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Abstract

We study the problem of maximising the lifetime of a sensor network for fault-tolerant
target coverage in a setting with composite events. Here, a composite event is the
simultaneous occurrence of a combination of atomic events, such as the detection of
smoke and high temperature. We are given sensor nodes that have an initial battery
level and can monitor certain event types, and a set of points at which composite events
need to be detected. The points and sensor nodes are located in the Euclidean plane,
and all nodes have the same sensing radius. The goal is to compute a longest activity
schedule with the property that at any point in time, each event point is monitored
by at least two active sensor nodes. We present a (6 + ε)-approximation algorithm
for this problem by devising an approximation algorithm with the same ratio for the
dual problem of minimising the weight of a fault-tolerant sensor cover. The algorithm
generalises previous approximation algorithms for geometric set cover with weighted unit
disks and is obtained by enumerating properties of the optimal solution that guide a
dynamic programming approach.

Keywords: Approximation algorithm, unit disk graph, set multi-cover, dynamic
programming

1. Introduction

Consider a sensor network whose task is to detect the occurrence of events at a given
set of event points. This is also known as the target coverage problem. Since the nodes
in a sensor network often have a limited battery supply that cannot be replenished, it
is important to address the problem of maximising the lifetime of the network, i.e., the
length of time during which the network can carry out its monitoring task successfully.
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The lifetime of the network can be prolonged by calculating an activity schedule in which
only a subset of the sensor nodes is active at any point in time, and the remaining sensors
are in a sleep mode that saves energy. The active nodes must be sufficient for performing
the required monitoring task. Following [21, 18], we consider the setting where the events
to be detected are composite events, i.e., events comprised of several simultaneous atomic
events at the same location detected by different sensor types, and the sensor coverage is
required to be fault-tolerant, i.e., the failure of any one sensor does not affect the sensing
task.

An atomic event is a physical change in the environment such as temperature rising
above a pre-defined threshold, and a composite event is a combination of several atomic
events at the same location. As an example motivating the study of composite events,
one can consider the scenario described by Vu et al. [21] where fire is detected by the
composite event of temperature being above a given threshold and density of smoke being
above a pre-defined value.

The settings described in [21, 18] also require that each event is covered by k sensors
as a fault tolerance mechanism. One may wish to cover each event by k sensors such
that if up to k−1 sensors fail, there will still be at least one active sensor that can detect
and report the event. Obviously, the higher the value of k, the more robust the network
will be against failing nodes. In this paper, we mainly consider the case of k = 2. This
case is of interest in many application settings, because higher levels of fault tolerance
are considered to consume too many resources. Moreover, to handle higher values of k
is much more complicated.

We assume that the sensor nodes and event points are located in the Euclidean
plane, and all sensor nodes have the same sensing radius. Each sensor node can monitor
a certain set of event types, and the composite event to be detected at each event point is
a combination of atomic events corresponding to different event types. We remark that
the presence of multiple event types adds a non-geometric, combinatorial aspect to the
problem.

A common approach to lifetime maximisation is to formulate the problem as a linear
program and obtain an approximate solution by approximating the dual problem of
computing a sensor cover of minimum weight (see Section 6 for details). We follow the
same approach and hence mainly consider the dual problem of minimising the weight of
a fault-tolerant sensor cover. We model the latter problem as a weighted multi-T -cover
problem with unit disks, where T is the set of event types.

In the special case of atomic events of just one event type and no fault-tolerance
requirements (k = 1), the minimum weight sensor cover problem is a standard geometric
set cover problem where the aim is to cover a given set of points using unit disks of
minimum total weight. This problem has been well studied. It is known to be NP-hard
even for the unweighted case [9], motivating the study of approximation algorithms. For
the weighted case of geometric set cover with unit disks, the best known approximation
ratio is 4+ε [12, 24]. Our setting poses the additional challenges of having to cover every
point twice (turning the problem into a multi-cover problem) while avoiding the loss of
a factor of two in the approximation ratio, and of dealing with different event types and
composite events. Addressing these challenges requires us to refine the techniques that
have been developed for the standard geometric set cover problem with unit disks.
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1.1. Related Work
Sensor cover problems have been studied in several variants, including target cov-

erage problems where a discrete set of points that need to be monitored is specified in
the input, and region coverage problems where the area to be monitored is specified as
a (typically convex) region in the plane. We refer to the survey by Thai et al. [20] for
an overview. Some of the work on the lifetime maximisation version of sensor cover
problems has focused on models where the sets of sensors that are active at different
times must be disjoint [6], but it was pointed out in [3, 4, 7] that the use of non-disjoint
sensor covers can yield significantly extended lifetime. Berman et al. [3, 4] show that the
region coverage problem can be reduced to the target coverage problem and present an
algorithm with logarithmic approximation ratio. They also show that a minimum cost
sensor cover algorithm with approximation ratio ρ implies an approximation algorithm
with ratio ρ(1 + ε) for the lifetime maximisation problem using the Garg-Könemann al-
gorithm [15]. Dhawan et al. [11] study a target coverage problem where the sensor nodes
can adjust their sensing range. They propose a greedy algorithm for the minimum cost
sensor cover problem that yields a logarithmic approximation ratio. Zhao and Gurusamy
[22] study the target coverage problem with the additional requirement that the sensors
that are active at any time are connected. They obtain an algorithm with logarithmic
approximation ratio and also present a performance evaluation based on simulation ex-
periments. Sanders and Schieferdecker [19] show that the target coverage problem for
sensors represented by unit disks with the objective of lifetime maximisation is NP-hard.
They also provide a (1 + ε)-approximation algorithm using resource augmentation, i.e.,
their algorithm needs to increase the sensing range of every sensor node by a factor of
1 + δ, for some fixed δ > 0. Much of the previous work on target coverage problems has
not considered fault-tolerance requirements, composite events or different sensor types.
Vu et al. [21] and Marta et al. [18] consider fault-tolerant sensor cover problems with
composite events. They present centralised and distributed heuristics and evaluate them
in simulations. Contrary to their work, in this paper we aim at designing approximation
algorithms with provable performance guarantees for fault-tolerant sensor cover problems
with composite events.

A special case of the minimum cost sensor cover problem is the weighted geometric
set cover problem with unit disks: Given a set of points and a set of weighted unit
disks, compute a cheapest set of disks that covers all points. This problem has received
considerable attention as it includes the weighted dominating set problem for unit disk
graphs, which is relevant for routing backbone construction in wireless networks. This
relationship also shows that the problem is NP-hard, as the minimum dominating set
problem for unit disk graphs is known to be NP-hard [9]. The first constant factor
approximation for weighted set cover with unit disks was a 72-approximation by Ambühl
et al. [2]. The plane is partitioned into squares of constant size, and the algorithm
computes a 2-approximation for each square separately and outputs the union of the
solutions for all squares. As a subroutine, they show that the problem can be solved
optimally in polynomial time by dynamic programming if the points to be covered are
located in a strip and all disks have centres outside the strip. This inaugural constant
approximation result was then improved to a (6 + ε)-approximation by Huang et al.
[17] by considering blocks made up of a bounded number of squares and applying the
geometric shifting strategy [16]. They compute separate solutions for each horizontal
and vertical strip of squares inside the block. They also introduce a sandglass technique
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by which an algorithm ‘guesses’ properties of the optimal solution that allow it to decide
which of the points in a square should be covered by disks with centre above or below
the square, and which by disks with centre to the left or right of the square. The
approach employed by Huang et al. [17] was amended by Dai and Yu [10], yielding
a (5 + ε)-approximation. The improvement is obtained by calculating solutions over
pairs of strips of squares simultaneously, combined with techniques from [17]. A further
improvement to a (4+ε)-approximation was then attained by Erlebach and Mihalák [12]
and, independently, by Zou et al. [24]. The main idea is to compute solutions for K
adjacent strips of squares simultaneously using a ‘split sweepline’ technique that ensures
that disks that cover points in different strips are met by the corresponding sweepline
pieces at the same time.

All the results discussed in the previous paragraph apply to weighted geometric set
cover with unit disks and thus also to the minimum-weight dominating set problem in
unit disk graphs. For the latter problem, one is also interested in the connected variant,
i.e., the minimum-weight connected dominating set problem. The approach followed
in [2, 10, 12, 17, 24] is first to compute a cheap dominating set, and then to solve a
node-weighted Steiner tree problem to connect that dominating set. The node-weighted
Steiner tree problem admits a 2.5α-approximation algorithm in unit disk graphs [13, 23],
where α is the approximation ratio of the best known approximation algorithm for edge-
weighted Steiner trees, which is used as a subroutine. With the recent result by Byrka
et al. [5], we have α < 1.39 and thus an approximation algorithm with ratio less than
3.475 for node-weighted Steiner trees in unit disk graphs. Together with the (4 + ε)-
approximation algorithm for minimum-weight dominating sets from [12, 24], this gives
a 7.475-approximation algorithm for minimum-weight connected dominating sets in unit
disk graphs.

