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2 · Georg Baier et al.

For a given number L, an L-length-bounded edge-cut (node-cut, resp.) in a graph G with source

s and sink t is a set C of edges (nodes, resp.) such that no s-t-path of length at most L remains in
the graph after removing the edges (nodes, resp.) in C. An L-length-bounded flow is a flow that
can be decomposed into flow paths of length at most L. In contrast to the classical flow theory,
we describe instances for which the minimum L-length-bounded edge-cut (node-cut, resp.) is
Θ(n2/3)-times (Θ(

√
n)-times, resp.) larger than the maximum L-length-bounded flow, where n

denotes the number of nodes; this is the worst case. We show that the minimum length-bounded
cut problem is NP-hard to approximate within a factor of 1.1377 for L ≥ 5 in the case of node-
cuts and for L ≥ 4 in the case of edge-cuts. We also describe algorithms with approximation ratio
O(min{L, n/L}) ⊆ O(

√
n) in the node case and O(min{L, n2/L2,

√
m}) ⊆ O(n2/3) in the edge

case, where m denotes the number of edges. Concerning L-length-bounded flows, we show that in
graphs with unit-capacities and general edge lengths it is NP-complete to decide whether there is
a fractional length-bounded flow of a given value. We analyze the structure of optimal solutions
and present further complexity results.

Categories and Subject Descriptors: G.2.2 [Graph Theory]: Graph algorithms; Network prob-
lems; F.2.2 [Nonnumerical Algorithms and Problems]: Routing and layout; G.2.1 [Combi-
natorics]: Combinatorial algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Approximation algorithms, flows and cuts in graphs, graphs

1. INTRODUCTION

In a classical article Menger [1927] shows a strong relation between cuts and systems
of disjoint paths (Menger’s Theorem): Given a graph G and two nodes s, t in G,
the maximum number of edge- and node-disjoint s-t-paths equals the minimum size
of an s-t-edge- and node-cut, respectively (cf. [Dantzig and Fulkerson 1956; Kotzig
1956]). Ford and Fulkerson [1956] and Elias et al. [1956] generalized the theorem
of Menger to flows in graphs with capacities on the edges and provided algorithms
to find an s-t-flow and an s-t-cut of the same value. (All results mentioned in this
introduction hold both for directed and undirected graphs, unless stated otherwise.)

As far as we know, the problem of length-bounded flows was first considered
by Adámek and Koubek [1971], who observe that a natural generalization of the
max-flow min-cut theorem does not hold for length-bounded flows and give some es-
timations on the value of a maximum length-bounded flow. Independently, Lovász
et al. [1978] study the maximum length-bounded node-disjoint s-t-paths problem.
For length-bounds 2, 3, and 4, a relation holds that is analogous to Menger’s the-
orem but with a new cut definition. For length-bounds greater than 4, they give
upper and lower bounds for the gap between the maximum number of length-
bounded node-disjoint paths and the cardinality of a minimum cut. Furthermore,
they provide examples showing that some of the bounds are tight. The results
were extended independently to edge-disjoint paths by Exoo [1983] and Niepel and
Safaŕıková [1983]. Pyber and Tuza [1993] prove the following theorem, improving
an earlier result of Lovász et al. [1978]: If the size of a minimum L-length bounded
s-t-node-cut is k, then the number of node-disjoint s-t-paths of length at most(
k+L−2

L−2

)
+

(
k+L−3

L−2

)
is at least k.

According to Bondy and Murty [1976], Lovász conjectured that there is a con-
stant γ such that the size of a minimum L-length-bounded s-t-node-cut is at most
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Length-Bounded Cuts and Flows · 3

a factor of γ ·
√

L larger than the cardinality of a maximum system of node-disjoint
s-t-paths of length at most L. Boyles and Exoo [1982] disprove this conjecture.
They construct, for each length-bound L > 0, a graph and a node pair s, t such
that the minimum L-length-bounded s-t-node-cut has size greater than γ ·L times
the maximum number of node-disjoint s-t-paths of length at most L, where the con-
stant γ is roughly 1/4. The ratio between the maximum number of node-disjoint
s-t-paths and the size of a minimum length-bounded s-t-cut was also studied by
Ben-Ameur [2000].

