ∈ Xi form a subtree of T . The width of a tree-decomposition is
maxi∈I |Xi| − 1. The treewidth tw of the graph G is the minimum width among
all possible tree-decompositions of the graph.

As shown in [3], there exists a linear-time algorithm that checks whether a
given graph G = (V,E) has treewidth at most tw, for fixed tw, and outputs the
tree-decomposition (X , T) of G.

Definition 2. A tree-decomposition (X , T) is called a nice tree-decomposition,
if T is a binary tree rooted at some r ∈ I that satisfies the following:

– Each node is either a leaf, or has exactly one or two children.
– Let i ∈ I be a leaf. Then Xi ⊆ {u : (u, v) ∈ E}∪{v} = N [v] for some v ∈ V .
– For every edge (u, v) ∈ E, there is a leaf i ∈ I such that {u, v} ⊆ Xi.
– Let j ∈ I be the only child of i ∈ I, then either Xi = Xj ∪ {v} or Xi =
Xj \ {v}. The node i is called an introduce node or forget node, respectively.

– Let j, j′ ∈ I be the two child nodes of a node i ∈ I, then Xj = Xj′ = Xi.
The node i is called a join node of T .

Scheffler [12] shows that any given tree-decomposition (X , T) can be easily con-
verted into a nice tree-decomposition.

4 Hasna Mohsen Alqahtani and Thomas Erlebach

Theorem 1 ([12]). A nice tree-decomposition of width tw and size O(|V (G)|)
can be constructed for a graph G = (V,E) with treewidth at most tw in linear
time, if tw is a fixed constant.

To give a simpler description of our algorithms, we assume that every bag of
a leaf of the nice tree-decomposition consists of two vertices that are connected
by an edge in G, and that for every edge (u, v) of G there is exactly one leaf
i ∈ I such that u, v ∈ Xi (and we say that the edge (u, v) is associated with
that leaf i ∈ I). A nice tree-decomposition with this property can also be easily
obtained from any given tree-decomposition in linear time. In the remainder of
the paper, we assume that the input graph G is given as a simple undirected
graph together with a nice tree-decomposition of width at most tw.

Let us define X+
i to be the set of all vertices in Xj for all nodes j ∈ I such

that j = i or j is a descendant of i. Let G+
i describe the partial graphs of G.

For a leaf node i, G+
i is the subgraph of G with vertex set Xi and the edge of

G that is associated with i. For a non-leaf node i, G+
i is the graph that is the

union of G+
j over all children j of i. Note that the graph G+

r for the root r of
the tree-decomposition is equal to G.

3 Minimum Activation Cost k Node-Disjoint st-Paths

Let G = (V,E) be an activation network and s, t ∈ V be a pair of source and
destination vertices. The goal of the st-MANDP problem is to find activation
values {xv : v ∈ V } of minimum total cost

∑
v∈V xv such that the activated

set of edges contains k node disjoint st-paths Pst = P1, . . . , Pk. In this section
we present a polynomial-time algorithm that solves the st-MANDP problem
optimally in the case of graphs of bounded treewidth. The algorithm follows
a bottom-up approach based on a nice tree-decomposition. In our algorithm,
each node i of the tree-decomposition has a table tabi to store its computed
information. The algorithm computes a number of possible sub-solutions per
tree node i ∈ I based on the information computed previously for its children.
Let P = P1, . . . , Pk be a solution for the st-MANDP problem. Let Pi = P [G+

i]
be the induced solution in a partial graph G+

i (i.e., the set of vertices and edges
that are both in P and in G+

i). The interaction between Pi in G+
i and the rest of

the graph happens only in vertices of Xi. The partial solution Pi can therefore
be represented by an activation-value function Λi : Xi → D and a state function
βi : Xi → {s, t, o,∞} ∪ {0, 1, . . . , k} ∪ (Xi × {c}). As the algorithm needs to
consider partial solutions in G+

i that cannot necessarily be completed to form
a global solution, we call any subgraph of G+

i (with suitable activation values)
a partial solution (or sub-solution) if it contains all vertices in {s, t} ∩X+

i and
each connected component C satisfies one of the following conditions:

