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ABSTRACT
We study the problem of maximising the lifetime of a sen-
sor network for fault-tolerant target coverage in a setting
with composite events. Here, a composite event is the si-
multaneous occurrence of a combination of atomic events,
such as the detection of smoke and high temperature. We
are given sensor nodes that have an initial battery level
and can monitor certain event types, and a set of points
at which composite events need to be detected. The points
and sensor nodes are located in the Euclidean plane, and all
nodes have the same sensing radius. The goal is to compute
a longest activity schedule with the property that at any
point in time, each event point is monitored by at least two
active sensor nodes. We present a (6 + ε)-approximation
algorithm for this problem by devising an approximation
algorithm with the same ratio for the dual problem of min-
imising the weight of a fault-tolerant sensor cover and apply-
ing the Garg-Könemann algorithm. Our algorithm for the
minimum-weight fault-tolerant sensor cover problem gener-
alises previous approximation algorithms for geometric set
cover with weighted unit disks and is obtained by enumerat-
ing properties of the optimal solution that guide a dynamic
programming approach.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory
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Approximation algorithm, unit disk graph, set multi-cover,
dynamic programming
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1. INTRODUCTION
Consider a sensor network whose task is to detect the

occurrence of events at a given set of event points. Since
sensors often have a limited battery supply, it is important
to address the problem of maximising the lifetime of the
network, i.e., the length of time during which the network
can carry out its monitoring task successfully. The lifetime
of the network can be prolonged by calculating an activity
schedule in which only a subset of the sensor nodes is active
at any point in time, and the remaining sensors are in a sleep
mode that saves energy. The active nodes must be sufficient
for performing the required monitoring task. Following [17,
14], we consider the setting where the events to be detected
are composite events, i.e., events comprised of several si-
multaneous atomic events at the same location detected by
different sensor types (e.g., detecting a fire by observing the
atomic events of high temperature and smoke), and the sen-
sor coverage is required to be fault-tolerant, i.e., the failure of
any one sensor does not affect the sensing task. We assume
that the sensor nodes and event points are located in the
Euclidean plane, and all sensor nodes have the same sens-
ing radius. Each sensor node can monitor a certain set of
event types, and the composite event to be detected at each
event point is a combination of atomic events corresponding
to different event types.

A common approach to lifetime maximisation is to for-
mulate the problem as a linear program and obtain an ap-
proximate solution by approximating the dual problem of
computing a sensor cover of minimum weight (see, e.g., [2,
3, 8]). We follow the same approach and hence mainly con-
sider the dual problem of minimising the weight of a fault-
tolerant sensor cover. We model the latter problem as a
weighted multi-cover problem with unit disks and a set of
event types.

In the special case of atomic events of just one event type
and no fault-tolerance requirements, the minimum weight
sensor cover problem is a standard geometric set cover prob-
lem where the aim is to cover a given set of points using
unit disks of minimum total weight. The best known ap-
proximation ratio for that problem is 4 + ε [9, 20]. Our
setting poses the additional challenges of having to cover
every point twice (turning the problem into a multi-cover
problem) while avoiding the loss of a factor of two in the ap-
proximation ratio, and of dealing with different event types
and composite events. Addressing these challenges requires
us to refine the techniques that have been developed for the
standard geometric set cover problem with unit disks.



1.1 Related Work
Sensor cover problems have been studied in several vari-

ants, including target coverage problems where a discrete set
of points that need to be monitored is specified in the input,
and region coverage problems where the area to be moni-
tored is specified as a (typically convex) region in the plane.
We refer to the survey by Thai et al. [16] for an overview.
Berman et al. [2, 3] show that the region coverage problem
can be reduced to the target coverage problem and present
an algorithm with logarithmic approximation ratio. They
also show that a minimum cost sensor cover algorithm with
approximation ratio ρ implies an approximation algorithm
with ratio ρ(1 + ε) for the lifetime maximisation problem
using the Garg-Könemann algorithm [11]. Zhao and Gu-
rusamy [18] study the target coverage problem with the ad-
ditional requirement that the sensors that are active at any
time are connected. They obtain an algorithm with loga-
rithmic approximation ratio and also present a performance
evaluation based on simulation experiments. Sanders and
Schieferdecker [15] show that the target coverage problem
for sensors represented by unit disks with the objective of
lifetime maximisation is NP-hard. They provide a (1 + ε)-
approximation algorithm using resource augmentation, i.e.,
their algorithm needs to increase the sensing range of ev-
ery sensor node by a factor of 1 + δ, for some fixed δ > 0.
Vu et al. [17] and Marta et al. [14] consider fault-tolerant
sensor cover problems with composite events. They present
centralised and distributed heuristics and evaluate them in
simulations. In this paper, we aim at designing approxima-
tion algorithms with provable performance guarantees for
fault-tolerant sensor cover problems with composite events.

A special case of the minimum cost sensor cover problem
is the weighted geometric set cover problem with unit disks.
This problem has received considerable attention as it in-
cludes the weighted dominating set problem for unit disk
graphs, which is relevant for routing backbone construction
in wireless networks. This relationship also shows that the
problem is NP-hard [6]. A series of papers has presented
approximation algorithms with smaller and smaller constant
approximation ratios for weighted set cover with unit disks
[1, 13, 7, 9, 20]. The currently best known ratio is 4 + ε [9,
20]. These results apply also to the minimum-weight domi-
nating set problem in unit disk graphs. If one is interested
in a minimum-weight connected dominating set, a standard
approach is to first compute a cheap dominating set and
then solve a node-weighted Steiner tree problem to connect
it [1, 7, 9, 13, 20]. The node-weighted Steiner tree problem
admits a 2.5α-approximation algorithm in unit disk graphs
[10, 19], where α is the approximation ratio of the best
known approximation algorithm for edge-weighted Steiner
trees. Since α < 1.39 [4], this gives approximation ratio
less than 3.475. Together with the (4 + ε)-approximation
from [9, 20], this yields a 7.475-approximation algorithm
for minimum-weight connected dominating sets in unit disk
graphs.