Itai et al. [1982] give efficient algorithms to find the maximum number of node-
and edge-disjoint s-t-paths with at most 2 or 3 edges; the node-disjoint case is also
solved for length-bound 4. On the complexity side they show that the maximum
node- and edge-disjoint length-bounded s-t-paths problem is NP-hard for length-
bounds greater than 4. Van der Holst and de Pina [2002] prove that the problem
is NP-hard in planar graphs. Guruswami et al. [2003] show that the edge-disjoint
6-length-bounded s-t-paths problem is MAX SNP-hard, and for any length-bound
they give an O(

√
m)-approximation algorithm, where m denotes the number of

edges. Bley [2003] proves that both the node- and the edge-disjoint maximum
5-length-bounded s-t-paths problem are APX -complete. For directed networks,
Guruswami et al. [2003] show that the problem is NP-hard to approximate within

a factor of n
1

2
−ǫ for any ǫ > 0, where n denotes the number of nodes.

For maximum fractional length-bounded multi-commodity flows in unit-length
graphs with general capacities, Baier [2003] proves that the maximum fractional
length-bounded multi-commodity flow can be computed exactly in polynomial time
using linear programming methods. Independently, another polynomial-time exact
algorithm for the same setting is given by Kolman and Scheideler [2006]; again, the
algorithm exploits linear programming methods. For maximum fractional length-
bounded multi-commodity flows in graphs with general edge lengths and general
capacities, Baier [2003] gives a fully polynomial time approximation scheme (FP-
TAS).

Mahjoub and McCormick [2003] present a polynomial algorithm for the 3-length-
bounded edge-cut in undirected graphs. Furthermore, they show that the fractional
versions of the length-bounded flow- and cut problem are polynomial even if L is
part of the input but that the integral versions are strongly NP-hard even if L is
fixed.

Length-bounded paths problems arise naturally in a variety of real world opti-
mization problems and therefore many heuristics for finding large systems of length-
bounded paths have been developed [Perl and Ronen 1984; Brandes et al. 1996;
Wagner and Weihe 1995; Hsu 1994].

Our Contribution. In contrast to the classical flow theory, we describe instances
for which the minimum L-length-bounded edge-cut is Θ(n2/3)-times larger than the
maximum L-length-bounded flow, and instances for which the minimum L-length-
bounded node cut is Θ(

√
n)-times larger than the maximum L-length-bounded

flow. In both cases we prove that this is the worst case, and we explain how
this corresponds to the integrality gap of a natural linear programming formula-
tion of the L-length-bounded cut problem. Further, we show that the minimum
length-bounded cut problem is NP-hard to approximate within a factor of 1.1377
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4 · Georg Baier et al.

Table I. Known and new (bold type) complexity and (in)approximability results; ε ∈ R>0 and
c ∈ N are constants, ε can be arbitrarily small. F is the flow number of a graph. All results hold
for the directed and undirected cases, unless stated otherwise.

L node-cut edge-cut

1 — poly.
2 poly. poly.
3 poly. poly. (undirected)

[Mahjoub and McCormick 2003]
4 poly. (undirected) inapprox. within 1.1377

[Lovász et al. 1978]
5 . . . ⌊n1−ε⌋ inapprox. within 1.1377 inapprox. within 1.1377
arbitrary O(min{L, n/L})-approx. O(min{L, n2/L2,

√
m})-approx.

O(
√

n)-approx. O(n2/3)-approx.
2 · F (1 + 1/ε) . . . n (1 + ε)-approx. (1 + ε)-approx.
n − c poly.

for L ≥ 5 in the case of node-cuts and for L ≥ 4 in the case of edge-cuts; Ta-
ble I provides an overview of known and new complexity results. We also give
approximation algorithms of ratio O(min{L, n/L}) ⊆ O(

√
n) in the node case

and O(min{L, n2/L2,
√

m}) ⊆ O(n2/3) in the edge case. For instances with the
length bound L larger than 2 · F (1 + 1/ε) where F is the flow number of the
graph [Kolman and Scheideler 2006] and ε is any constant larger than 0, we give
(1 + ε)-approximation algorithms for both the node-cuts and edge-cuts (e.g., for
hypercubes and L ≥ 3F = O(log n) this yields a constant approximation). For
length bounds L = n− c, where c ∈ N is a constant, we provide a polynomial time
algorithm for the minimum L-length-bounded node-cut problem.