The unweighted set multi-cover problem has been studied in geometric settings by
Chekuri et al. [8]. They present an O(log opt)-approximation algorithm for set systems
of bounded VC dimension, where opt is the size of an optimal cover, and constant-factor
approximation algorithms for covering points by half-spaces in three dimensions or for
covering points with pseudo-disks in the Euclidean plane. Their results only apply to the
unweighted case.

1.2. Our Results
Wemodel the fault-tolerant target coverage problem with composite events as a gener-

alised geometric multi-cover problem with unit disks and present a (6+ε)-approximation
algorithm, both for the lifetime maximisation variant and for the minimum cost sensor
cover variant of the problem. On a high level, we solve the minimum cost sensor cover
problem by providing a 6-approximation algorithm for the case where all event points
are located in a square of bounded size (which we refer to as block) and employing the
geometric shifting strategy [16, 17]. To obtain the 6-approximation algorithm for a block,
we ‘guess’ a number of properties of an optimal solution by enumeration, and then apply
dynamic programming along horizontal and vertical strips of smaller squares. Because of
the results of the ‘guessing’ step, we only need to handle the case where disks with centre
outside a strip are used to cover points inside the strip, which makes a dynamic pro-
gramming approach feasible. Our algorithm requires significant adaptations compared
to previous work because the multi-cover aspect requires a more involved ‘guessing’ step
and the algorithm also needs to handle different event types. Using our approximation
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algorithm for minimum cost sensor cover as a subroutine in the Garg-Könemann algo-
rithm [15], we obtain the same approximation ratio 6 + ε for the lifetime maximisation
problem. Furthermore, provided that the communication radius of a sensor node is at
least twice its sensing radius, we can use the known approximation algorithm for the
node-weighted Steiner tree problem in unit disk graphs and obtain approximation ratio
9.475 for the problem variants where the sets of active sensors are required to form a
connected communication network.

The remainder of the paper is structured as follows. In Section 2, we formally define
the problems under consideration and briefly describe the aspects of our approach that
are fairly standard, i.e., partitioning the plane into squares of bounded size and applying
the geometric shifting strategy. In Section 3, we present a high-level description of our
algorithm for approximating the minimum cost fault-tolerant sensor cover problem with
composite events in a block. Sections 4 and 5 then present the details of two parts of
the algorithm, namely the enumeration procedure that ‘guesses’ certain properties of an
optimal solution and the dynamic programming approach that exploits these guesses and
solves strip problems to optimality. In Section 6, we describe how the Garg-Könemann
algorithm [15] can be applied, using a ρ-approximation algorithm for the minimum cost
sensor cover problem as a subroutine, to give a ρ(1 + ε)-approximation algorithm for the
lifetime maximisation variant of the problem. We show that this general approach that
has already been employed in previous work applies to our setting as well. In Section 7,
we show how our results can be adapted to the problem variants where sensor covers are
required to form a connected communication graph. Finally, in Section 8, we conclude
the paper and point to directions for future work.

2. Preliminaries

In this section, we introduce basic notation, formally define the problems considered
in this paper, and describe the partitioning of the plane that is used by our algorithms.

Consider the two-dimensional Euclidean plane. The x-coordinate and y-coordinate
of a point p is denoted by xp and yp, respectively. The Euclidean distance between two
points p and q is denoted by δ(p, q). If d is a disk, we also use d to refer to the centre
of d, so that we can write δ(d, p) for the Euclidean distance between the centre of d and a
point p. Note that in this paper δ(d, p) does not denote the minimum distance between
p and any point in d. We say that a point p is in a disk d of radius r if δ(d, q) ≤ r. We
also say that p is on d if it lies on the boundary of the disk, i.e., δ(d, p) = r. The power
set of a set S, i.e., the set of all 2|S| subsets of S, is denoted by P(S).

An algorithm for a maximisation problem is a ρ-approximation algorithm if it runs
in polynomial time and always outputs a solution with objective value at least opt/ρ.
Similarly, an algorithm for a minimisation problem is a ρ-approximation algorithm if
it runs in polynomial time and always outputs a solution with objective value at most
ρ · opt. In both cases, opt denotes the objective value of an optimal solution.

2.1. Problem Definitions
An instance of the weighted (geometric) set cover problem with unit disks is given

by a set P of points in the two-dimensional Euclidean plane and a set D of weighted
unit disks. All disks have the same radius r, and without loss of generality we assume
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r = 2 throughout this paper (the choice of r = 2 is consistent with previous work, e.g.,
[12], where the dominating set problem for unit disks of radius 1 was transformed into
an equivalent geometric set cover problem with disks of radius 2.). The weight of a disk
d ∈ D is non-negative and denoted by w(d) or wd. The total weight of a set D′ ⊆ D of
disks is denoted by w(D′) =

∑
d∈D′ w(d). The goal of the weighted set cover problem

with unit disks is to select a set of disks of minimum total weight such that every point
in P is in at least one of the selected disks.

In the context of the target coverage problem, the disks in D correspond to sensor
nodes (with r representing the sensing radius) and the points in P correspond to targets
(event points) that need to be monitored.

To model fault-tolerance requirements, we consider the multi-cover extension of the
set cover problem: Every target p ∈ P specifies a positive integer kp as its coverage
requirement, and a set D′ ⊆ D of disks is a feasible multi-cover if every p ∈ P is in at
least kp distinct disks of D′. The goal of the weighted multi-cover problem with unit disks
is to compute a feasible multi-cover D′ of minimum total weight.

Furthermore, to model different event types, we assume that there is a (small) set
T of different event types (e.g., smoke, temperature, etc.) and every sensor d ∈ D has
sensing components for a subset Td ⊆ T of event types. Moreover, each target p ∈ P
needs to be monitored with respect to a subset Tp ⊆ T of event types, corresponding to
the occurrence of a composite event comprised of atomic events for each type in Tp. A
set D′ ⊆ D of disks is a feasible multi-T -cover if, for each p in P and each t ∈ Tp, p is in
at least kp distinct disks d′ in D′ with t ∈ Td′ , i.e., if

∀p ∈ P : ∀t ∈ Tp : |{d′ ∈ D′ : δ(d′, p) ≤ r, t ∈ Td′}| ≥ kp .

To simplify matters, we reduce composite events to atomic events as follows: We replace
every point p that needs to be monitored with respect to a set Tp of event types by |Tp|
copies of point p, each with the requirement to be monitored with respect to a distinct
t ∈ Tp, and with the same coverage requirement kp. For each copy p′ of p, we denote by
tp′ its corresponding event type. It is easy to see that a set D′ of disks is a feasible multi-
T -cover of the original points with composite monitoring requirements if and only if it is a
feasible multi-T -cover of the modified points with only atomic monitoring requirements.
Therefore, without loss of generality, we can assume that every point p ∈ P requires to be
monitored only with respect to one event type tp. Note that, after this transformation,
P may contain points with identical coordinates. We can now say that a disk d ∈ D
covers a point p ∈ P if p is in d and tp ∈ Td. A set D′ ⊆ D of disks meets the coverage
requirements of a point p ∈ P if p is covered by at least kp distinct disks in D′.

We now formally define the weighted multi-cover problem under consideration.

Definition 1 (Weighted multi-T -cover problem (WMCUD-T )). For a set T of
event types, the weighted multi-T -cover problem with unit disks is denoted by WMCUD-
T . We are given a set D of disks of radius r = 2, each disk d ∈ D associated with a
non-negative weight wd and a set Td of event types, and a multi-set P of points, each
point p ∈ P associated with one event type tp ∈ T and a coverage requirement kp. A
subset D′ ⊆ D is a feasible multi-T -cover if:

∀p ∈ P : |{d′ ∈ D′ : δ(d′, p) ≤ r, tp ∈ Td′}| ≥ kp
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The objective is to compute a feasible multi-T -cover of minimum total weight. The
restriction of WMCUD-T to the case where kp ≤ 2 for all p ∈ P is denoted by W2CUD-
T .

For most of this paper, we will consider the restricted problem W2CUD-T . Further-
more, we note that the assumption that the cardinality of T is small (i.e., bounded by a
fixed constant) is natural in the application setting. It is also necessary because if T is
allowed to be arbitrarily large, even covering a single target requires us to solve a general
set cover problem, and constant-factor approximation is ruled out unless P = NP [14, 1].
The running-time of our algorithms is exponential in |T |.

Finally, let us define the lifetime maximisation problem.