The unweighted set multi-cover problem has been studied
in geometric settings by Chekuri et al. [5]. They present
an O(logopt)-approximation algorithm for set systems of
bounded VC dimension, where opt is the size of an op-
timal cover, and constant-factor approximation algorithms
for covering points by half-spaces in three dimensions or for
covering points with pseudo-disks in the Euclidean plane.
Their results only apply to the unweighted case.

1.2 Our Results
We model the fault-tolerant target coverage problem with

composite events as a generalised geometric multi-cover prob-
lem with unit disks and present a (6 + ε)-approximation al-
gorithm, both for the lifetime maximisation variant and for
the minimum cost sensor cover variant of the problem. On
a high level, we solve the minimum cost sensor cover prob-
lem by providing a 6-approximation algorithm for the case
where all event points are located in a square of bounded size
(which we refer to as a block) and employing the geometric
shifting strategy [12, 13]. To obtain the 6-approximation al-
gorithm for a block, we ‘guess’ a number of properties of an
optimal solution by enumeration, and then apply dynamic
programming along horizontal and vertical strips of smaller
squares. Because of the results of the ‘guessing’ step, we
only need to handle the case where disks with centre out-
side a strip are used to cover points inside the strip, which
makes a dynamic programming approach feasible. Our algo-
rithm requires significant adaptations compared to previous
work because of the multi-cover aspect and because there is
more than one sensor type. Firstly, we need a considerably
more involved ‘guessing’ step that allows us to classify the
points in terms of the location of the disk which provides the
covering. In particular, we need a non-trivial generalisation
of the sandglass concept and we need to find a solution for
the problem such that we do not count the same disk twice
(once in a horizontal and once in a vertical strip) in order
to ensure a feasible solution. In addition, we have to extend
the dynamic programming algorithm such that we can find
a 2-covering for the points and such that the algorithm can
handle different event types. Using our approximation al-
gorithm for minimum cost sensor cover as a subroutine in
the Garg-Könemann algorithm [11], we also obtain approx-
imation ratio 6 + ε for lifetime maximisation. Furthermore,
provided that the communication radius of a sensor node
is at least twice its sensing radius, we can use the known
approximation algorithm for node-weighted Steiner trees in
unit disk graphs and obtain approximation ratio 9.475 for
the problem variants where the sets of active sensors are
required to form a connected communication network.

The remainder of the paper is structured as follows. Sec-
tion 2 covers preliminaries. In Section 3, we present the
details of our dynamic programming approach to solve the
minimum cost fault-tolerant sensor cover problem in a block.
In Section 4, we describe the enumeration procedure that
‘guesses’ the properties of a fixed optimal solution that the
dynamic program requires as input. Section 5 concludes the
paper.

2. PRELIMINARIES
Consider the two-dimensional Euclidean plane. The x-

coordinate and y-coordinate of a point p is denoted by xp
and yp, respectively. The Euclidean distance between two
points p and q is denoted by δ(p, q). If d is a disk, we also
use d to refer to the centre of d, so that we can write δ(d, p)
for the Euclidean distance between the centre of d and a
point p. The power set of a set S is denoted by P(S). An
algorithm for a maximisation, or minimisation, problem is
a ρ-approximation algorithm if it runs in polynomial time
and always outputs a solution with objective value at least
opt/ρ, or at most ρ · opt, where opt denotes the objective
value of an optimal solution.



2.1 Problem Definitions
Let T be a (constant-size) set of different event types (e.g.,

smoke, temperature, etc.). Consider a set P of points in the
two-dimensional Euclidean plane and a set D of weighted
unit disks. All disks have the same radius r, and without
loss of generality we assume r = 2 throughout this paper.
In the context of the target coverage problem, the disks
in D correspond to sensor nodes (with r representing the
sensing radius) and the points in P correspond to targets
(event points) that need to be monitored. The weight of
a disk d ∈ D is non-negative and denoted by w(d) or wd.
The total weight of a set D′ ⊆ D of disks is denoted by
w(D′) =

∑
d∈D′ w(d). Every disk (sensor) d ∈ D has sens-

ing components for a subset Td ⊆ T of event types. Every
target p ∈ P specifies a positive integer kp as its coverage
requirement and an event type tp ∈ T that needs to be mon-
itored at p. (A target p at which composite events composed
of the event types in some T ′ ⊆ T need to be monitored is
represented by |T ′| copies of p, with each copy p′ associated
with a different event type tp′ ∈ T ′.)

We say that a disk d ∈ D covers a point p ∈ P if p is in
d and tp ∈ Td. A set D′ ⊆ D of disks meets the coverage
requirements of a point p ∈ P if p is covered by at least
kp distinct disks in D′, and D′ is a feasible multi-T -cover
if it meets the coverage requirements of all points p ∈ P .
The objective of the weighted multi-T -cover problem with
unit disks, denoted by WMCUD-T , is to compute a feasible
multi-T -cover of minimum total weight. We mostly assume
that kp ≤ 2 for all p ∈ P and refer to this restriction of
WMCUD-T as W2CUD-T .

The lifetime maximisation variant is defined as follows:
We are given points and disks as in an instance of WM-
CUD-T , but additionally each disk d ∈ D specifies an ini-
tial battery level bd, expressed in suitable units so that bd
is the total duration during which d can be active before its
battery runs out. A schedule is a set of pairs (Di, xi), where
Di ⊆ D is a feasible multi-T -cover and xi ≥ 0. A schedule
is feasible if for each d ∈ D, the sum of the xi values of
all pairs (Di, xi) with d ∈ Di does not exceed bd. The life-
time of a schedule is the sum of the xi values of all its pairs
(Di, xi). The goal is to compute a feasible schedule of max-
imum lifetime. We refer to this problem as the maximum
lifetime multi-T -cover problem with unit disks (MLMCUD-
T ), and the restricted version where kp ≤ 2 for all p ∈ P as
ML2CUD-T .