Concerning L-length-bounded flows, we show that in graphs with unit-capacities
and general edge lengths it is NP-complete to decide whether there is a fractional
length-bounded flow of a given flow value. Even worse, the edge-representation
and the path-representation of an L-length-bounded (fractional) flow are not poly-
nomially equivalent. In particular, for graphs with general edge lengths we prove
that there is no polynomial algorithm which transforms an edge-representation of
an L-length-bounded flow into a path-representation, unless P = NP . We ana-
lyze the structure of optimal solutions and give instances where each maximum
flow ships a large percentage of the flow along paths with an arbitrarily small flow
value. We also provide a lower bound of Ω(

√
n) on the integrality gap of the linear

programming formulation of the maximum L-length-bounded flow (we remark that
for some instances the size of the linear program is exponential in the size of the
graph). The integrality gap applies even for planar graphs.

2. PRELIMINARIES

Graphs. We consider both directed and undirected graphs; the number of nodes
of a graph is denoted by n and the number of edges is denoted by m. There are
two independent functions associated with each graph G, an edge-capacity func-
tion u : E → Q>0 and an edge-length function d : E → Q≥0. We denote the capac-
ity and length of an edge e ∈ E by ue and de, respectively. Unless stated otherwise,
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Length-Bounded Cuts and Flows · 5

the length of each edge is one (unit lengths) and the capacity of each edge is one
(unit capacities). The length of a path is the sum of the lengths of the edges on the
path. The distance between two nodes u and v, denoted dist(u, v), is the length of
a shortest path from u to v.

A multi-graph is a graph that may contain several edges between two vertices;
such edges are called multi-edges or parallel edges. Occasionally, we use the term
simple graph to stress that we are dealing with a graph that does not have multi-
edges. Unless stated otherwise, our results apply to simple graphs.

Length-Bounded Cuts. Let s, t ∈ V be two distinct nodes in a graph G = (V, E).
We call a subset of edges C ⊆ E of G an s-t-edge-cut, if no path remains from s to
t in the graph (V, E \C). The value of C is the sum of the capacities of the edges in
C, that is

∑
e∈C ue. In the case of unit capacities, the value of a cut is also called

its size. Similarly, a node set C ⊆ V of G that separates s and t (and contains
neither s nor t) is an s-t-node-cut; its value (or size) is the number of nodes in C.

Let Ps,t(L) denote the set of all s-t-paths of length at most L. We call a subset
of edges C ⊆ E of G an L-length-bounded s-t-edge-cut if the nodes s and t have
a distance greater than L in the graph (V, E \ C). This means that C must hit
every path in Ps,t(L). Similarly, a subset C of the node set of G is called an L-
length-bounded s-t-node-cut if it hits all paths in Ps,t(L). All of our cuts are s-t-cuts
(for some nodes s, t) and therefore we will often omit the s-t-prefix when talking
about cuts. The value of a length-bounded cut is defined in the same way as in the
standard cut case. In the minimum length-bounded cut problem we are looking for
an L-length-bounded cut of minimum value.

In a linear programming relaxation of the minimum length-bounded edge-cut
problem, one has to assign to each edge e ∈ E a non-negative value ℓe, called its
dual length, such that the dual length of every path from Ps,t(L) is at least one
(the linear programming relaxation for node-cuts is analogous):

min
∑

e∈E

ueℓe (1)

∑

e∈P

ℓe ≥ 1 ∀P ∈ Ps,t(L)

ℓe ≥ 0 ∀e ∈ E

An integral solution to this linear program corresponds to a length-bounded s-t-cut,
and vice versa. In particular, the minimum length-bounded s-t-cut value and the
value of a minimum integral solution are equal. We will refer to feasible solutions
of (1) as fractional edge-cuts ; fractional node-cuts are defined similarly as feasible
solutions of the analogous linear programming relaxation of the length-bounded
node-cut problem.