Definition 2 (Maximum lifetime multi-T -cover problem (MLMCUD-T )). We
are given points and disks as in an instance of WMCUD-T , but additionally each disk
d ∈ D specifies an initial battery level bd, expressed in suitable units so that bd is the total
duration during which d can be active before its battery runs out. A schedule is a set of
pairs (Di, xi), where Di ⊆ D is a feasible multi-T -cover and xi ≥ 0. A schedule is feasible
if for each d ∈ D, the sum of the xi values of all pairs (Di, xi) with d ∈ Di does not
exceed bd. The lifetime of a schedule is the sum of the xi values of all its pairs (Di, xi).
The goal is to compute a feasible schedule of maximum lifetime. We refer to this problem
as the maximum lifetime multi-T -cover problem with unit disks (MLMCUD-T ), and the
restricted version where kp ≤ 2 for all p ∈ P as ML2CUD-T .

2.2. Plane Partition
As in previous work (e.g., [17]), our algorithms employ a partition of the plane.

Imagine an infinite grid that partitions the plane into squares of side length 1.4 (any
number sufficiently close to, but strictly less than,

√
2 would do). Consider an arbitrary

such square S. Note that any disk of radius 2 with centre in S contains the whole square.
We can assume without loss of generality that no point or disk centre lies exactly on the
boundary between two adjacent squares. The neighbouring infinite regions of a square S
are referenced as in Figure 1, with ul standing for ‘upper left,’ cr for ’centre right,’ lm
for ‘lower middle’, etc. Furthermore, let upper be the union of the regions ul, um, ul,
let lower be the union of ll, lm, lr, let left be the union of ul, cl, ll, and let
right be the union of ur, cr, lr.

For an integer constantK > 0 (which determines the ε term in the final approximation
ratio), consider a partition of the plane into blocks so that each block B consists of K×K
squares S. For ease of presentation, we index the squares in a block from S0,0 in the
top left corner to SK−1,K−1 in the bottom right corner, i.e., the indices of a square Sij
are local to the block containing it. The first index i refers to the row and the second
index j to the column in which Sij is located within block B. Let Pij ⊆ P be the set
of points from P that lie in Sij . If we have a ρ-approximation for W2CUD-T instances
whose points lie in one block, we can obtain a ρ(1 +O(1/K))-approximation for general
instances of W2CUD-T using the standard geometric shifting strategy [16]. A sketch
of this approach is as follows. The algorithm calculates a ρ-approximate solution for
each block and amalgamates these solutions for individual blocks into a solution for the
complete plane. Each block is then shifted up and right by four squares, and a new
solution is calculated for this new set of blocks. This is repeated K/4 times. The best of

7



ll lm

ul um ur

cl cr

lr

S

y = y2

y = y1

x = x1 x = x2

Figure 1: Square S and neighbouring regions

the K/4 solutions is then output as the overall solution. The analysis of this approach is
based on the observation that a disk can cover points in different blocks for only two of the
K/4 shifted cases, because each disk overlaps at most four horizontal or vertical strips of
squares. For any given optimal solution opt, there is a shifted position for which the total
weight of disks in opt that overlap block boundaries is at most 8w(opt)/K, and thus the
union of ρ-approximate solutions in the blocks is within a factor of ρ(1 +O(1/K)) of the
total weight of the optimal solution. The details of this are fairly standard and can be
found for a similar setting, e.g., in [17]. Thus, the key to obtaining a good approximation
algorithm for W2CUD-T is to achieve a good approximation ratio for instances where
the points are located in one block.

3. A (6 + ε)-Approximation Algorithm for W2CUD-T in a Block

Let an instance of W2CUD-T in a K ×K block B be given by a set of points PB
(each point associated with an event type tp and a coverage requirement kp ≤ 2) and a
set D of disks. Our approach to solve this instance of W2CUD-T consists of two stages:
In the first stage, using enumeration we ‘guess’ properties of a fixed optimal solution,
denoted by optB . (Here and in the following, any reference to ‘the optimal solution’
refers to that fixed optimal solution.) In the second stage, we approximate the best
solution with these properties using dynamic programming.

As motivation for our approach to guessing properties of an optimal solution, observe
that an optimal solution may contain an arbitrarily large number of disks with centre in
the same square. As an example, consider the case two horizontally adjacent squares S1

and S2. Assume that there is a single event type and no fault-tolerance requirements.
Place n targets on a vertical line `1 in square S1. Place the centres of n disks on a vertical
line `2 in square S2 so that `2 has distance 2 from `1. Furthermore, let the centre of
each disk be at the same y-coordinate as one of the n targets. Then each of the n disks
covers exactly one of the n targets, and the only solution that covers all targets consists
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of all n disks. This shows that an approach that enumerates all disks with centre in a
given square that are in the optimal solution is not feasible. We overcome this obstacle
by enumerating guesses only for certain properties of the optimal solution.

The enumeration stage produces a polynomial number of guesses of the properties of
optB . Each such guess π specifies a set of disks Dπ that are contained in optB , which
may reduce the coverage requirements of some points in PB accordingly. For example,
the coverage requirement of a point p with kp = 2 that is contained in one disk d ∈ Dπ

with tp ∈ Td is reduced to k′p = 1. Furthermore, each point p whose remaining coverage
requirement k′p is not zero is classified according to the regions ul,um, . . . (with respect
to the square in which p is contained) where the centres of k′p disks that cover p in the
optimal solution lie.

Definition 3 (Classified coverage requirement). The symbol m specifies for a point
p that p must be covered by a disk with centre in upper∪lower, the symbol l that the
point is covered by a disk with centre in um∪lm, the symbol⇔ that the point is covered
by a disk with centre in left∪ right, and the symbol ↔ that the point is covered by a
disk with centre in cl∪ cr. If a point p has remaining coverage requirement k′p = 1, the
classified remaining coverage requirement πp can be {⇔} or {m}. If a point has remaining
coverage requirement k′p = 2, the classified remaining coverage requirement πp can be
{⇔,⇔}, {m,m}, {⇔, l}, or {↔,m}.

Definition 4. A set D′ of disks meets the classified coverage requirement πp = {⇔,⇔}
of a point p if the point p is covered by two distinct disks d1, d2 ∈ D′ with centre in
left ∪ right. A set D′ of disks meets the classified coverage requirement πp = {⇔, l}
of a point p if the point p is covered by one disk d1 ∈ D′ with centre in left∪right and
by one disk d2 ∈ D′ with centre in um ∪ lm. For the other possible classified coverage
requirements, the conditions are analogous.

Definition 5. A guess π is consistent with the optimal solution optB if Dπ ⊆ optB
and optB \Dπ meets the classified coverage requirement πp of every point p ∈ P .

The important property of the enumeration stage of our algorithm is stated in the
following lemma, whose proof is deferred to Section 4.

Lemma 1. There is a polynomial-time algorithm that enumerates in polynomial time a
set of guesses such that at least one of the guesses is consistent with optB.

We remark that if a point p is covered in optB by one or two disks whose centres lie
in the square in which p lies, then our enumeration stage will ensure that the required
disks covering p will be contained in Dπ for the guess π that is consistent with the
optimal solution. Therefore, it suffices to consider the case that the remaining coverage
requirement of each point p needs to be satisfied by disks with centres outside the square
in which p lies.

For each guess π, we want to find a solution that is consistent with π and has small
weight.

Lemma 2. There is a polynomial-time algorithm that takes as input a guess π and either
outputs a solution that is consistent with π, or asserts that no solution consistent with
π exists. If π is consistent with the optimal solution optB, the solution output by the
algorithm has weight at most 6 · w(optB).
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The algorithm of Lemma 2 is obtained by applying dynamic programming to each
horizontal and each vertical strip of squares contained in the block B. For this, we first
define two strip problems.

Definition 6 (Horizontal strip problem). Consider a horizontal strip H of squares,
consisting of K squares Sij for fixed i and 0 ≤ j ≤ K − 1, in a block. We are given
a set PH of points in the strip, and a set DH̄ of disks with centre above or below the
strip (i.e., all the disks have centres in the union of the regions upper ∪ lower for all
squares Sij in the strip H). Each disk d ∈ DH̄ is associated with a weight w(d) and a
set Td of event types. Each point p ∈ PH has an event type tp and a classified coverage
requirement πp that can be {m}, {l}, or {m,m}. A set D′ ⊆ DH̄ is a feasible solution if it
meets the classified coverage requirements of all points in PH . The goal of the horizontal
strip problem is to compute a feasible solution of minimum weight.

The vertical strip problem is defined analogously.
In Section 5, we prove the following result.

Lemma 3. There is a polynomial-time algorithm that computes a minimum-weight so-
lution to any (horizontal or vertical) strip problem (or asserts that no feasible solution
exists).