1. C is an isolated vertex v ∈ Xi.

2. C is a simple path having both end-vertices v, w ∈ Xi and containing neither
s nor t.

Minimum Activation Cost Node-Disjoint Paths 5

3. C contains s but not t and consists of several (at least one) paths that are
node-disjoint (apart from meeting in s), each connecting s to a vertex in Xi

(or the same condition with s and t exchanged).
4. C contains s and t and consists of some number of paths from s to t, some

paths from s to a vertex in Xi, and some paths from t to a vertex in Xi.
All these paths are node-disjoint (apart from having s or t in common). If
s /∈ Xi, s has degree k, otherwise s has degree ≤ k, and likewise for t.

Intuitively, partial solutions are subgraphs of G+
i that could potentially be com-

pleted to a global solution if the rest of the graph is of suitable form.

State Function. A partial solution Pi in G+
i can be represented by a state

function βi : Xi → {s, t, o,∞} ∪ {0, 1, . . . , k} ∪ (Xi × {c}) as follows:

– For any v ∈ Xi, we set βi(v) = 0 iff v ∈ Pi and has degree zero in Pi, i.e., v
is a connected component of Pi that satisfies condition 1 above.

– For any v ∈ Xi, we set βi(v) =∞ iff v /∈ Pi.
– For any v ∈ Xi \ {s, t}, we set βi(v) = o iff v has degree 2 in Pi.
– For any v ∈ Xi ∩ {s, t}, we set βi(v) = k′ ∈ {1, . . . , k} iff a connected

component C of Pi contains v together with k′ incident edges, i.e., C satisfies
condition 3 or 4 above. We call v an occupied vertex if k′ = k.

– For any v ∈ Xi \ {s, t}, we set βi(v) = u ∈ {s, t} iff there is a non-empty
path u, . . . , v not containing s or t as internal node that is a subgraph of a
connected component of Pi that satisfies condition 3 or 4 above and v has
degree 1 in that component.

– For any pair u, v ∈ Xi \ {s, t}, we set βi(u) = (v, c) and βi(v) = (u, c) iff
u and v are connected with a path u, . . . , v that is a maximal connected
component of Pi that does not contain s and t, i.e., the maximal connected
component u, . . . , v satisfies condition 2 above.

3.1 Processing the Tree Decomposition

Let val(βi, Λi) denote the optimal cost of an assignment of activation values for
G+

i which satisfies the restriction Λi and activates a partial solution satisfying
βi. In each row of the table tabi of tree node i ∈ I, we store a solution of a unique
combination of a state function βi and a function of activation values Λi (each
vertex of Xi has a state value and is assigned an activation value). Additionally,
we store the activation cost value val(βi, Λi) for the solution. We can compute
the sub-solution tables in a bottom-up approach.

Leaf. Let i ∈ I be a leaf, Xi = {u, v}. Let (βi, Λi) be any row of tabi. We
distinguish the following cases and define val(βi, Λi) for each case. Each case
corresponds to a possible sub-solution in G+

i . Recall that G+
i is a single edge.

The sub-solution’s cost val(βi, Λi) is set to
∑

v∈Xi
Λi(v) if one of the following

cases applies:

– βi(w) ∈ {0,∞} for all w ∈ Xi, and βi(w) = 0 for w ∈ Xi∩{s, t}. Intuitively,
this means that the sub-solution has no edges.

6 Hasna Mohsen Alqahtani and Thomas Erlebach

– βi(u) = v and βi(v) = 1 and u /∈ {s, t} and v ∈ {s, t} and fuv(Λi(u), Λi(v)) =
1. Intuitively, the sub-solution is a path with one edge and one endpoint equal
to s or t. (The roles of u and v can be exchanged.)

– βi(u) = βi(v) = 1 and u, v ∈ {s, t} and fuv(Λi(u), Λi(v)) = 1. Intuitively,
the sub-solution is a path with one edge containing s and t.