2.2 Lifetime Maximisation and the Algorithm
by Garg and Könemann

A linear program Π of the form {max cTx | Ax ≤ b, x ≥
0}, where A, b and c are non-negative, is called a packing
problem. The linear program may be given implicitly, and
the number of variables xj may be exponential. For a given
vector w, the problem of finding a column j of A such that∑

iAi,jwi/cj is minimised is called the problem of computing
a column of minimum length with respect to Π. It is known
[2] that, if a packing problem Π′ admits a ρ-approximation
algorithm for the problem of computing a column of mini-
mum length with respect to Π′ for any given vector w, then
the algorithm by Garg and Könemann [11] can be used to
compute a (1 + ε)ρ-approximate solution to Π′.

The lifetime maximisation problem can be written as a
linear program with a variable xD′ for every feasible sensor
cover D′ ⊆ D, representing the length of the part of the

schedule during which the set of active sensors is D′. A
linear constraint for every node ensures that the total time
during which the node is active does not exceed the battery
life of that node. The linear program does not have polyno-
mial size, as the number of variables xD′ can be exponential,
but it is a packing problem, and the algorithm by Garg and
Könemann [11] can be applied. The problem of computing
a column of minimum length is simply the problem of com-
puting a feasible sensor cover D′ of minimum cost, where
the cost of a node d ∈ D is given by some weight wd. In
our case, the latter problem is W2CUD-T . As we present
a (6 + ε)-approximation algorithm for W2CUD-T in the re-
mainder of the paper (Theorem 1), we obtain that, for every
fixed ε > 0, there is a (6 + ε)-approximation algorithm for
ML2CUD-T .

2.3 Plane Partition
As in previous work (e.g., [13]), our algorithms employ a

partition of the plane. Imagine an infinite grid that parti-
tions the plane into squares of side length 1.4 (any number
sufficiently close to, but strictly less than,

√
2 would do).

Consider an arbitrary such square Sij . Note that any disk
of radius 2 with centre in Sij contains the whole square.
Let Pij ⊆ P be the set of points from P that lie in Sij .
We can assume without loss of generality that no point or
disk centre lies exactly on the boundary between two adja-
cent squares. The neighbouring infinite regions of a square
Sij are referenced as shown in Figure 1, with ul standing
for ‘upper left,’ cr for ’centre right,’ lm for ‘lower middle’,
etc. Furthermore, let upper be the union of the regions
ul, um, ul, let lower be the union of ll, lm, lr, let left
be the union of ul, cl, ll, and let right be the union of
ur, cr, lr.

LL LM

UL UM UR

CL CR

LR

Sij

y = y2

y = y1

x = x1 x = x2

Figure 1: Square Sij and neighbouring regions

For an integer constant K > 0 (which determines the ε
term in the final approximation ratio), consider a partition of
the plane into blocks so that each block B consists of K×K
squares Sij . If we have a ρ-approximation for W2CUD-T
instances whose points lie in one block, we can obtain a ρ(1+
O(1/K))-approximation for general instances of W2CUD-
T using the standard geometric shifting strategy [12]. (We
omit further details of this process.) Consequently, the key
to obtaining a good approximation algorithm for W2CUD-T
is to achieve a good approximation ratio for instances where
the points are located in one block.



3. 6-APPROXIMATION FOR W2CUD-T IN
A BLOCK

Our approach to solve W2CUD-T in a K ×K block con-
sists of two stages: In the first stage, using enumeration we
‘guess’ properties of a fixed optimal solution. (Here and in
the following, any reference to ‘the optimal solution’ refers
to that fixed optimal solution.) In the second stage, we
approximate the best solution with these properties using
dynamic programming. We defer the details of the enumer-
ation stage to Section 4. The outcome of the enumeration
stage is that we can assume that we know for every point
p in a square Sij how often (zero times, once, or at least
twice) it is to be covered by disks with centre in Sij (and
what up to two of those disks are), how often by disks with
centre in upper or lower, and how often by disks with cen-
tre in left or right. Moreover, for points that are to be
covered once by a disk in upper or lower and once by a
disk in left or right, for one of the two cases we know that
the point is to be covered by a disk from um ∪ lm, or by a
disk from cl ∪ cr. (This ensures that the two disks com-
puted by the two different dynamic programs dealing with
the point are distinct.) Dynamic programming is applied to
each horizontal and each vertical strip of squares contained
in the block B. In the following, we describe the dynamic
program for a horizontal strip. Vertical strips are dealt with
analogously.

3.1 Strip problem
Consider a horizontal strip H of squares, consisting of K

squares Sij . We are given a set PH of points in the strip,
and a set DH̄ of disks with centre above or below the strip
(i.e., all the disks have centres in the union of the regions
upper ∪ lower for all squares Sij in the strip H). Each
disk d ∈ DH̄ is associated with a weight w(d) and a set Td

of event types. Each point p ∈ P has an event type tp and
a coverage requirement kp ∈ {1, 2}. If kp = 1, the point
may additionally specify that it must be covered by a disk
with centre in um∪ lm (as opposed to being covered by any
disk from upper ∪ lower). We let nH denote the number
of points in PH . Let the points in PH = {p1, p2, . . . , pnH}
be ordered by non-decreasing x-coordinates, breaking ties
arbitrarily.

A set D′ ⊆ DH̄ of disks meets the coverage requirement of
p ∈ PH if the following holds: If kp = 2, then D′ contains
two distinct disks that cover p. If kp = 1, then D′ contains a
disk that covers p, and if p requires to be covered by a disk
from um ∪ lm, then D′ contains a disk that covers p and
lies in that pair of regions. (Note that regions are specified
with respect to the square Sij that contains p.) It is easy to
detect infeasible instances, so we only consider the case that
there is a feasible solution, i.e., a set of disks D′ ⊆ DH̄ that
meets the coverage requirements of all points in PH . The
goal is to compute a feasible solution of minimum weight.
We refer to this problem as the strip problem.