Using this lemma, we are now ready to prove Lemma 2.

Proof (of Lemma 2). Let π be an arbitrary guess. It is easy to check whether π
admits a feasible solution, because it suffices to check whether D (the set of all disks)
meets the classified coverage requirements of all points in PB . Therefore, we can assume
in the following that there is a solution that is consistent with π.

The algorithm solves a vertical strip problem for each of the K vertical strips of K
squares contained in block B, and a horizontal strip problem for each of the K horizontal
strips of K squares contained in block B. The inputs to the 2K strip problems are
constructed as follows. For each horizontal strip H, the set of disks in the input to the
horizontal strip problem for H consists of all disks from D \Dπ with centre outside H.
Similarly, for each vertical strip V , the set of disks in the input to the vertical strip
problem for V consists of all disks from D \Dπ with centre outside V . The points that
form the input of a strip problem are determined as follows. Consider a point p ∈ PB
that lies in some square Sij that belongs to a horizontal strip Hp and a vertical strip Vp.
If πp = {⇔}, then p is added with classified coverage requirement {⇔} to the vertical
strip problem for Vp. If πp = {m}, then p is added with classified coverage requirement
{m} to the horizontal strip problem for Hp. If πp = {m,m}, then p is added with classified
coverage requirement {m,m} to the horizontal strip problem for Hp. If πp = {⇔,⇔},
then p is added with classified coverage requirement {⇔,⇔} to the vertical strip problem
for Vp. If πp = {⇔, l}, then p is added with classified coverage requirement {⇔} to the
vertical strip problem for Vp and with classified coverage requirement {l} to the horizontal
strip problem forHp. If πp = {↔,m}, then p is added with classified coverage requirement
{↔} to the vertical strip problem for Vp and with classified coverage requirement {m} to
the horizontal strip problem for Hp.

The algorithm of Lemma 3 is applied to each of the 2K strip problems. If one of
the strip problems does not admit a feasible solution, the algorithm outputs that the
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given guess π does not admit a feasible solution. If all 2K strip problems admit feasible
solutions, then the union of the 2K solutions, together with the set of disks Dπ that has
been determined to be in the solution by the guess, is then output as the solution. It is
easy to see that the algorithm outputs a feasible solution if one exists for the given guess
π, and otherwise asserts correctly that no feasible solution exists.

Now consider a guess π that is consistent with optB . Let optB(H) be the subset of
optB \Dπ consisting of disks that are in upper ∪ lower for a horizontal strip H and
overlap H, and let optB(V ) be the subset of optB \Dπ consisting of disks that are in
left ∪ right for a horizontal strip V and overlap V . We observe that optB(H) and
optB(V ) form feasible solutions to the strip problems for strips H and V , respectively.
Hence, the solutions A(H) and A(V ) computed by the algorithm from Lemma 3 for strips
H and V have costs at most w(optB(H)) and w(optB(V )), respectively. The cost of
the solution output by the algorithm is therefore at most

w(Dπ) +
∑
H

w(AH) +
∑
V

w(AV ) ≤ w(Dπ) +
∑
H

w(optB(H)) +
∑
V

w(optB(V ))

≤ 6 · w(optB) .

The last inequality follows as each disk d in optB \Dπ is in upper∪ lower for at most
three horizontal strips and in left∪right for at most three vertical strips. For vertical
strips, this is because a disk of diameter 4 intersects at most four (consecutive) vertical
strips of width 1.4, and in one of them the disk has centre inside the strip and therefore
cannot be in left ∪ right. For horizontal strips the reasoning is analogous. Finally,
note that disks in Dπ are counted only once. �

By combining Lemmas 1 and 2, we obtain the following lemma.

Lemma 4. There is a 6-approximation algorithm for instances of W2CUD-T where all
points lie in one K ×K block.

As discussed in Subsection 2.2, a 6-approximation algorithm for W2CUD-T in a
block implies a (6 + ε)-approximation algorithm for general instances of W2CUD-T .
Thus, Lemma 4 implies the following result.

Theorem 1. For every fixed ε > 0, there is a (6 + ε)-approximation algorithm for the
problem W2CUD-T .

4. Guessing Properties of the Optimal Solution by Enumeration

In this section we prove Lemma 1. For the following, fix an arbitrary optimal solution
to the given instance of W2CUD-T in a block B, and denote it by optB . We present the
enumeration technique using the notion of ‘guessing.’ When we write that the algorithm
‘guesses’ a property of optB , this means that the algorithm enumerates all possibilities
for that property in such a way that one of the possibilities is guaranteed to be the
desired property of the optimal solution. The enumeration is done separately for each
of the K2 squares Sij contained in B. Consider one such square Sij . Let m denote the
number of given disks that overlap Sij . Let the left and right boundary of Sij lie on
the line x = x1 and x = x2, respectively, and the bottom and top boundary on the line
y = y1 and y = y2, respectively. See again Figure 1 for an illustration.
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4.1. Disks with Centre in Sij
First, for every event type tl in T , we guess whether optB contains 0, 1 or at least

2 disks with centre in Sij that monitor event type tl. Furthermore, in the second and
third case we also guess the one disk or two of those disks, respectively. Note that a disk
with centre in Sij must contain the whole square Sij , as the disk has radius r = 2 and
the square has side length less than

√
2. Furthermore, two disks with centre in Sij that

cover event type tl are sufficient to meet the coverage requirements of all points p ∈ Pij
with tp = tl, hence it is not necessary to guess more than two such disks. All the disks
that are guessed in this way form the set Dπ, and the coverage requirements of all points
that are covered by disks in Dπ are reduced accordingly. In the following, we use kp to
denote the remaining coverage requirement of a point p.

4.2. Overview of Square Partition
Next, we aim at guessing a partition of the square Sij into areas such that for the

points in the same area, we know whether they are covered twice by upper ∪ lower,
twice by left ∪ right, or once by upper ∪ lower (possibly restricted to um ∪ lm)
and once by left ∪ right (possibly restricted to cl ∪ cr). In other words, we want to
guess the classified coverage requirements of all points. We guess a separate such square
partition for each event type tl ∈ T . For each tl ∈ T , the steps involved in guessing the
partition are as follows. First, we determine areas called 2-watching tl sandglasses (the
terminology is motivated by a similar sandglass concept in [17]) for the four regions um,
lm, cl and cr. For each of these areas, we can require that points are covered only
by upper ∪ lower (classified coverage requirement {m} if kp = 1 or {m,m} if kp = 2)
or only by left ∪ right (classified coverage requirement {⇔} if kp = 1 or {⇔,⇔}
if kp = 2). Second, we consider 1-watching envelopes, i.e., envelopes of the disks in
optB with centre in one of the regions um, lm, cl and cr, and guess the four points
where adjacent envelopes intersect. Based on the locations of these intersection points,
we can segment the square into smaller areas and deduce for each of the smaller areas
whether the points located in the area are to be watched from upper ∪ lower or from
left ∪ right (or from both). The details of the partition of the square into areas for
one specific event type tl are presented in the following subsections.

4.3. 2-Watching Sandglasses
We define the 2-watching tl sandglass for the region lm. The sandglasses for the

regions um, cr, and cl are defined similarly (by rotation).
Let P ′ij be the set of points in Pij that have event type tl, i.e., the set of points p

with tp = tl. Consider the set P 2
lm ⊆ P ′ij of all points in P ′ij that are covered by two

distinct disks from lm in optB , but not covered by any disk from optB that does not
have centre in lm. For each p ∈ P 2

lm, consider the line lp through p with slope 1 and let
p′ be the point where lp intersects the line y = y1. Let pl be the point in P 2

lm for which
p′ is leftmost. Similarly, let l′p be the line through p with slope −1 and let p′′ be the
intersection point of l′p and y = y1. Let pr be the point in P 2

lm for which p′′ is rightmost.
The 2-watching tl sandglass for lm is now defined as the area that is obtained as the
intersection of the halfplane below lpl , the halfplane below l′pr , and the square Sij . See
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Figure 2: 2-watching sandglasses

Figure 2 for an illustration.1 Note that this sandglass is uniquely determined by pl and
pr and there are O(|P ′ij |2) possibilities for guessing pl and pr.

We show that the coverage requirements of any point of P ′ij located in the 2-watching
tl sandglass for lm are met by disks from upper ∪ lower. Define the lower-shadow of
a point p to be the region that is the intersection of the halfplane below the line with
slope 1 through p, the halfplane below the line with slope −1 through p, and the square
Sij . The left-shadow, up-shadow, and right-shadow of a point are defined analogously.
We state the following lemma due to Huang et al. [17].