– βi(u) = (v, c) and βi(v) = (u, c) and u, v /∈ {s, t} and fuv(Λi(u), Λi(v)) = 1.
Intuitively, the sub-solution is a path with one edge not containing s or t.

If none of the above cases applies, val(βi, Λi) = +∞. In these cases, (βi, Λi) does
not represent a subgraph of G+

i that could be part of a global solution.
Introduce. Let i ∈ I be an introduce node, and j ∈ I its only child. We have

Xj ⊂ Xi, |Xi| = |Xj | + 1 and let v be the additional isolated vertex in Xi.
The vertex v always has state value βi(v) ∈ {0,∞}. For every row (βj , Λj) in
tabj , there are 2|D| rows in tabi such that βi(u) = βj(u) and Λi(u) = Λj(u)
for all u ∈ Xi \ {v}. The sub-solution cost val(βi, Λi) for these rows is set
to val(βj , Λj) + Λi(v) if v /∈ {s, t} or if v ∈ {s, t} and βi(v) = 0. Otherwise
val(βi, Λi) = +∞.

Forget. Let i ∈ I be a forget node, and j ∈ I its only child. We have Xi ⊂ Xj ,
|Xj | = |Xi|+ 1 and let v be the discarded vertex. For each (βi, Λi), consider all
(βj , Λj) that agree with (βi, Λi) for all u ∈ Xi and satisfy that βj(v) = k if
v ∈ {s, t} and βj(v) ∈ {o,∞} otherwise. The sub-solution’s cost val(βi, Λi) is
the minimum of val(βj , Λj) over all these (βj , Λj).

Join. Let i ∈ I be a join node, and j, j′ ∈ I its two children. We have Xi =
Xj = Xj′ . Let (βj , Λj) and (βj′ , Λj′) be rows of tabj and tabj′ , respectively. When
we combine these solutions, their connected components may get merged into
larger components, and we need to ensure that we do not create any cycles that
do not contain s and t. For this purpose, we construct an auxiliary graph Hi with
vertex set Xi and edge set EHi

= {uv|βj(v) = (u, c)} ∪ {uv | βj′(v) = (u, c)} to
help us detect cases where such a cycle would be created. The algorithm combines
the sub-solutions (βj , Λj) and (βj′ , Λj′) if both have the same activation-value
function (Λj(u) = Λj′(u) for all u ∈ Xi) and the union does not satisfy any of
the following conditions (where the roles of j and j′ can be exchanged):

C1. Hi contains a cycle (which may also consist of just one pair of parallel edges).
C2. There is a vertex v ∈ Xi with βj(v) = o and βj′(v) 6= 0.
C3. There is a vertex v ∈ Xi with βj(v) =∞ and βj′(v) 6=∞.
C4. There is a vertex v ∈ Xi with βj(v) = βj′(v) ∈ {s, t}.
C5. There is a vertex v ∈ Xi ∩ {s, t} with βj(v) = k′ and βj′(v) = k′′ and

k′ + k′′ /∈ {0, 1, . . . , k}.

We compute the state function βi of the combination of βj and βj′ . Consider
any v ∈ Xi:

– If βj(v) = βj′(v) = σ ∈ {0,∞}, then βi(v) = σ.
– If βj(v) = σ ∈ {o, s, t, k} and βj′(v) = 0, then βi(v) = σ.
– If βj(v) = s and βj′(v) = t, then βi(v) = o.
– If v ∈ {s, t} and βj(v) = k′ and βj′(v) = k′′ for any k′ + k′′ ∈ {0, 1, . . . , k},

then βi(v) = k′ + k′′.

Minimum Activation Cost Node-Disjoint Paths 7

– If βj(v) = (x, c) and βj′(v) = (y, c) for any x, y ∈ Xi, then βi(v) = o.
– If βj(v) = 0 and βj′(v) = (x, c) and the maximal path in Hi that starts

at v ends at u with βj(u) = 0 and βj′(u) = (y, c) (or vice versa, i.e., the
path ends at u with βj(u) = (y, c) and βj′(u) = 0) for any x, y ∈ Xi, then
βi(v) = (u, c) and βi(u) = (v, c).