3.2 Outer and Inner Envelopes
For every T ′ ∈ P(T ) \ {∅}, i.e., for every non-empty

combination of event types in T , we consider twelve en-
velopes. Consider an arbitrary set DT ′ of disks that intersect
a square Sij and monitor exactly all the event types in T ′,
i.e., Td = T ′ for all d ∈ DT ′ . We consider an outer T ′ enve-
lope and an inner T ′ envelope (with respect to DT ′) for each
of the regions ul, um, ur, ll, lm and lr. The purpose of

envelopes is to represent the disks lying in that region that
cover points in PH in a solution, in the sense that any point
in PH that is covered once or twice by disks from that re-
gion is also covered at least the same number of times by
disks that are on the two envelopes of that region. The al-
gorithm then aims at computing envelopes corresponding to
a solution of minimum cost.

We next define the outer and inner T ′ envelope for the re-
gion um (with respect to DT ′). (Envelopes for the remaining
five regions can be defined analogously.) The outer T ′ enve-
lope for the region um represents the boundary of the union
of all disks in DT ′ that have centre in the region um. More
specifically, the envelope is the segment of the boundary that
lies in the square Sij . (If at some x-coordinate there is no
disk from um that overlaps Sij , we let the upper boundary
of the square form a part of the envelope.) The inner T ′

envelope for um is the envelope formed by the set of disks in
DT ′ with centre in um that remain after discarding the set
of disks that form the outer T ′ envelope for um. We view
the set of disks in an envelope as ordered by non-decreasing
x coordinates of their centres. Note that this is the order
in which the disks appear on the envelope if we trace the
envelope from left to right.

3.3 Dynamic Programming
We create a table Wpi for every point pi ∈ PH . For every

T ′ ∈ P(T ) \ {∅}, we have the following indexes for the table
Wpi : For each of the six regions ul, um, ur, ll, lm and lr,
we have a set of up to three disks that are candidates for
the disk d that is on the outer T ′ envelope of that region at
position x = xpi , for the disk just before d on that envelope,
and for the disk just after d on that envelope. For the inner
T ′ envelope of each of the six regions, we have one disk that
is a candidate for being the disk on that envelope at position
x = xpi . Hence, an entry of the table Wpi is indexed by

24 · (2|T | − 1) disks (three disks for each of the six outer
envelopes, and one disk for each of the six inner envelopes,
for each choice T ′ ⊆ T ). For ease of presentation, we write
the indexes for the table Wpi as two sets of disks Du and
Dl, where Du contains all the disks from inner and outer
T ′ envelopes for any T ′ and regions ul, um and ur, and Dl

contains all the disks from inner and outer T ′ envelopes for
any T ′ and regions ll, lm and lr.

Consider the case that the indexes for the table Wpi for
each T ′ are chosen as the disks that actually form the en-
velopes under consideration in the optimal solution. We can
observe that, if pi is covered once or twice by the optimal
solution, then it is also covered once or twice, respectively,
by the disks constituting the indexes for the table.

The value of an entry of table Wpi is infinity if the disks
indexing the table entry do not meet the coverage require-
ment for pi, and otherwise the minimum cost of a set of disks
that includes all the disks indexing the table entry of Wpi

and that also meets the coverage requirements of all points
preceding pi in PH . Once all the tables Wpi have been com-
puted, the set of disks corresponding to the minimum value
of any entry of WpnH

is output as the solution.
The table entries for the leftmost point p1 ∈ PH are ini-

tialised as follows. For every choice of indexes Du and Dl,
the table entry Wp1(Du, Dl) is set to w(Du) + w(Dl) if
Du ∪ Dl meets the coverage requirement of point p1, and
to ∞ otherwise. For subsequent points pi ∈ PH , the value
of an entry of Wpi is calculated as the cost for the set of disks



specified as indexes of the entry plus the cost of a cheapest
set of disks covering all points up to pi−1, which can be
found in the table Wpi−1 , while ensuring that the costs of
disks contained in both sets are counted only once:

Wpi(Du, Dl) =
∞, if Du ∪Dl does not meet

the coverage requirement for pi

minD
′
u,D
′
l

{
Wpi−1(D

′
u, D

′
l)+

w(Du−D
′
u) + w(Dl−D

′
l)

}
, otherwise

Consider the last point pnH ∈ PH . The minimum value in
the table WpnH

is the cost of the minimum weight solution
that covers all points in PH . The proof of correctness is
omitted due to space limitations.

3.4 Solving W2CUD-T in a Block
Consider an instance of W2CUD-T in a block B of K×K

squares, and assume that we know from the enumeration
stage how often each point is to be covered by disks from
different regions. We apply the dynamic program to the
strip problem for each of the K horizontal strips in B and
(by rotating the plane by 90◦) each of the K vertical strips.
The union of the 2K solutions together with the set of disks
that has been determined to be in the solution by the enu-
meration stage is then output as the solution for the en-
tire block B. This gives a 6-approximation algorithm for
instances of W2CUD-T where all points lie in one K ×K
block. (Details are deferred to the full version.) As remarked
in Section 2, this implies the following.

Theorem 1. For every fixed ε > 0, there is a (6 + ε)-
approximation algorithm for W2CUD-T .

3.5 Connected Sensor Cover
Up to now we have considered only the condition that the

selected sensors meet the coverage requirement of each point
in P . In many applications, such as the settings described in
[14, 17], it is additionally required that the selected sensors
form a connected network. For this, it is assumed that each
sensor node is equipped with a wireless radio that allows it to
transmit messages to any other node that is located within a
certain communication radius rc from it. (This corresponds
to a communication graph where the sensor nodes are rep-
resented by disks of radius rc/2 and two nodes are adjacent
if their disks intersect.) It is natural to expect that rc is
larger than the sensing radius r. Under the assumption that
rc ≥ 2r, we can extend our approximation algorithms for
W2CUD-T and ML2CUD-T to the problem variants with
connectivity requirement.