Lemma 5. [17] If a point p ∈ P ′ij is covered by a disk d from lm, then any point in the
lower-shadow of p is also covered by the same disk from lm.

The lemma directly implies the following corollary.

Corollary 1. If a point p ∈ P ′ij is covered by two disks d1, d2 from lm, then any point
in the lower-shadow of p is also covered by the same two disks d1, d2 from lm.

We also require the following lemma, which we prove by application of Lemma 5.

Lemma 6. The coverage requirement for any point p ∈ P ′ij that lies inside the 2-watching
tl sandglass for lm is met by disks in optB from upper ∪ lower.

Proof. Consider the points pl and pr defining the 2-watching tl sandglass for lm. For
points in the lower-shadow of pl or in the lower-shadow of pr, the lemma follows from
Corollary 1. Let p be a point that lies in the 2-watching tl sandglass for lm, but not in
the shadows of pl or pr. Assume that p is covered by a disk d with centre in cl or cr by
optB . Then, by Lemma 5 applied to the left-shadow or right-shadow of p, respectively,
we find that pl or pr is also covered by d, a contradiction to the choice of pl and pr. �

1Figure 2 and subsequent figures are not drawn to scale as they serve only illustrative purposes.
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It follows that the coverage requirements of all points in the 2-watching tl sandglasses
for lm and for um are satisfied by disks in optB from upper∪lower, and the coverage
requirements of all points in the 2-watching tl sandglasses for cl and for cr are satisfied
by disks in optB from left ∪ right. Hence, all the points from P ′ij that lie in 2-
watching tl sandglasses can be classified accordingly (classified coverage requirements
{⇔}, {⇔,⇔}, {m}, or {m,m}). These points are ignored for the classifications of points
described in the following subsections, i.e., their classification is not changed if they are
contained in one of the areas under consideration there.

4.4. 1-Watching Envelopes
It remains to deal with points from P ′ij that do not lie in any of the 2-watching tl

sandglasses. For each of the four regions um, lm, cl and cr, we define a 1-watching
tl envelope as follows (see Figure 3 for an illustration). Note that we have separate
envelopes for each tl ∈ T .

Definition 7 (1-watching tl envelope). Consider a square Sij , and let R be one of
the regions um, lm, cl and cr with respect to Sij . The 1-watching tl envelope for region
R is the intersection of the square S and the boundary of the union of the disks in optB
that monitor event type tl and have centre in region R. The respective boundary of the
square (i.e., the top boundary for the 1-watching tl envelope for UM, the right boundary
for the 1-watching tl envelope for CR, etc.) is used to fill in parts of the envelope where
no disk from the respective region intersects the square.

Figure 3: 1-watching envelopes for lm and um

4.5. Intersection Points of 1-Envelopes
We call the 1-watching envelopes of cl and um adjacent, and similarly those of um

and cr, etc. Allow us to define intersection points of adjacent 1-watching envelopes and
describe how they are used to partition the remainder of square Sij into areas such that
we can specify for the points in each area whether they are covered by optB using disks
in upper ∪ lower or in left ∪ right.
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Lemma 7. Each pair of adjacent 1-watching tl envelopes intersects in exactly one point.

Proof. By the dimension of the square Sij and the radius of the disks, it follows that
the direction of any tangent to the 1-watching tl envelope for um or lm is in the open
interval (−π/4, π/4), and the direction of any tangent to the 1-watching tl envelope for
cl or cr is in the open interval (π/4, 3π/4). Therefore, it is impossible that two adjacent
1-watching tl envelopes have more than one intersection point. As each envelope is a
curve connecting points on opposite sides of the square, it follows that two adjacent
envelopes always intersect. �

Hence, there are four (not necessarily distinct) intersection points between adjacent
1-watching tl envelopes. Note that each of these intersection points is uniquely specified
by the two disks whose boundaries intersect at that point. Hence, it suffices to guess
eight disks in order to determine the four intersection points.

Let the intersection point of the 1-watching tl envelopes for cl and um be denoted
by iumcl . Similarly, let iumcr be the intersection point of the 1-watching tl envelopes of um
and cr, ilmcr the intersection point of the 1-watching tl envelopes for cr and lm, and ilmcl
the intersection point of the 1-watching tl envelopes for lm and cl.

4.6. Areas in a Square
Assume that iumcl is to the left of iumcr (i.e., has smaller x-coordinate), iumcr is above ilmcr

(i.e., has larger y-coordinate), ilmcr is to the right of ilmcl , and ilmcl is below iumcl . We call
this the standard configuration, and we will deal with other alternative configurations in
subsequent sections. For the standard configuration, define i1 to be iumcl , i2 to be iumcr , i3
to be ilmcr , and i4 to be ilmcl , as shown in Figure 4a. (For the alternative configurations to
be discussed later, the correspondence between i1, . . . , i4 and the intersection points will
be different.) For an arbitrary intersection point is (s ∈ {1, 2, 3, 4}), let ls and l′s be the
two lines through is with slope 1 and −1, respectively. These lines allow us to define the
following areas for which we can make further deductions regarding the disks watching
points in these areas.

Define middle to be the area that is the intersection of the halfplanes below l1 and
l′2 and the halfplanes above l3 and l′4. As illustrated in Figure 4b, let middle-l be the
area that is the intersection of the halfplanes below l1 and l′1 and the halfplanes above l4
and l′4, and similarly let middle-r be the area that is the intersection of the halfplanes
below l2 and l′2 and the halfplanes above l3 and l′3.

We claim that the coverage requirements of all points in the areas middle-l and
middle-r are met in optB by disks with centre in left ∪ right. We state the argu-
ments for points within the area middle-l, and identical arguments apply to middle-r.
Observe that the area middle-l lies entirely below the 1-watching tl envelope for um.
This is because middle-l is contained in the 90 degree cone below i1 that lies between l1
and l′1, while the 1-watching tl envelope for um lies in the union of the halfplanes above
l1 and above l′1. Similarly, middle-l lies entirely above the 1-watching tl envelope for
lm. Therefore, it is not possible that a point in middle-l is covered by a disk with
centre in um or lm in optB , and so the coverage requirements of all points in middle-l
are indeed met in optB by disks from left ∪ right. Thus, we can classify the points
from P ′ij that lie in middle-l and middle-r accordingly (i.e., such a point p is assigned
classified coverage requirement {⇔} if kp = 1 and {⇔,⇔} if kp = 2).
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Figure 4: Intersection points of 1-watching envelopes, and resulting middle and peripheral
areas

The areas middle-u and middle-d are defined analogously to middle-l and middle-
r, with middle-u enclosed by lines l1, l′1, l2, l′2 and middle-d enclosed by lines l3, l′3, l4, l′4,
see Figure 4b. Furthermore, the region obtained by removing middle-l, middle-u,
middle-r and middle-d from middle (which may be empty) is denoted by middle-m.
By arguments analogous to those given above, the coverage requirements of points in
areas middle-u and middle-d are met in optB by disks from upper ∪ lower. Hence,
the points in these areas can be classified accordingly (i.e., such a point p is assigned
classified coverage requirement {m} if kp = 1 and {m,m} if kp = 2).

Finally, the area middle-m lies outside all four 1-watching tl envelopes, and so the
points in that area can only be covered in optB by disks from regions ul, ur, ll or lr.
These regions are in upper∪ lower and in left∪ right, so we can (arbitrarily giving
preference to the former) classify these points as points that have to be covered by disks
in upper∪ lower (i.e., such a point p is assigned classified coverage requirement {m} if
kp = 1 and {m,m} if kp = 2).

We refer to the part of Sij that is not in middle as the peripheral part. Consider
the peripheral area south shown in Figure 4b. This is the area that is the union of the
lower-shadow of i3 and the lower-shadow of i4. Recall that points in south that are also
in a 2-watching tl sandglass have already been classified and are not considered further.
For any remaining point p located in south we know that p is covered by a disk from
lm (as south lies below the 1-watching tl envelope for lm). Furthermore, if p has to be
covered by a second disk, we know that p is covered by at least one disk whose centre is
not in lm because otherwise p would lie in the 2-watching tl sandglass for lm and would
have been classified already. That second disk covering p cannot have centre in um,
because south lies entirely below the 1-watching tl envelope for um. Hence, if kp = 1,
we specify that p must be covered by upper ∪ lower (classified coverage requirement
{m}), and if kp = 2, we specify that p must be covered once by left ∪ right and once
by lm ∪ um (classified coverage requirement {⇔, l}).
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The areas west, north and east are defined and handled analogously.
As each point in P ′ij is contained in one of the areas defined above, all these points are

classified, i.e, we have determined for each point p a classified coverage requirement πp.