Length-Bounded Flows. An s-t-flow in a directed graph G = (V, E) is a function
f : E → Q≥0 satisfying for each vertex v ∈ V \{s, t} the flow conservation constraint∑

(u,v)∈E f(u, v) =
∑

(v,u)∈E f(v, u) [Ahuja et al. 1993]; we call the function f an

edge representation of the flow. A classical theorem by Ford and Fulkerson [1962]
states that every flow can be represented as a non-negative linear combination of
unit flows along cycles and s-t-paths in G; we call such a linear combination a path
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6 · Georg Baier et al.

representation of the flow. The flow f is feasible, if all capacity constraints are
satisfied, that is f(e) ≤ ue for each edge e ∈ E. The value (or size) of the flow
f is the quantity

∑
(u,t)∈E f(u, t) − ∑

(t,u)∈E f(t, u). For undirected graphs, the

definitions are analogous. If f(e) is integral for every e ∈ E, the flow f is said to
be integral with respect to the edge-representation. If f can be decomposed into
integral flows along cycles and s-t-paths, it is said to be integral with respect to the
path-representation.

Length-bounded flows are flows that can be decomposed into flows along paths
of bounded length. More precisely, an L-length-bounded s-t-flow is an s-t-flow f
such that there exists a decomposition of f into flows along s-t-paths of length at
most L; such a decomposition is called an L-length-bounded path representation of
the flow.

A natural optimization problem is to find a feasible length-bounded s-t-flow of
maximum value. We can formulate this problem as a linear program:

max
∑

P∈Ps,t(L)

fP (2)

∑

P :e∈P

fP ≤ ue ∀e ∈ E

fP ≥ 0 ∀P ∈ Ps,t(L)

Note that the dual of (2) is the linear program (1). One way to prove the maximum-
flow minimum-cut equality for standard flows is to apply the duality of linear pro-
gramming and to observe that there always exists an integral optimal solution
(which does not hold in the length-bounded case).

In the case of multiple commodities, we are given k source-sink node pairs
(s1, t1), . . . , (sk, tk) called commodities. A multicommodity flow f is a set of si-
ti-flows fi, for i = 1, . . . , k. The multicommodity flow f is feasible if for each edge
e ∈ E the capacity constraint holds, that is

∑k
i=1 fi(e) ≤ ue. An L-length-bounded

multi-commodity flow f is a multicommodity flow such that the flow of each com-
modity i is an L-length-bounded si-ti-flow.

Series-parallel and outerplanar graphs. In this paper we deal several times with
series-parallel graphs and outerplanar graphs and therefore their definitions are
provided. A directed acyclic graph G with two dedicated and distinct nodes s, t ∈ V ,
the source and the sink, is series-parallel if and only if one of the following holds
(an equivalent definition can be found in [Brucker 2001]):

1 (base case). G consists only of the nodes s, t and the edge (s, t).

2 (parallel decomposition). G can be obtained from two series-parallel graphs G1

and G2, with source-sink pairs s1, t1 and s2, t2, by taking the disjoint union of G1

and G2 and identifying s1 with s2 and t1 with t2, which gives the source s and
sink t of G, respectively.

3 (series decomposition). G is obtained analogously to the parallel composition
from two series-parallel graphs G1 and G2, except that in this case t1 is identified
with s2 and s = s1, t = t2.

ACM Journal Name, Vol. X, No. Y, W 20Z.



Length-Bounded Cuts and Flows · 7

An undirected graph is series-parallel, if it can be derived from a series-parallel
directed graph by removing the edge directions.

An undirected graph is outerplanar, if it has a planar embedding such that all ver-
tices are on the same face. A directed graph is called outerplanar, if its underlying
undirected graph is outerplanar.