– If βj(v) = s and βj′(v) = (x, c) and the maximal path in Hi that starts at v
ends at u with βj(u) = (y, c) and βj′(u) = t (or vice versa) for any x, y ∈ Xi,
then βi(v) = βi(u) = o.

– If βj(v) = σ ∈ {s, t} and βj′(v) = (x, c) and the maximal path in Hi that
starts at v ends at u with βj(u) = (y, c) and βj′(u) = 0 (or vice versa) for
any x, y ∈ Xi, then βi(v) = o and βi(u) = σ.

The value of the combined solution val(βi, Λi) is calculated as the minimum
summation value over all pairs of sub-solutions that can be combined to produce
(βi, Λi) minus the activation cost of Xi.

Extracting the solution at the root. The algorithm checks all the solutions
(βr, Λr) of the root bag Xr such that vertices in {s, t} ∩ Xr are occupied and
all other vertices have state value o or ∞. In this case (βr, Λr) is a feasible
solution. The output of the algorithm is the solution of minimum cost value
among all the feasible solutions obtained at the root. For each row (βi, Λi) of
bag Xi, we store the rows of Xi’s children that were used in the calculation of
val(βi, Λi). Computing the optimum solution is possible by traversing top-down
in the decomposition tree to the leaves (traceback).

3.2 Analysis

Let an instance of the problem be given by an activation network G = (V,E)
with bounded treewidth tw and terminals s, t ∈ V . Let POPT represent an
optimal solution for this instance. We use C(Pi) to denote the activation cost
of the induced solution Pi of P in a partial graph G+

i .

Lemma 1. The algorithm runs in O(tw((5 + tw)|D|)2tw+2|V |3) time.

Proof. The running-time of the algorithm depends on the size of the tables and
the combination of tables during the bottom-up traversal. Each vertex w ∈
Xi has 5 + (|Xi| − 1) possible state values from {0, s, t, o,∞} ∪ ((Xi \ {w}) ×
{c}) if w /∈ {s, t} and k + 1 possible state values if w ∈ Xi ∩ {s, t}. If |Xi ∩
{s, t}| ≤ 1, the table tabi in a processed bag Xi contains no more than O(k(5 +
tw)tw+1|D|tw+1) rows corresponding to the possible state functions and the |D|
possible activation values for each vertex of Xi. Assume that {s, t} ⊆ Xi and
βi(s) = ks, βi(t) = kt and cq = {v ∈ Xi : βi(v) = q} such that ks, kt ∈ {0, . . . , k}
and q ∈ {s, t}. Since every path in the partial solution starting at s leads to
t or to a vertex in Xi then ks − cs = kt − ct. Hence, there is at most one kt
when leaving the other values fixed. Therefore, the table tabi in a processed
bag Xi contains no more than O(k(5 + tw)tw+1|D|tw+1) rows. Considering all

8 Hasna Mohsen Alqahtani and Thomas Erlebach

possible row combinations for two tables for a join node and noting that k ≤ |V |,
we see that the computation of the state functions needs O(tw) time for each

combination and O(tw((5 + tw)|D|)2tw+2|V |3) time overall. ut

Lemma 2. For any processed bag Xi, let POPT
i be the induced solution of POPT

in G+
i and (βOPT

i , ΛOPT
i) be the corresponding state function and activation

values, then val(βOPT
i , ΛOPT

i) ≤ C(POPT
i).

Lemma 3. For any processed bag Xi, any solution (βi, Λi) where val(βi, Λi) =
ci <∞ corresponds to a partial solution Pi with the following properties:

– The state function of Pi in Xi is βi.
– The activation values of Pi in Xi are Λi.
– The total activation cost in X+

i is ci.
– Pi contains the terminal s if s ∈ X+

i , and the terminal t if t ∈ X+
i .