4.7. Areas in a Square – Other Configurations
Recall that iumcl is the intersection point between the 1-watching tl envelopes for um

and cl, and ilmcl , ilmcr and iumcr are defined analogously. In the previous subsection, we
assumed the standard configuration as shown in Figure 4a, i.e., iumcl is to the left of iumcr ,
iumcr above ilmcr , iumcl above ilmcl , and ilmcl to the left of ilmcr . In the following, we discuss how
to handle all other possible configurations.

The definition of 2-watching tl sandglasses does not depend on the configuration of
intersection points, so 2-watching sandglasses are handled as before. The definition of the
peripheral areas is adapted as follows. The area south is the union of the lower-shadow
of the lower of the two points iumcl , ilmcl and the lower-shadow of the lower of the two points
iumcr , ilmcr . The area west is the union of the left-shadow of the point that is further left
among the two points iumcl , iumcr and the left-shadow of the point that is further left among
the two points ilmcl , ilmcr . The definitions of east and north are analogous. We observe
that each of the four peripheral areas can be handled in the same way as before. For
example, we still have that every point in south is covered by a disk with centre in lm,
and if the point has to be covered by a second disk, there is a disk covering it with centre
in left ∪ right.

Let us introduce some terminology. We say that the 1-watching tl envelopes for cl
and cr are opposite, and so are the envelopes for um and lm. Furthermore, we say that
the 1-watching tl envelopes for cl and cr overlap if iumcl is to the right of iumcr and ilmcl
is to the right of ilmcr . In other words, the relations between iumcl and iumcr and between
ilmcl and ilmcr are both reversed compared to the standard configuration. Similarly, we say
that the 1-watching tl envelopes for cl and cr cross if only one of the two relations is
reversed compared to the standard configuration. For the 1-watching tl envelopes for um
and lm, the notions of overlapping and crossing are defined analogously by considering
the relations between iumcl and ilmcl and between iumcr and ilmcr . Additionally, let in the
following the areas middle, middle-l, etc. be defined in terms of the respective choices
for i1, i2, i3, i4 as in Subsection 4.6.

4.7.1. A Pair of Opposite Envelopes Overlap.
The first alternative configuration that we consider is the case where at least one pair

of opposite envelopes overlap. Without loss of generality, assume that the 1-watching tl
envelopes for um and lm overlap. (The other case is symmetric.) Then ilmcl is above iumcl ,
and ilmcr is above iumcr . In each of the following cases, the choice of i1, i2, i3, i4 will ensure
that the areas middle-m, middle-l, and middle-r are enclosed within the 1-watching
tl envelopes for both um and lm, i.e., the coverage requirement for points in these areas
can be classified as {m} or {m,m}.

Case 1: The Other Pair of Envelopes are Standard.
In this case, the envelope for cl and the envelope for cr are standard, i.e., they neither

overlap nor cross. The situation is sketched in Figure 5a. Let i1 = ilmcl , i2 = ilmcr , i3 = iumcr ,
and i4 = iumcl . The areas middle-u and middle-d are always outside the 1-watching tl
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envelopes for cl and cr, and therefore—as in the standard configuration—the points in
these areas can be classified by the coverage requirement {m} or {m,m}.

Case 2: The Other Pair of Envelopes also Overlap.
As illustrated in Figure 5b, we have that the 1-watching tl envelopes for cl and cr

overlap, and the 1-watching tl envelopes for um and lm overlap. Let i1 = ilmcr , i2 = ilmcl ,
i3 = iumcl , i4 = iumcr . The points within the areas middle-u and middle-d are covered twice
by disks in left ∪ right as those areas are enclosed within the 1-watching tl envelopes
for both cl and cr. These points can be classified by the coverage requirement {⇔} or
{⇔,⇔}.

Case 3: The Other Pair of Envelopes Cross.
Without loss of generality, assume that iumcl is to the right of iumcr and ilmcl is to the left

of ilmcr , as illustrated in Figure 6a. Let i1 = ilmcl , i2 = ilmcr , i3 = iumcl , i4 = iumcr . The points
in middle-u can be handeled as in Case 1 and the points in middle-d as in Case 2.

4.7.2. One Pair of Opposite Envelopes Cross and the Other Pair of Envelopes Are Stan-
dard.

Without loss of generality, assume that the 1-watching tl envelopes for cl and cr
cross, and that iumcl is to the left of iumcr and ilmcl is to the right of ilmcr , as shown in
Figure 6b. (The other cases are symmetric.) Let i1 = iumcl , i2 = iumcr , i3 = ilmcl , and
i4 = ilmcr . As in the standard configuration, the areas middle-l, middle-r, and middle-
m are outside the 1-watching tl envelopes for um and lm, i.e., we can classify the coverage
requirements for the points in these areas as {⇔} or {⇔,⇔}. For a similar reason, the
coverage requirements for the points in middle-u can be classified as {m} or {m,m}. The
area middle-d is within the 1-watching envelopes for both cl and cr, so the coverage
requirements for points in middle-d can be classified as {⇔} or {⇔,⇔}.

�
�
�
�

i3

i2

i4

i1

(a) The um envelope and the lm envelope over-
lap

i4

i3

i2

i1

(b) um envelope overlaps lm envelope, and cl
envelope overlaps cr envelope

Figure 5: Configurations with overlapping envelopes
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Figure 6: Configurations with crossing envelopes

4.7.3. Both Pairs of Opposite Envelopes Cross.
The only configuration that has not yet been considered is the case where both pairs

of opposite envelopes cross. One such configuration would have iumcl strictly to the the left
of iumcr , ilmcl strictly to the right of ilmcr , iumcl strictly above ilmcl , and iumcr strictly below ilmcr .
(We can assume strict relationships since if two points coincide, we are free to choose
the relation and arrive at a previously considered configuration where it is not the case
that both pairs of envelopes cross.) To show that this is impossible, consider the line l of
slope −1 through iumcl . Since iumcl is above ilmcl and both points lie on the cl envelope, we
get that ilmcl is strictly below the line l. Since iumcl is on the line l and iumcr is to the right
of iumcl and also lies on the um envelope, we get that iumcr is above l. Since iumcr is below ilmcr
and both points are on the cr envelope, it follows that ilmcr is above l. Since ilmcl is to the
right of ilmcr and both points are on the lm envelope, we obtain that ilmcl is strictly above
the line l. This is a contradiction to the conclusion that ilmcl is strictly below l that we
derived above. Hence, this configuration is not possible. The other configurations where
both envelopes cross can be excluded similarly.

4.8. Complexity of Enumeration
For each of theK2 squares Sij in a block, and for each event type tl in T , we enumerate

up to two disks with centre in Sij (these form the set Dπ of disks that are determined to
be in the solution by the guessing stage), eight points defining the 2-watching sandglasses,
and four intersection points (each identified by two disks) of the 1-watching envelopes.
Hence, if there are m disks and n points in total, there are O((m2n8m8)|T |) = (m +

n)O(|T |) choices per square, and thus (m + n)O(K2|T |) choices for the whole block B.
Since K and |T | are constants, this is a polynomial number of choices. This concludes
the proof of Lemma 1.
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5. Dynamic Programming Algorithm

In this section we prove Lemma ?? by providing a dynamic programming algorithm
for the strip problems. Vertical strip problems can be solved in the same way as horizontal
strip problems (just roate the plane by 90 degrees), so we consider only horizontal strip
problems in this section.

5.1. Input to the Dynamic Program
Consider a horizontal strip H of squares, consisting of K squares Sij for fixed i and

0 ≤ j ≤ K − 1 in a block. We are given a set PH of points in the strip, and a set DH̄

of disks with centre above or below the strip (i.e., all the disks have centres in the union
of the regions upper ∪ lower for all squares Sij in the strip H). Each disk d ∈ DH̄ is
associated with a weight w(d) and a set Td of event types. Each point p ∈ P has an event
type tp and a classified coverage requirement πp (cf. Definition 3). We let nH denote the
number of points in PH .

For ease of presentation, we extend the strip H by two empty squares on the left side
and also on the right side. This ensures that every disk in DH̄ that covers some point in
PH has its centre in the region um or in the region lm with respect to some square S of
H.

As it is easy to detect infeasible instances, we only consider the case that there
is a feasible solution, i.e., a set of disks D′ ⊆ DH̄ that meets the classified coverage
requirements of all points in PH . The goal is now to compute a feasible solution of
minimum weight for the given instance of the horizontal strip problem.

Let the points in PH = {p1, p2, . . . , pnH
} be ordered by non-decreasing x-coordinates,

i.e., for every 1 < i ≤ nH we have xpi−1
≤ xpi . If two points have the same x-coordinate

then we order them arbitrarily.