Flow number. At the end of Section 3.4 we deal with a graph parameter called
flow number. Here we recall the definition of the flow number for an undirected
graph. First, we define a few auxiliary terms. In a concurrent multicommodity
flow problem there are k commodities, each specified by a pair of nodes (si, ti) and
a demand di. A feasible solution for this problem is a multicommodity flow that
obeys the capacity constraints but need not meet the specified demands. The flow
value of a feasible solution is the maximum value f such that at least f · di units of
commodity i are routed for each i. The max-flow for a multicommodity flow problem
is defined as the maximum flow value over all feasible solutions. Given a concurrent
multicommodity flow problem with feasible solution S, the dilation D(S) of S is
the length of the longest flow path in S and the congestion C(S) of S is the inverse
of its flow value. Let I be the instance of the concurrent multicommodity flow
problem with a commodity for every ordered pair of nodes such that the demand
for the pair (u, v) is c(u)c(v)/

∑
w∈V c(w) where c(w) =

∑
e={w,z}∈E ue for each

vertex w ∈ V . The flow number F (G) of a graph G is the minimum over all feasible
solutions S for the instance I of max{C(S),D(S)} [Kolman and Scheideler 2006].
The flow number F of a graph is closely related to the expansion α of the graph:
F = Ω(α−1) and F = O(∆α−1 log n) where ∆ is the maximum degree in the graph
[Kolman and Scheideler 2006].

3. LENGTH-BOUNDED CUTS

3.1 Length-Bounded Flows vs. Length-Bounded Cuts

3.1.1 Edge-Cuts. It follows from linear programming duality that the maxi-
mum (fractional) length-bounded flow value equals the minimum fractional length-
bounded cut value. For standard flows, this equality holds for integral cuts as well.
In the presence of a length-bound, the maximum flow value and the minimum cut
value may be very different. This is in intimate relationship with the integrality
gap of the linear program (1).

Theorem 3.1. There exist infinite families of directed and undirected graphs
for which the ratio of the minimum integral length-bounded edge-cut value to the
minimum fractional length-bounded edge-cut value is of order Θ(n2/3) for a graph
with n vertices, and this is the worst possible ratio.

Proof. We describe the family of undirected graphs; the directed graphs are
obtained from the undirected graphs by a natural orientation of the edges (“from
left to right”). Let n be an integer such that n1/3 is integral and let k = n2/3. We
describe a graph G on Θ(n) vertices for which the ratio between the two cuts is
of order Θ(n2/3). The core of G is a layered graph G′ consisting of 4k + 1 layers.
The first layer contains only a single vertex s and the last layer contains only a
single vertex t. The second layer and the last but one layer consist of n2/3 vertices
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Fig. 1. An instance (L = 3k where k = n2/3) with integrality gap Ω(n2/3). Every L-length-
bounded path has to use at least k shortcut edges (the topmost edges in the figure).

each. Every other layer consists of n1/3 vertices. Except for the pair 2, 3 and the
pair 4k − 1, 4k, each pair of consecutive layers of G′ forms a complete bipartite
graph. The vertices of layer 2 are partitioned into n1/3 groups of size n1/3, and
all vertices from each group are connected to a unique vertex (different from the
vertices chosen for the other groups) from the third layer. Vertices in layers 4k − 1
and 4k are connected in an analogous way.

The desired graph G = (V, E) is obtained from G′ by choosing a single vertex
from each odd layer, say a vertex vi from the odd layer i, and connecting vi with
vi+2 by an edge for each odd i; these edges are called shortcut edges. The graph
G is depicted in Figure 1. We note that a similar graph is used in a lower bound
proof by Galil and Yu [1995] in the context of bounds on the average path length
of edge disjoint s-t-paths and by Chekuri and Khanna [2007] in the analysis of the
performance of a greedy algorithm for the edge disjoint paths problem.