Due to space restrictions, the proofs of Lemma 2 and Lemma 3 (which use
induction over the tree-decomposition) are deferred to the full version.

We say that (βi, Λi) is a feasible solution at the root node i iff (βi, Λi) is
a partial solution with βi(v) = k for v ∈ {s, t} ∩ Xi and βi(v) ∈ {o,∞} for
all v ∈ Xi \ {s, t}. That means the partial solution in G+

i consists of k node-
disjoint paths between s and t. The algorithm outputs the solution of minimum
activation cost among all feasible solutions obtained at the root. From the above
lemmas and the extracting part in the algorithm, we get the following theorem.

Theorem 2. The st-MANDP problem can be solved optimally in O(tw (5 +
tw)2tw+2 |D|2tw+2 |V |3) time for graphs with treewidth bounded by tw.

This algorithm can be used for the variant of the st-MANDP problem in
graphs of bounded treewidth where s and t are assigned specified activation
values d ∈ D and d′ ∈ D, respectively, by setting Λ(s) = d and Λ(t) = d′. We
recall the following theorem from [2]:

Theorem 3 ([2]). If there is a ρ-approximation algorithm for the st-MA2NDP
problem where s and t are assigned specified activation values, then there is a
ρ-approximation algorithm for the st-MA2EDP problem.

Corollary 1. There exists a polynomial-time algorithm that optimally solves the
st-MA2EDP problem for graphs of bounded treewidth.

4 Minimum Activation Cost Node-Disjoint Paths
between k Pairs of Terminals

Consider an instance of the problem given by an activation network G = (V,E)
and k disjoint pairs of terminals (s1, t1), . . . , (sk, tk). The goal of MANDP is to
find activation values {xv : v ∈ V } of minimum total cost

∑
v∈V xv such that the

activated set of edges contains k node disjoint paths P = P1, . . . , Pk in G where
Pa is a path connecting sa and ta for all a ∈ {1, . . . , k}. Define S = {sa|1 ≤

Minimum Activation Cost Node-Disjoint Paths 9

a ≤ k} ∪ {ta|1 ≤ a ≤ k}. Let Na = (sa, ta), for 1 ≤ a ≤ k. In this section we
modify the linear-time algorithm proposed in [12] that solves the NDP problem
on graphs of bounded treewidth to solve the problem in the activation network
case. We assume that k is arbitrary. As for the st-MANDP algorithm in Section
3, the algorithm stores all computed sub-solutions for each node i of the nice
tree-decomposition in a table tabi. For every node i, we defineOi = {Na|sa ∈ X+

i

and ta /∈ X+
i or sa /∈ X+

i and ta ∈ X+
i } and Qi = {Na|sa ∈ X+

i and ta ∈ X+
i }.

Let Pi be any subgraph of the partial graph G+
i . If Pi is a partial solution, the

algorithm characterizes Pi by an activation function Λi : Xi → D and a state
function βi : Xi → {0, 1,∞}∪Oi ∪Qi ∪ (Xi × {c, d}). Here, we say that Pi is a
partial solution if it contains all v ∈ X+

i ∩ S and any connected component C
of Pi satisfies one of the following conditions:

1. C is a simple path Pa connecting sa and ta (and not containing any other
vertex in S).

2. C is an isolated vertex v ∈ Xi.
3. C is a simple path having both end-vertices v, w ∈ Xi and not containing

any vertices of S.
4. C is a simple path that connects a source sa ∈ X+

i with a vertex s′a ∈ Xi.
If Na ∈ Qi, there is another (possibly empty) path C ′ that connects the
terminal ta ∈ X+

i with a vertex t′a ∈ Xi. (The roles of sa and ta can be
exchanged.)