For W2CUD-T with connectivity requirement, we first
compute a (6 + ε)-approximate solution D′ to the problem
without the connectivity requirement, by using the algo-
rithm from Theorem 1. Then, viewing the given disks as
disks of radius rc/2, we solve the minimum node-weighted
Steiner tree problem in the corresponding unit-disk graph for
the disks in D′ as terminals, using the algorithm with ap-
proximation ratio less than 3.475 for node-weighted Steiner
trees in unit disk graphs [10, 19, 4]. Let S be the set of
Steiner nodes output by the algorithm. The set D′ ∪ S is
then output as a solution to W2CUD-T with connectivity

requirement. Let optc be an optimal solution to W2CUD-
T with connectivity requirement. Observe that optc is a
(superset of a) feasible solution to the Steiner tree problem
considered above: optc is connected and contains disks cov-
ering every point in P . Every disk in D′ covers a point in
P , and hence the centre of any disk in D′ is within distance
r+ r ≤ rc of the centre of some disk in optc. Consequently,
optc ∪ D′ is connected. This shows that the Steiner tree
approximation algorithm produces a set S of cost less than
3.475 times the cost of optc. As the cost of D′ is within a
factor of 6+ε of the optimal solution to W2CUD-T without
connectivity requirement, and thus within the same factor of
the cost of optc, the overall approximation ratio is bounded
by 9.475 if ε is chosen sufficiently small.

Theorem 2. There is a 9.475-approximation algorithm
for the variants of W2CUD-T and ML2CUD-T where the
active disks need to be connected and rc ≥ 2r.

4. GUESSING PROPERTIES OF THE OP-
TIMAL SOLUTION BY ENUMERATION

In this section, we describe how the knowledge of proper-
ties of the optimal solution that is required by the dynamic
programming algorithm in Section 3 can be obtained using
enumeration techniques. Fix an arbitrary optimal solution
optB to the given instance of W2CUD-T in a block B.
We present the enumeration technique using the notion of
‘guessing’. When we write that the algorithm ‘guesses’ a
property of optB , this means that the algorithm enumer-
ates all possibilities for that property in such a way that one
of the possibilities is guaranteed to be the desired property
of the optimal solution. The enumeration is done for each
of the K2 squares Sij contained in B. Consider one such
square Sij . Let the left and right boundary of Sij lie on the
line x = x1 and x = x2, respectively, and the bottom and
top boundary on the line y = y1 and y = y2, respectively
(cf. Figure 1).

First, for every event type tl in T , we guess whether optB

contains 0, 1 or at least 2 disks with centre in Sij that moni-
tor event type tl. Furthermore, in the second and third case
we also guess the one disk or two of those disks, respectively.
Note that a disk with centre in Sij must contain the whole
square Sij , as the disk has radius r = 2 and the square has
side length less than

√
2. Furthermore, two disks with cen-

tre in Sij that cover event type tl are sufficient to meet the
coverage requirements of all points p ∈ Pij with tp = tl, so
it is not necessary to guess more than two such disks.

Next, we aim at guessing a partition of the square Sij into
areas such that for the points p in the same area, we know
whether they are covered by upper ∪ lower, by left ∪
right, or once by upper ∪ lower (possibly restricted to
um ∪ lm) and once by left ∪ right (possibly restricted to
cl ∪ cr). Moreover, we guess a separate such partition for
each event type tl ∈ T . For each tl ∈ T , the steps involved
in guessing the partition are as follows. First, we determine
areas called 2-watching tl sandglasses (the terminology is
motivated by a similar sandglass concept in [13]) for the
four regions um, lm, cl and cr. For each of these areas, we
can require that points are covered only by upper∪lower,
or only by left ∪ right. Second, we consider 1-watching
envelopes, i.e., envelopes of the disks in optB with centre
in one of the regions um, lm, cl and cr, and guess the four
points where adjacent envelopes intersect. Based on the



locations of these intersection points, we can segment the
square into smaller areas and deduce for each of the smaller
areas whether the points located in the area are to be covered
from upper∪ lower or from left∪ right (or from both).
The details of the partition of the square into areas for one
specific event type tl are presented in the following.

4.1 2-Watching Sandglasses
We define the 2-watching tl sandglass for the region lm.

The sandglasses for the regions um, cr and cl are defined
similarly (by rotation). Let P ′ij be the set of points in Pij

that have event type tl, i.e., the set of points p with tp = tl.
Consider the set P 2

lm ⊆ P ′ij of all points in P ′ij that are
covered by two distinct disks from lm in optB , but not
covered by any disk in optB that does not have centre in lm.
For each p ∈ P 2

lm, consider the line lp through p with slope
1, and let p′ be the point where lp intersects the line y = y1.
Let pl be the point in P 2

lm for which p′ is leftmost. Similarly,
let l′p be the line through p with slope −1, and let p′′ be the
intersection point of l′p and y = y1. Let pr be the point in
P 2
lm for which p′′ is rightmost. The 2-watching tl sandglass

for lm is now defined as the area that is obtained as the
intersection of the halfplane below lpl , the halfplane below
l′pr , and the square Sij . See Figure 2 for an illustration.1

Note that this sandglass is uniquely determined by pl and
pr and there are O(|Pij |2) possibilities for guessing pl and
pr.

pr

pl

Figure 2: 2-watching sandglasses

We show that the coverage requirements of any point of
P ′ij located in the 2-watching tl sandglass for lm are met by
disks from upper∪lower. Let the lower-shadow of a point
p be the region that is the intersection of the halfplane below
the line with slope 1 through p, the halfplane below the line
with slope −1 through p, and the square Sij . The left-
shadow, up-shadow, and right-shadow of a point are defined
analogously.

We state the following lemma due to Huang et al. [13].

Lemma 1. [13] If a point p ∈ P ′ij is covered by a disk d
from lm, then any point in the lower-shadow of p is also
covered by the same disk from lm.