For length bound L = 3k, we show that the minimum length-bounded cut has
size Ω(n2/3). Note that any s-t-path of length at most L must use at least k shortcut
edges. Given a subset F ⊆ E of edges, we say that a shortcut edge {vi, vi+2} from
E \F is substantial if 5 ≤ i ≤ 4k−5, the vertex vi is connected in (V, E \F ) to more
than n1/3/2 vertices from layer i− 1, and the vertex vi+2 is connected in (V, E \F )
to more than n1/3/2 vertices from layer i + 3. Note that 2k − 4 of the 2k shortcut
edges can potentially be substantial. We claim that if the number of substantial
edges in (V, E \ F ) is at least k and the size of F is at most k/2, then there exists
an L-length-bounded path between s and t in (V, E \ F ). To see this, note that
G contains more than n2/3/2 edge-disjoint paths from s to any set of more than
n1/3/2 vertices in a layer i, 3 ≤ i ≤ 4k − 1; more than n2/3/2 edge-disjoint paths
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from any set of more than n1/3/2 vertices in a layer i to any set of more than n1/3/2
vertices in a layer j, for 3 ≤ i ≤ 4k − 3 and i + 2 ≤ j ≤ 4k − 1; and more than
n2/3/2 edge-disjoint paths from any set of more than n1/3/2 vertices in a layer i,
3 ≤ i ≤ 4k−1, to t. In each of the three cases, a set F of at most k/2 edges cannot
hit all the more than n2/3/2 edge-disjoint paths. Therefore, we can construct an L-
length-bounded path from s to t in (V, E \F ) by concatenating shortest paths from
s to the first substantial edge, between any two consecutive substantial edges, and
from the last substantial edge to t. Hence, if F is an L-length-bounded edge-cut,
we must have that (V, E \F ) contains less than k substantial edges (implying that
|F | > k − 4) or |F | > k/2; in both cases, F has size Ω(k) = Ω(n2/3), as claimed.

On the other hand, assigning each shortcut edge e a dual length le = 1/k ensures
that the dual length of every s-t-path from Ps,t(L) is at least 1. Thus, the integrality
gap is Θ(k) = Θ(n2/3) in this instance. It remains to show that this is the worst
case.

For length-bounds L ≤ n2/3 a simple rounding scheme proves that the ratio
between fractional and integral minimum cuts in every graph is at most n2/3: given
a minimum fractional L-length-bounded cut, round every le ≥ 1/L to 1 and all
other le to 0; clearly this yields an integral L-length-bounded cut that is at most L-
times larger than the fractional one. For L > n2/3, we start with a similar rounding
scheme and round every le ≥ 1/n2/3 to 1 and all other le to 0. If we remove at this
point all edges with le = 1 from the graph, the distance between s and t will be at
least n2/3 + 1 and thus, by a theorem of Even and Tarjan [1975], the minimum cut
between s and t has size O(n2/3). Putting together edges with le = 1 and edges
from the minimum cut in the reduced graph gives an integral L-length-bounded
cut that is at most O(n2/3)-times larger than the fractional one.

As mentioned earlier, by duality of linear programming, the size of a minimum
fractional L-length-bounded cut equals the size of a maximum fractional L-length-
bounded flow, which implies the following corollary.

Corollary 3.2. There exist infinite families of directed and undirected graphs
for which the ratio of the minimum integral length-bounded edge-cut value to the
maximum fractional length-bounded flow is of order Θ(n2/3) for a graph with n
vertices, and this is the worst case.

Remarkably, asymptotically the same ratio applies for the minimum integral L-
length-bounded edge-cut and the maximum integral L-length-bounded flow (i.e.,
the maximum number of edge disjoint L-length-bounded paths between s and t).

Corollary 3.3. There exist infinite families of directed and undirected graphs
for which the ratio of the minimum integral length-bounded edge-cut value to the
maximum number of length-bounded edge disjoint paths is of order Θ(n2/3) for a
graph with n vertices, and this is the worst case.