State Function. The algorithm characterizes Pi by an activation-value function
Λi : Xi → D and a state function βi : Xi → {0, 1,∞} ∪Oi ∪ Qi ∪ (Xi × {c, d}).
Given a partial solution Pi, the state function βi is defined as follows:

– For any v ∈ Xi, we set βi(v) = 0 iff v ∈ Pi and v has degree zero in Pi.
– For any v ∈ Xi, we set βi(v) =∞ iff v /∈ Pi.
– For any v ∈ Xi, we set βi(v) = 1 iff v is either an inner vertex of a path in
Pi or v ∈ S and Pi contains v together with an incident edge. We call v an
occupied vertex.

– For any v ∈ Xi, we set βi(v) = Na iff there is a path sa, . . . , v (or a path
ta, . . . , v) in Pi, v has degree 1 in Pi, and either Na ∈ Oi or we have that
Na ∈ Qi and ta (or sa) is in Xi has degree 0 in Pi.

– For any pair u, v ∈ Xi, we set βi(u) = (v, d) and βi(v) = (u, d) iff there are
two paths sa, . . . , u and ta, . . . , v in Pi for any Na ∈ Qi and u, v have degree
1. We say that sa and ta are a disconnected pair.

– For any pair u, v ∈ Xi, we set βi(u) = (v, c) and βi(v) = (u, c) iff u and v
are connected with a path u, . . . , v that is a maximal connected component
of Pi that does not contain any vertices from S and u, v have degree 1.

4.1 Processing the Tree Decomposition

As for the st-MANDP algorithm in Section 3, each tabi of Xi stores multiple
rows and each row represents a unique combination of a state function βi and an

10 Hasna Mohsen Alqahtani and Thomas Erlebach

activation function Λi (each vertex of Xi has a state and is assigned an activation
value). The cost value val(βi, Λi) of the represented sub-solution is also stored
in tabi.

Leaf. Let i ∈ I be a leaf, Xi = {u, v} and (u, v) ∈ Ei, where Ei is the set of
edges associated with i. We distinguish the following cases and define val(βi, Λi)
for each case. Let (βi, Λi) be any row of tabi. If none of the following cases
applies, val(βi, Λi) = +∞. The sub-solution’s cost is val(βi, Λi) =

∑
v∈Xi

Λi(v)
if one of the following cases applies:

– βi(w) ∈ {0,∞} for all w ∈ Xi and βi(w) = 0 for w ∈ S. Intuitively, the
sub-solution has no edges.

– βi(u) = βi(v) = 1 and u, v ∈ Na for any Na ∈ Qi and fuv(Λi(u), Λi(v)) = 1.
Intuitively, the sub-solution is a path with one edge containing sa and ta for
some Na ∈ Qi.

– βi(u) = Na, βi(v) = 1 and u /∈ S and v ∈ Na for any Na ∈ Oi and fuv(Λi(u)
, Λi(v)) = 1. Intuitively, the sub-solution is a path with one edge and one
endpoint equal to sa or ta for any Na ∈ Oi. (The roles of u and v can be
exchanged.)

– βi(u) = (v, c), βi(v) = (u, c) and u, v /∈ S and fuv(Λi(u), Λi(v)) = 1. Intu-
itively, the sub-solution is a path with one edge not containing any vertices
of S.

Introduce and Forget nodes are processed in a similar way to Section 3.1.
Join. Let i ∈ I be a join node, and j, j′ ∈ I its two children. We have

Xi = Xj = Xj′ . Let (βj , Λj) and (βj′ , Λj′) be rows of tabj and tabj′ , respectively.
We consider an auxiliary graph Hi with vertex set Xi and edge set EHi

=
{uv|βj(v) = (u, c)} ∪ {uv | βj′(v) = (u, c)} to help computing the state function
βi of the combination of βj and βj′ . The algorithm combines the sub-solutions
(βj , Λj) and (βj′ , Λj′) if both have the same activation-value function (Λj(u) =
Λj′(u) for all u ∈ Xi) and the union does not satisfy the following (the roles of
j and j′ could be exchanged):

C1. Hi contains a cycle.
C2. There is a vertex v ∈ Xi with βj(v) = 1 and βj′(v) 6= 0.
C3. There is a vertex v ∈ Xi with βj(v) =∞ and βj′(v) 6=∞.
C4. There is a vertex v ∈ Xi with βj(v) = Na and βj′(v) = Nb and a 6= b.
C5. There is a vertex v ∈ Xi such that βj(v) = Na and βj′(v) = (u, d) for any

u ∈ Xi.
C6. There is a vertex v ∈ Xi with βj(v) = (u, d) and βj′(v) = (w, d) for any

u,w ∈ Xi.