1Figure 2 and subsequent figures are not drawn to scale as
they serve only illustrative purposes.

The lemma directly implies the following corollary.

Corollary 1. If a point p ∈ P ′ij is covered by two disks
d1, d2 from lm, then any point in the lower-shadow of p is
also covered by the same two disks d1, d2 from lm.

We also require the following lemma, which we prove by
application of Lemma 1.

Lemma 2. The coverage requirement for any point p ∈
P ′ij that lies inside the 2-watching tl sandglass for lm is met
by disks in optB from upper ∪ lower.

Proof. Consider the points pl and pr defining the 2-
watching tl sandglass for lm. For points in the lower-shadow
of pl or in the lower-shadow of pr, the lemma follows from
Corollary 1. Let p be a point that lies in the 2-watching tl
sandglass for lm, but not in the lower-shadows of pl or pr.
Assume that p is covered by a disk d with centre in cl or
cr by optB . Then, by Lemma 1 applied to the left-shadow
or right-shadow of p, respectively, we find that pl or pr is
also covered by d, a contradiction to the choice of pl and
pr.

It follows that the coverage requirements of all points in
the 2-watching tl sandglasses for lm and for um are satisfied
by disks in optB from upper ∪ lower, and the coverage
requirements of all points in the 2-watching tl sandglasses
for cl and for cr are satisfied by disks in optB from left∪
right. Hence, all the points from P ′ij that lie in 2-watching
tl sandglasses can be classified accordingly. These points
are ignored for the classifications of points described in the
following sections, i.e., their classification is not changed if
they are contained in one of the areas under consideration
there.

4.2 1-Watching Envelopes
It remains to deal with points from P ′ij that do not lie

in one of the 2-watching tl sandglasses. For each of the
four regions um, lm, cl and cr, we consider a 1-watching
tl envelope that represents the boundary of disks in optB

that monitor event type tl and have centre in that region.
More precisely, the 1-watching tl envelope is formed by the
intersection of that boundary with the square Sij . See Fig-
ure 3a, where the 1-watching um and lm envelopes are drawn
in bold, for an illustration. The boundary of the square is
used to fill in parts of the envelope where no disk from the
respective region intersects the square. We have separate
envelopes for each tl ∈ T .

We call the 1-watching envelopes of cl and um adjacent,
and similarly those of um and cr, etc. Allow us to define
intersection points of adjacent 1-watching envelopes and de-
scribe how they are used to partition the remainder of square
Sij into areas such that we can specify for the points in
each region whether they are covered by optB using disks
in upper ∪ lower or in left ∪ right.

Lemma 3. Adjacent 1-watching tl envelopes intersect in
exactly one intersection point.

Proof. By the dimension of the square Sij and the radius
of the disks, it follows that the direction of any tangent
to the 1-watching tl envelope for um or lm is in the open
interval (−π/4, π/4), and the direction of any tangent to the
1-watching tl envelope for cl or cr is in the open interval



(π/4, 3π/4). Therefore, it is impossible that two adjacent 1-
watching tl envelopes have more than one intersection point.
As each envelope is a curve connecting points on opposite
sides of the square, it follows that two adjacent envelopes
always intersect.

Hence, there are four intersection points between adjacent
1-watching tl envelopes. Note that each of these intersection
points is uniquely specified by the two disks whose bound-
aries intersect at that point. Therefore, it suffices to guess
8 disks in order to determine the four intersection points.

Let the intersection point of the 1-watching tl envelopes
for cl and um be denoted by iumcl . Similarly, let iumcr be the in-
tersection point of the 1-watching tl envelopes of um and cr,
ilmcr the intersection point of the 1-watching tl envelopes for
cr and lm, and ilmcl the intersection point of the 1-watching
tl envelopes for lm and cl.

4.3 Areas in a Square
Assume that iumcl is to the left of iumcr (i.e., has smaller x-

coordinate), iumcr is above ilmcr (i.e., has larger y-coordinate),
ilmcr is to the right of ilmcl , and ilmcl is below iumcl . We call this
the standard configuration. The treatment of other alterna-
tive configurations is deferred to subsequent sections. For
the standard configuration, define i1 to be iumcl , i2 to be iumcr ,
i3 to be ilmcr , and i4 to be ilmcl , as shown in Figure 3a. For
an arbitrary intersection point is, let ls and l′s be the two
lines through is with slope 1 and −1, respectively. As il-
lustrated in Figure 3b, define middle to be the region that
is the intersection of the halfplanes below l1 and l′2 and the
halfplanes above l3 and l′4. Let middle-l be the region that
is the intersection of the halfplanes below l1 and l′1 and the
halfplanes above l4 and l′4, and similarly let middle-r be the
region that is the intersection of the halfplanes below l2 and
l′2 and the halfplanes above l3 and l′3, as shown in Figure 3b.

We claim that the coverage requirements of all points in
the regions middle-l and middle-r are met in optB by
disks with centre in left ∪ right. We state the arguments
for points within the region middle-l, and identical argu-
ments apply to middle-r. Observe that the region middle-l
lies entirely below the 1-watching tl envelope for um. This
is because middle-l is contained in the 90 degree cone be-
low i1 that lies between l1 and l′1, while the 1-watching tl
envelope for um lies in the union of the halfplanes above l1
and above l′1 (this is because the tangent to any point in the
1-watching tl envelope for um has direction between −π/4
and π/4, which follows because Sij has side length less than√

2 and the disks have radius 2). Similarly, middle-L lies
entirely above the 1-watching tl envelope for lm. Therefore,
it is not possible that a point in middle-l is covered by a
disk with centre in um or lm in optB , and so the coverage
requirements of all points in middle-l are indeed met in
optB by disks from left∪right. Thus, we can classify the
points in middle-l and middle-r accordingly.