5.2. Outer and Inner Envelopes
For a square S in H, let um(S) denote the region um with respect to S, and let lm(S)

denote the region lm with respect to S. Let T ′ ∈ P(T ) \ {∅} be an arbitrary non-empty
combination of event types in T . We define outer and inner envelopes formed by those
disks in a solution that have centres in um(S) (or lm(S)) and monitor the event types
in T ′. The purpose of these envelopes is to represent the disks lying in a particular region
that cover some points from PH , in the sense that any point in PH that is covered once or
twice by disks from that region is also covered at least the same number of times by disks
that are part of the two envelopes of that region. Our dynamic programming algorithm
then aims at computing envelopes corresponding to a solution of minimum cost.

Definition 8 (Outer T ′ envelope for um(S)). Let S be a square in the horizontal
strip H, let T ′ ∈ P(T ) \ {∅}, and let D be a set of disks. The set of disks d in D that
have centre in um(S) and satisfy Td = T ′ is denoted by DT ′

um(S). The outer T ′ envelope
for um(S) (for a set of disks D) is the intersection of the boundary of the union of all
disks in DT ′

um(S) with the strip H. (If at some x-coordinate there is no disk from DT ′

um(S)

that overlaps H, we let the upper boundary of H form a part of the envelope.) A disk
is said to be on the envelope if the boundary of the disk forms a part of the envelope
that consists of more than a single point. The set of disks on the envelope is denoted by
D̄T ′

um(S).
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We also require inner envelopes, defined as follows.

Definition 9 (Inner T ′ envelope for um(S)). The inner T ′ envelope for um(S) (for
a set of disks D) is defined to be the outer T ′ envelope for um(S) for the set of disks
D \ D̄T ′

um(S). The set of disks on the inner T ′ envelope for um(S) is denoted by D̄T ′

I(um(S)).

The outer and inner T ′ envelopes for um(S) in some fixed optimal solution are denoted
by optT

′

um(S) and optT
′

I(um(S)), respectively.
The outer and inner T ′ envelopes for lm(S), for a set of disks D, are defined and

denoted analogously (by considering disks with centre in lm(S) instead of um(S), and
replacing um(S) by lm(S) in the notation).

For a given set D of disks, these definitions give us four different envelopes for each
square S and for each set T ′ of event types. We view the set of disks on each of these
envelopes as ordered by non-decreasing x-coordinates of the centres of the disks. (We
can assume without loss of generality that no two disks on an envelope have the same
centre.)

Note that each disk from D is on at most one envelope. Furthermore, if we trace
an envelope from left to right, the disks of the envelope appear on the envelope in the
order of increasing x-coordinates of their centres, and each disk appears on an envelope
at most once (since all disks have the same radius.)

5.3. Dynamic Programming Table
We have a table Wpi for every point pi ∈ PH . Let S be the square in which pi lies.

Let S− and S+ be the adjacent squares to the left and right of S, respectively. Let
S−− be the square to the left of S−, and S++ be the square to the right of S+. Let
S(pi) = {S−−, S−, S, S+, S++}. Note that all disks from DH̄ that overlap S must be in
um(U) or lm(U) for some square U in S(pi), because the disks have radius 2 and the
squares have side length 1.4.

For every T ′ ∈ P(T ) \ {∅} we have the following indexes for the table Wpi : For the
outer T ′ envelope for each of the ten regions in {um(U), lm(U) | U ∈ S(pi)}, we have a
set of up to three disks that are candidates for the disk d that is on the outer T ′ envelope
for that region at position x = xpi , for the disk just before d on that envelope, and for the
disk just after d on that envelope. For the inner T ′ envelope of each of the ten regions, we
have one disk that is a candidate for being the disk on that envelope at position x = xpi .
Hence, an entry of the table Wpi is indexed by 40 · (2|T |−1) disks (three disks for each of
the ten outer envelopes, and one disk for each of the ten inner envelopes, for each choice
of T ′). For ease of presentation, we write the indexes for the table Wpi as two sets of
disks Du and Dl, where Du contains all the disks from inner and outer T ′ envelopes for
any T ′ and regions um(U) for U ∈ S(pi), and Dl contains all the disks from inner and
outer T ′ envelopes for any T ′ and regions lm(U) for U ∈ S(pi).

Consider the case that the indexes for the table Wpi for each T ′ are chosen as the
disks that actually form the envelopes under consideration in an optimal solution to
the horizontal strip problem, i.e., the indexes contain the corresponding disks on the
envelopes optT

′

um(S), optT
′

I(um(S)), optT
′

um(S+), etc. We observe that, if the classified cov-
erage requirement of pi is met by the optimal solution, then it is also met by the disks
constituting the indexes for the table. To illustrate this, assume that pi is covered in the
optimal solution by two disks d∗1 and d∗2 from um(S). If Td∗1 = Td∗2 , then for T ′ = Td∗1
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we must have that pi is covered once by the disk d1 that forms the outer T ′ envelope for
um(S) at x = xpi , and a second time by the disk before or after d1 on the same envelope,
or by the disk on the inner T ′ envelope for um(S) at x = xpi . In the other cases, the
reasoning is similar.

Furthermore, we note that the disks Du ∪ Dl specified as indexes for a table entry
Wpi(Du, Dl) completely separate the solution to the right of the line x = pi from the
solution to the left of the line x = pi. In other words, if D′ and D′′ are different solutions
for which the disks Du ∪ Dl are the disks on the 20 envelopes relevant to pi for all
T ′ ⊆ T , then the left part of D′ (disks of D′ that appear before Du ∪ Dl on their
respective envelopes) can be combined with Du ∪ Dl and the right part of D′′ (disks
of D′′ that appear after Du ∪ Dl on their respective envelopes) to form a new feasible
solution. Furthermore, a disk d cannot simultaneously be in the left part of D′ or D′′
and also in the right part of D′ or D′′ (because d appears either before or after a disk in
Du ∪Dl on its respective envelope).

The value of an entry of table Wpi is set to infinity if the disks indexing the table
entry do not meet the classified coverage requirement for pi, and otherwise the minimum
cost of a set of disks that includes all the disks indexing the table entry of Wpi and that
also meets the classified coverage requirements of all points preceding pi in PH . Once
all the tables Wpi have been computed, the set of disks corresponding to the minimum
value of any entry of table Wp for the last point p = pnH

is output as the solution.

5.4. Computing the Table Entries
Let the table entries for the leftmost point p1 ∈ PH be initialised as follows. For every

choice of indexes Du and Dl, the table entry Wp1(Du, Dl) is set to w(Du) + w(Dl) if
Du∪Dl meets the coverage requirement of point p1, and to∞ otherwise. For subsequent
points pi ∈ PH , the value of an entry Wpi(Du, Dl) such that Du∪Dl meets the coverage
requirement of pi is calculated as the cheapest cost that can be obtained in the following
way: Take the cost of a set of disks covering all points up to pi−1 from a table entry
Wpi−1

(D
′

u, D
′

l) for some D
′

u and D
′

l, and add the cost of all disks that are in Du ∪ Dl

but not in D
′

u ∪ D
′

l. This means that for every pi ∈ PH \ {p1} we calculate the table
entry for each combination of disks on the envelopes as follows:

Wpi(Du, Dl) ={
∞, if Du ∪Dl does not meet the classified coverage requirement for pi
minD′u,D

′
l
{Wpi−1(D

′

u, D
′

l) + w(Du −D
′

u) + w(Dl −D
′

l)}, otherwise (1)

Consider the last point pnH
∈ PH . The minimum value in the table WpnH

is the cost
of the minimum weight solution that covers point pnH

and all other points that preceded
it in the ordered set PH . If we remember for each Wpi(Du, Dl) the choice of D

′

u and D
′

l
that attained the minimum in (1), standard traceback techniques can then be used to
attain a set of disks that forms a feasible solution and has cost equal to that table entry.

Lemma 8. The dynamic program computes an optimal solution to the horizontal strip
problem in polynomial time.
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Proof. As we assume that the size of T is bounded by a constant, the number of disks
required to index a table entry is bounded by a constant as well. The tables Wpi are of
polynomial size, and the computation of each table entry can be carried out in polynomial
time. Thus, the overall running time is polynomial.

Assume that WpnH
(Du, Dl) = v is the minimum value in table WpnH

, and that this
value is not∞. Then the set of disks output by the algorithm has weight v, as the weight
of every disk added to the solution is accounted for in (1). Furthermore, the solution
is feasible, as the corresponding entry in each table Wpi is not ∞, and therefore the
classified coverage requirement of each point pi is met.