We compute the state function βi of the combination of βj and βj′ . Consider
v ∈ Xi:

– If βj(v) = βj′(v) = σ ∈ {0,∞}, then βi(v) = σ.
– If βj(v) = 1 and βj′(v) = 0, then βi(v) = 1.

Minimum Activation Cost Node-Disjoint Paths 11

– If βj(v) = Na and βj′(v) = 0, we distinguish two cases: If there is another
vertex u ∈ Xi with βj(u) = 0 and βj′(u) = Na, then βi(u) = (v, d) and
βi(v) = (u, d). Otherwise, βi(v) = Na.

– If βj(v) = Na and βj′(v) = Na, then βi(v) = 1.
– If βj(v) = (x, c) and βj′(v) = (y, c) for any x, y ∈ Xi, then βi(v) = 1.
– If βj(v) = (u, d) and βj′(v) = 0 and βj(u) = (v, d) and βj′(u) = 0 for any
u ∈ Xi, then βi(u) = (v, d) and βi(v) = (u, d).

– If βj(v) = 0 and βj′(v) = (x, c) and the maximal path in Hi that starts at v
ends at u with βj(u) = 0 and βj′(u) = (y, c) or βj(u) = (y, c) and βj′(u) = 0
for any x, y ∈ Xi, then βi(v) = (u, c) and βi(u) = (v, c).

– If βj(v) = Na and βj′(v) = (x, c) and the maximal path in Hi that starts
at v ends at u with βj(u) = (y, c) and βj′(u) = Na for any x, y ∈ Xi and
a ∈ {1, . . . , k}, then βi(v) = βi(u) = 1.

– If βj(v) = (u, d) and βj′(v) = (x, c) and the maximal path in Hi that starts
at v ends at u with βj(u) = (v, d) and βj′(u) = (y, c) for any x, y ∈ Xi, then
βi(v) = βi(u) = 1.

– If βj(v) = Na and βj′(v) = (x, c) and the maximal path in Hi that starts
at v ends at u with βj(u) = (y, c) and βj′(u) = 0 for any x, y ∈ Xi and
a ∈ {1, . . . , k}, then βi(v) = 1 and βi(u) = Na.

– If βj(v) = (u, d) and βj′(v) = (x, c) and the maximal path in Hi that starts
at v ends at w with βj(w) = (y, c) and βj′(u) = 0 for any x, y ∈ Xi, then
βi(v) = 1 and βi(u) = (w, d) and βi(w) = (u, d).

– If βj(v) = (u, d) and βj′(v) = (x, c) and βj(u) = (v, d) and βj′(u) = (y, c)
the maximal path in Hi that starts at v ends at w with βj(w) = (z, c) and
βj′(w) = 0 and the maximal path in Hi that starts at u ends at q with
βj(q) = (z′, c) and βj′(q) = 0 for any x, y, z, z′ ∈ Xi, then βi(v) = βi(u) = 1,
βi(q) = (w, d) and βi(w) = (q, d).

The value of the combined solution is the minimum summation value over all
pairs of sub-solutions that can be combined to produce (βi, Λi), minus the acti-
vation cost of Xi.