The regions middle-u and middle-d are defined analo-
gously to middle-l and middle-r, with middle-u enclosed
by lines l1, l

′
1, l2, l

′
2 and middle-d enclosed by lines l3, l

′
3, l4, l

′
4,

see Figure 3b. Furthermore, the region obtained by re-
moving middle-l, middle-u, middle-r and middle-d from
middle (which may be empty) is denoted by middle-m.
By arguments analogous to those given above, the coverage
requirements of points in regions middle-u and middle-d
are met in optB by disks from upper ∪ lower. Hence,
the points in these regions can be classified accordingly. Fi-

i4
i3

i2

i1

(a) Intersection points

middle-m

middle-u

middle-r
middle-l

middle-d

south

west

(b) Regions

Figure 3: Intersection points of 1-watching envelopes, and
resulting central and peripheral regions

nally, the region middle-m lies outside all four 1-watching
tl envelopes, and so the points in that region can only be
covered in optB by disks from regions ul, ur, ll or lr.
These regions are in upper ∪ lower and in left ∪ right,
so we can (arbitrarily giving preference to the former) clas-
sify these points as points that have to be covered by disks
in upper ∪ lower.

We refer to the part of Sij that is not in middle as the
peripheral part. Consider the peripheral area south shown
in Figure 3b. This is the area that is the union of the lower-
shadow of i3 and the lower-shadow of i4. Recall that points
in south that are also in a 2-watching sandglass have al-
ready been classified and are not considered further. For
any remaining point p located in south we know that p
is covered by a disk from lm (as south lies below the 1-
watching tl envelope for lm). Furthermore, if p has to be
covered by a second disk, we know that p is covered by at
least one disk whose centre is not in lm, because otherwise
p would lie in the 2-watching tl envelope for lm and would
have been classified already. Hence, if kp = 1, we specify
that p must be covered by upper ∪ lower, and if kp = 2,



we specify that p must be covered once by left∪right and
once by lm ∪ um. The areas west, north and east are
defined and handled analogously.

As each point in P ′ij is contained in one of the areas defined
above, all these points are classified, i.e, we have determined
for each point how often it must be covered by left∪right
(or cl∪cr) and how often by upper∪lower (or um∪lm).

4.4 Areas in a Square – Other Configurations
Recall that iumcl is the intersection point between the 1-

watching tl envelopes for um and cl, and ilmcl , ilmcr and iumcr are
defined analogously. In the standard configuration shown in
Figure 3a, we have that iumcl is to the left of iumcr , iumcr above
ilmcr , iumcl above ilmcl , and ilmcl to the left of ilmcr . In the following,
we discuss how to handle all other possible configurations.

The definition of 2-watching tl sandglasses does not de-
pend on the configuration of intersection points, this means
2-watching sandglasses can be handled as before. The def-
inition of the peripheral areas is adapted as follows. The
area south is the union of the lower-shadow of the lower of
the two points iumcl , ilmcl and the lower-shadow of the lower
of the two points iumcr , ilmcr . The area west is the union of
the left-shadow of the point that is further left among the
two points iumcl , iumcr and the left-shadow of the point that is
further left among the two points ilmcl , ilmcr . The definitions of
east and north are analogous. We observe that each of the
four peripheral regions can be handled in the same way as
before. For example, we still have that every point in south
is covered by a disk with centre in lm, and if the point has
to be covered by a second disk, there is a disk covering it
with centre in left ∪ right.

Let us introduce some terminology. We say that the 1-
watching tl envelopes for cl and cr are opposite, and so are
the envelopes for um and lm. Furthermore, we say that the
1-watching tl envelopes for cl and cr overlap if iumcl is to the
right of iumcr and ilmcl is to the right of ilmcr . In other words,
the relations between iumcl and iumcr and between ilmcl and ilmcr
are both reversed compared to the standard configuration.
Similarly, we say that the 1-watching tl envelopes for cl
and cr cross if only one of the two relations is reversed
compared to the standard configuration. For the 1-watching
tl envelopes for um and lm, the notions of overlapping and
crossing are defined analogously by considering the relations
between iumcl and ilmcl and between iumcr and ilmcr .

One Pair of Opposite Envelopes Overlap. The first
alternative configuration that we consider is the case where
one pair of opposite envelopes overlap, and the other pair of
opposite envelopes neither overlap nor cross. Without loss
of generality, assume that the 1-watching tl envelopes for um
and lm overlap, as illustrated in Figure 4a. (The other case
is symmetric.) Note that ilmcl is above iumcl , and ilmcr is above
iumcr .

Let i1 = ilmcl , i2 = ilmcr , i3 = iumcr , i4 = iumcl . Now let
the regions middle, middle-l, etc. be defined in terms of
i1, i2, i3, i4 as in the standard configuration. Consider the re-
gions middle-l, middle-m and middle-r. These regions are
always enclosed within both the um envelope and the lm en-
velope. Therefore, points within those regions can be classi-
fied as requiring to be covered by disks from upper∪lower.
The regions middle-u and middle-d are always outside the
1-watching tl envelopes for cl and cr, and therefore the
points in these regions can also be classified as requiring to

i1

i4

i3

i2

(a) The um envelope and the lm envelope
overlap

i4

i3

i2

i1

(b) um envelope overlaps lm envelope, and cl
envelope overlaps cr envelope

Figure 4: Configurations with overlapping envelopes

be covered only by disks in upper ∪ lower—for the same
reason as in the standard configuration.

Both Pairs of Opposite Envelopes Overlap. Now con-
sider the configuration shown in Figure 4b where the cl
and cr envelopes overlap, and the um and lm envelopes
also overlap. For the definition of the middle regions, let
i1 = ilmcr , i2 = ilmcl , i3 = iumcl , i4 = iumcr .

Points within the regions middle-u and middle-d are cov-
ered twice by disks in left ∪ right as those regions are
enclosed within both the cl envelope and the cr envelope.
Similarly, the regions middle-l and middle-r are contained
entirely inside the um envelope and the lm envelope and as
such all points within these regions can be classified as re-
quiring to be covered by disks from upper∪ lower. Points
within the region middle-m can be classified as requiring to
be covered by disks from upper ∪ lower.