It remains to show that, if the optimal solution to the strip problem has weight v∗,
then the algorithm outputs a solution of weight at most v∗. For a point pi in PH , let
S(pi) be defined as in Subsection 5.3 and let optu(pi) be the disks corresponding to
indexes of table Wpi (i.e., three disks from each outer envelope and one disk from each
inner envelope) that are on the outer and inner T ′ envelopes for um(U) for U ∈ S(pi)
for the fixed optimal solution. Let optl(pi) be defined analogously based on the disks
on the outer and inner T ′ envelopes for lm(U) for U ∈ S(pi) for the optimal solution.
Let v∗(pi) be the cost of all disks in the optimal solution that are not to the right of any
of the disks in optu(pi) ∪ optl(pi) on their respective envelopes.

We claim that
Wpi(optu(pi),optl(pi)) ≤ v∗(pi)

holds for all pi ∈ PH .
We prove the claim by induction. For p1, we have

Wp1(optu(p1),optl(p1)) = w(optu(p1) ∪ optl(p1)) = v∗(p1) ,

proving the claim for i = 1. For i > 1, we have by (1) that

Wpi(optu(pi),optl(pi)) ≤ Wpi−1
(optu(pi−1),optl(pi−1))

+w(optu(pi) \ optu(pi−1))

+w(optl(pi) \ optl(pi−1)).

By induction, we know that Wpi−1
(optu(pi−1),optl(pi−1)) ≤ v∗(pi−1). Furthermore,

the weight v∗(pi) − v∗(pi−1) includes all disks that are in optu(pi) ∪ optl(pi) but not
in the part of the optimal solution corresponding to v∗(pi−1). One can observe that this
includes all disks contained in optu(pi) \optu(pi−1) and in optl(pi) \optl(pi−1). This
is because the disks in optu(pi) \ optu(pi−1) and in optl(pi) \ optl(pi−1) appear on
their respective envelopes to the right of the disks in optu(pi−1) ∪ optl(pi−1) and thus
are not contained in the part of the optimal solution corresponding to v∗(pi−1). Hence,
we have that

w(optu(pi) \ optu(pi−1)) + w(optl(pi) \ optl(pi−1)) ≤ v∗(pi)− v∗(pi−1),

and the claim is established. It follows that WpnH
(optu(pnH

),optl(pnH
)) ≤ v∗, and the

algorithm outputs a feasible solution of cost at most v∗ (the cost must actually be equal
to v∗ as the algorithm outputs a feasible solution and v∗ is the optimal cost). �
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6. Lifetime Maximisation

In this section we describe a known general method [3, 4, 11] for approximating the
maximum lifetime problem by using an approximation algorithm for the minimum weight
sensor cover problem, and its application to our setting. A linear program Π of the form

{max cTx | Ax ≤ b, x ≥ 0}, (2)

where A, b and c are non-negative, is called a packing problem. The linear program may
be given implicitly and the number of variables xj may be exponential. For a given
vector w, the problem of finding a column j of A such that

∑
iAi,jwi/cj is minimised

is called the problem of computing a column of minimum length with respect to Π. It
is known [3] that, if a packing problem Π′ admits a ρ-approximation algorithm for the
problem of computing a column of minimum length with respect to Π′ for any given
vector w, then the algorithm by Garg and Könemann [15] can be used to compute an
(1 + ε)ρ-approximate solution to Π′.

The natural linear programming formulation of the problem of maximising the lifetime
of a sensor network is as follows:

max
∑
D′∈D

xD′ (3)

s.t.
∑

D′∈D:d∈D′
xD′ ≤ bd, for all d ∈ D (4)

xD′ ≥ 0, for all D′ ∈ D (5)

Here, D is the set of sensor nodes and bd is the initial battery level of node d, specified in
such a way that the battery level is sufficient for d to be active for bd units of time. The
set D contains all possible sensor covers, i.e., all subsets of D that satisfy the required
sensor coverage constraint. The variable xD′ represents the length of the part of the
schedule during which the nodes of the sensor cover D′ ∈ D are active. The objective (3)
is to maximise the total length of the schedule. The constraints (4) specify that a node
d can take part in sensor covers for a total amount of time that is bounded by bd. The
linear program (3)–(5) does not have polynomial size, as the number of variables xD′
can be exponential. However, it is a packing problem, and the algorithm by Garg and
Könemann [15] can be applied. The problem of computing a column of minimum length
is simply the problem of computing a set D′ ∈ D of minimum cost, where the cost of a
node d ∈ D is given by some weight wd.

Theorem 2. [3] Let D be the set of valid sensor covers. If there is a ρ-approximation
algorithm for the problem of computing a set D′ ∈ D of minimum cost, for any given
vertex weights wd, then for every fixed ε > 0 there is a ρ(1 + ε)-approximation algorithm
for the lifetime maximisation problem.

We remark that Theorem 2 applies to a wide variety of lifetime maximisation prob-
lems, because the specification of the set D of valid sensor covers can be arbitrary. For
example, if a graph class admits a ρ-approximation algorithm for the weighted connected
dominating set problem, then that graph class admits a (ρ+ ε)-approximation algorithm
for the lifetime maximisation problem where at any point of time the active nodes must
form a connected dominating set.

Theorem 2 along with Theorem 1 in Section 5 implies the following corollary.
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Corollary 2. For every fixed ε > 0, there is a (6 + ε)-approximation algorithm for the
problem ML2CUD-T .

7. Connected Sensor Cover

Up to now we have considered only the condition that the selected sensors meet
the coverage requirement of each point in P . In many applications, such as the settings
described in [18, 21], it is additionally required that the selected sensors form a connected
network. For this, it is assumed that each sensor node is equipped with a wireless radio
that allows it to transmit messages to any other node that is located within a certain
communication radius rc from it. (This corresponds to a communication graph where
the sensor nodes are represented by disks of radius rc/2 and two nodes are adjacent if
their disks intersect.) It is natural to expect that rc is larger than the sensing radius r.
Under the assumption that rc ≥ 2r, we can extend our approximation algorithms for
W2CUD-T and ML2CUD-T to the problem variants with connectivity requirement.

For W2CUD-T with connectivity requirement, we first compute a (6+ε)-approximate
solution D′ to the problem without the connectivity requirement, by using the algorithm
from Theorem 1. Then, viewing the given disks as disks of radius rc/2, we solve the
minimum node-weighted Steiner tree problem for the disks in D′ as terminals, using the
algorithm with approximation ratio less than 3.475 for node-weighted Steiner trees in
unit disk graphs [13, 23, 5]. Let S be the set of Steiner nodes output by the algorithm.
The set D′∪S is then output as a solution to W2CUD-T with connectivity requirement.
Let optc be an optimal solution to W2CUD-T with connectivity requirement. Observe
that optc is a (superset of a) feasible solution to the Steiner tree problem considered
above: optc is connected and contains disks covering every point in P . Every disk in D′
covers a point in P , and hence the centre of any disk in D′ is within distance r+r ≤ rc of
the centre of some disk in optc. Consequently, optc ∪D′ is connected. This shows that
the Steiner tree approximation algorithm produces a set S of cost less than 3.475 times
the cost of optc. As the cost of D′ is within a factor of 6 + ε of the optimal solution
to W2CUD-T without connectivity requirement, and thus within the same factor of the
cost of optc, the overall approximation ratio is bounded by 9.475 if ε is chosen sufficiently
small.

Theorem 3. For the variants of W2CUD-T and ML2CUD-T where the active disks
need to be connected and rc ≥ 2r, there is a 9.475-approximation algorithm.

8. Conclusion

We have presented a (6+ε)-approximation algorithm for the target coverage problem
with composite events and fault-tolerance requirements, both for the lifetime maximi-
sation variant and for the problem of covering all event points by sensors of minimum
total cost. Our approach is based on guessing properties of the optimal solution (by
enumeration) and then using these properties to guide a dynamic programming algo-
rithm. This is a generalisation of the approach employed by Huang et al. [17] to obtain
a (6 + ε)-approximation for weighted set cover with unit disks. For the latter problem,
subsequent work has improved the approximation ratio to 5 + ε [10] and then to 4 + ε
[12, 24]. The main idea of these improvements is to perform the dynamic programming
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in several strips simultaneously. One possible direction for future work would be to see
whether these improvements can also be adapted to the fault-tolerant target coverage
problem with composite events.

Another question of interest is whether our approach can be adapted to arbitrary
coverage requirements kp, i.e., without the restriction kp ≤ 2 for all p ∈ P . Repeated
application of our (6 + ε)-approximation algorithm would incur an extra factor of k/2 in
the approximation ratio, where k = maxp kp, which is not desirable.

For W2CUD-T and also for the special case of weighted geometric set cover with
unit disks, it is an interesting open question whether a polynomial-time approximation
scheme (PTAS) can be obtained. So far, no hardness-of-approximation results are known
for these problems.
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