Extracting the solution at the root can be done similarly as in Section 3.1.
This completes the description of the MANDP algorithm. In this algorithm,

each vertex w ∈ Xi has 3 + 2(|Xi| − 1) + |Xi| possible state values from the
set {0, 1,∞} ∪ ((Xi \ {w}) × {c, d}) ∪ {Na | Na ∈ Oi} ∪ {Na | Na ∈ Qi,Na ∩
Xi 6= ∅}. (Note that the union of the latter two sets has cardinality at most
|Xi| if a feasible solution exists.) Then, the table tabi contains no more than
O((4 + 3tw)tw+1|D|tw+1) rows corresponding to the possible state functions and
the |D| possible activation values for each vertex of Xi. Each table has O((4 +
3tw)tw+1|D|tw+1) rows and the combination of a join node requires O(tw(4 +
3tw)2tw+2 |D|2tw+2) time. The proofs of the running time and correctness of the
MANDP algorithm are similar to the proofs of the running time and correctness
of the st-MANDP algorithm. Due to space restrictions, the analysis is omitted
from this paper, and we close this section with the following theorem.

Theorem 4. The MANDP problem for graphs with bounded treewidth tw can
be solved optimally in O(tw(4 + 3tw)2tw+2|D|2tw+2|V |) time.

12 Hasna Mohsen Alqahtani and Thomas Erlebach

5 Conclusion

We have presented a polynomial-time algorithm that optimally solves the st-
MANDP problem for the case of graphs with bounded treewidth. We also showed
that the linear-time algorithm for the NDP problem for graphs of bounded
treewidth that has been presented in [12] can be modified to obtain a linear-
time algorithm for the problem in activation networks. One open problem is
to obtain a faster or even linear-time algorithm for the st-MANDP problem
in graphs of bounded treewidth. It would also be interesting to investigate the
st-MAEDP problem for graphs of bounded treewidth.

Acknowledgements We would like to thank the anonymous reviewers for their
thorough and helpful comments on an earlier version of this paper. Their com-
ments helped making the paper clearer and improving the analysis of the running
time of the algorithm in Section 3.

References

1. Ahuja, R. K., Magnanti, T. L., Orlin, J. B.: Network flows: Theory, Algorithms
and Applications. Prentice Hall, New Jersey (1993)

2. Alqahtani, H. M., Erlebach, T.: Approximation Algorithms for Disjoint st-Paths
with Minimum Activation Cost. In: CIAC 2013, LNCS, vol. 7878, pp. 1–12.
Springer, Heidelberg (2013)

3. Bodlaender, H. L.: A linear time algorithm for finding tree-decompositions of small
treewidth. In: ACM STOC 1993, pp. 226–234. (1993)

4. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoretical Computer Science 10(2), 111–121 (1980)

5. Garey, M. R., Johnson, D. S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York–San Francisco
(1979)

6. Hajiaghayi, M. T., Kortsarz, G., Mirrokni, V. S., Nutov, Z.: Power optimization
for connectivity problems. In: IPCO XI, LNCS, vol. 3509, pp. 349–361. Springer,
Heidelberg (2005)

7. Lando, Y., Nutov, Z.: On minimum power connectivity problems. In: ESA 2007,
LNCS, vol. 4698, pp. 87–98. Springer, Heidelberg (2007)

8. Nutov, Z.: Survivable network activation problems. In: LATIN 2012, LNCS, vol.
7256, pp. 594–605. Springer, Heidelberg (2012)

9. Nutov, Z.: Approximating Steiner networks with node-weights. SIAM J. Comput.
39(7), 3001–3022 (2010)

10. Panigrahi, D.: Survivable network design problems in wireless networks. In: 22nd
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1014–1027. SIAM
(2011)

11. Robertson, N., Seymour, P. D.: Graph Minors XIII. The Disjoint Paths Problem.
In: J. Comb. Theory, Ser. B, vol. 63, pp. 65–110. (1995)

12. Scheffler, P. : A practical linear time algorithm for disjoint paths in graphs with
bound tree-width. Technical Report 396, Dept. Mathematics, Technische Univer-
sität Berlin. (1994)

13. Srinivas, A., Modiano, E.: Finding Minimum Energy Disjoint Paths in Wireless
Ad-Hoc Networks. Wireless Networks 11(4), 401–417 (2005)