One Pair of Opposite Envelopes Cross. Now consider a
configuration where one pair of opposite envelopes cross, and
the other pair of opposite envelopes neither cross nor over-
lap. Without loss of generality, assume that the 1-watching



tl envelopes for cl and cr cross, and that iumcl is to the left
of iumcr and ilmcl is to the right of ilmcr , as shown in Figure 5a.
(The other cases are symmetric.)

i2

i4 i3

i1

(a) cl envelope crosses cr envelope

i3

i2

i1

i4

(b) um envelope crosses lm envelope, cr and
cl envelopes overlap

Figure 5: Configurations with crossing envelopes

Let i1 = iumcl , i2 = iumcr , i3 = ilmcl , and i4 = ilmcr , and de-
fine the middle regions accordingly. The areas middle-l,
middle-r and middle-m are outside the 1-watching tl en-
velopes for um and lm, and thus the points in these re-
gions can be classified as requiring to be covered by disks
from left ∪ right. The area middle-u is outside the 1-
watching tl envelopes for cl and cr, and thus the points
in middle-u can be classified as requiring to be covered by
disks from upper ∪ lower. The area middle-d is inside
the 1-watching envelopes for both um and lm, and thus the
points in middle-d can be classified as requiring to be cov-
ered by disks from left ∪ right.

One Pair of Envelopes Overlap, One Pair of En-
velopes Cross. Consider now the case where two oppo-
site envelopes overlap and the two other opposite envelopes
cross. Without loss of generality, consider the case where
the um envelope crosses the lm envelope and the cl enve-

lope overlaps the cr envelope, and assume that iumcr is above
ilmcr and iumcl is below ilmcl , as illustrated in Figure 5b.

The area middle-l is outside the envelopes for um and lm,
and the points in middle-l can be classified as requiring to
be covered by disks in left ∪ right. The area middle-r is
within both the um and the lm envelope, and the points in
middle-r are classified as requiring to be covered by disks
in upper ∪ lower. The regions middle-u, middle-m and
middle-d are contained in the envelopes for both cl and
cr, and all points in these regions are classified as requiring
to be covered by disks in left ∪ right.

Both Pairs of Opposite Envelopes Cross. The only
configuration that has not yet been considered is the case
where both pairs of opposite envelopes cross. One such con-
figuration would have iumcl strictly to the the left of iumcr , ilmcl
strictly to the right of ilmcr , iumcl strictly above ilmcl , and iumcr
strictly below ilmcr . (We can assume strict relationships since
if two points coincide, we are free to choose the relation
and arrive at a previously considered configuration where
it is not the case that both pairs of envelopes cross.) To
show that this is impossible, consider the line l of slope −1
through iumcl . Since iumcl is above ilmcl and both points lie on the
cl envelope, we get that ilmcl is strictly below the line l. Since
iumcl is on the line l and iumcr is to the right of iumcl and also lies
on the um envelope, we get that iumcr is above l. Since iumcr is
below ilmcr and both points are on the cr envelope, it follows
that ilmcr is above l. Since ilmcl is to the right of ilmcr and both
points are on the lm envelope, we obtain that ilmcl is strictly
above the line l. This is a contradiction to the conclusion
that ilmcl is strictly below l that we derived above. Hence,
this configuration is not possible. The other configurations
where both envelopes cross can be excluded similarly.

Complexity of Enumeration. For each of the K2 squares
Sij in a block, and for each event type tl in T , we enumerate
up to two disks with centre in Sij (these form the set opt′B
of disks that are determined to be in the solution by the
guessing stage), eight points defining the 2-watching sand-
glasses, and four intersection points (each identified by two
disks) of the 1-watching envelopes. Hence, if there are mB

disks and nB points in the given instance of W2CUD-T in
a block B, there are O((m2

Bn
8
Bm

8
B)|T |) = (mB + nB)O(|T |)

choices per square, and thus (mB + nB)O(K2|T |) choices for
the whole block B. Since K and |T | are constants, this is a
polynomial number of choices. For each of these choices, the
resulting classification of points and candidate set of disks
for opt′B are passed to the second stage of the algorithm
from Section 3. (For some choices, the algorithm may find
that there is no feasible solution.) The algorithm outputs
the cheapest solution among the feasible solutions obtained

for any of the (mB + nB)O(K2|T |) different guesses of the
properties of the optimal solution. For the choice in which
the guessed properties are indeed those of optB , the algo-
rithm is guaranteed to produce a 6-approximation. Hence,
the solution output by the algorithm is a 6-approximation
for instances of W2CUD-T where all points lie in one K×K
block.

5. CONCLUSION
We have presented a (6 + ε)-approximation algorithm for

the target coverage problem with composite events and fault-
tolerance requirements, both for the lifetime maximisation



variant and for the problem of covering all event points by
sensors of minimum total cost. Our approach is based on
guessing properties of the optimal solution (by enumeration)
and then using these properties to guide a dynamic program-
ming algorithm. This is a generalisation of the approach em-
ployed by Huang et al. [13] to obtain a (6+ε)-approximation
for weighted set cover with unit disks. For the latter prob-
lem, subsequent work has improved the approximation ratio
to 5 + ε [7] and then to 4 + ε [9, 20]. The main idea of these
improvements is to perform the dynamic programming in
several strips simultaneously. One possible direction for fu-
ture work would be to see whether these improvements can
also be adapted to the fault-tolerant target coverage problem
with composite events.

Another question of interest is whether our approach can
be adapted to arbitrary coverage requirements kp, i.e., with-
out the restriction kp ≤ 2 for all p ∈ P . For W2CUD-T
and also for the special case of weighted geometric set cover
with unit disks, it is an interesting open problem whether a
polynomial-time approximation scheme (PTAS) can be ob-
tained. Finally, the study of settings where the sensors and
targets are located in three-dimensional space would be in-
teresting.
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