Proof. The graphs described in the proof of Theorem 3.1 provide again the
lower bound. For the upper bound, we describe an L-length-bounded cut C ⊆ E of
size at most O(n2/3)-times larger than the maximum number of L-length-bounded
edge disjoint paths between s and t, for a given instance of the problem. We argue
similarly as in the proof of Theorem 3.1. For L ≤ n2/3, let h be the maximum
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ts

k + 1

2k + 1

Fig. 2. Example of a large integrality gap of the linear program (1) of the minimum length-bounded
cut. The straight s-t-path (in gray) contains 2k + 1 edges. Each of these edges is accompanied by
k + 1 parallel paths of length 2 and the length bound is L = 3k + 1.

number of edge-disjoint L-length-bounded paths between s and t; the cut simply
consists of the edges of these h paths. For L > n2/3, let h be the maximum number
of edge-disjoint n2/3-length-bounded paths between s and t. Consider the cut
consisting of all edges of the h edge-disjoint paths of length at most n2/3 between s
and t. By removing these edges, the distance between s and t increases to n2/3 + 1
at least, and by the theorem of Even and Tarjan [1975], the minimum cut between
s and t has size O(n2/3). Altogether, we have again an L-length-bounded cut
that is at most O(n2/3)-times larger than the maximum number of edge disjoint
L-length-bounded s-t-paths.

For the instance used in the above proofs (cf. Figure 1), the maximum fractional
and integral L-length-bounded flows have the same size, namely two. It is worth
stressing that this is generally not the case (cf. the construction by Guruswami
et al. [2003] for the lower bound n1/2−ε on the approximation ratio of the L-length-
bounded edge disjoint paths problem).

3.1.2 Node-Cuts. Analogous results hold for node-cuts; the integrality gap is
smaller in this case. Since the same bounds apply for edge-cuts on series-parallel
graphs, in the next theorems we mention both node- and edge-cuts.

Theorem 3.4. There exist infinite families of directed and undirected graphs
for which the ratio of the minimum integral length-bounded node-cut value to the
minimum fractional one is of order Θ(

√
n) for a graph with n vertices, and this

is the worst possible ratio. The same bound applies for edge-cuts on series-parallel
graphs.

Proof. We start by giving the construction for edge-cuts and then describe how
to adapt it to node-cuts. The construction is very similar to the construction in the
proof of Theorem 3.1. For every k ∈ N we construct a graph Gk on 2k2 + 5k + 3
vertices with a fractional length-bounded edge-cut value less than 2 and an integral
length-bounded cut value k + 1. The graph Gk is generated from an s-t-path
containing 2k + 1 edges; we call these edges ground edges. Parallel to each ground
edge we add k+1 paths of length 2, see Figure 2 for the undirected case. Note that
the proof works for directed edges as well (direct edges from left to right).

Consider a graph Gk for arbitrary k and let L = 3k + 1. A minimum fractional
edge-cut has value less than 2. This can be seen as follows. For a fractional edge-
cut we have to assign a dual edge-length to each edge, such that the dual length of
each s-t-path with at most L = 3k +1 edges is not less than 1. An s-t-path with at
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most 3k + 1 edges must contain at least k + 1 ground edges. Thus, assigning each
ground edge a dual length of 1

k+1 and assigning 0 to the remaining edges yields a

fractional cut of value 2k+1
k+1 < 2.

Now we give a lower bound of k+1 on the size of an (integral) edge-cut. If we take
a non-ground edge, we must take at least k + 1 non-ground edges. Otherwise for
any non-ground edge in the cut there would always be another equivalent length 2
path which is not cut and thus the non-ground edges could be removed from the
cut without invalidating it. A cut containing only ground edges must have size
greater than k, otherwise an s-t-path of length L = 3k + 1 remains. Since k + 1 is
in Θ(

√
n) this completes the proof.

For node-cuts one can simply take the line graph (replace each edge by a node,
connect two nodes, if the corresponding edges shared a node) of the above con-
struction. This gives the Ω(

√
n) lower bound on the integrality gap in undirected

and directed (direct edges from left to right) graphs.
The proof of optimality of the bound for node cuts follows the same argument as

the proof of Theorem 3.1. Given a fractional node cut and L ≤ √
n, round every

lv ≥ 1/L to 1 and all others to 0. For L >
√

n, first round every lv ≥ 1/
√

n to
1 and remove these nodes from the graph; at this point, the distance between s
and t is at least

√
n + 1 and thus, the minimum cut has size at most

√
n. Putting

together nodes from this cut and the nodes with lv = 1, we get an L-bounded node
cut that is at most Θ(

√
n)-times larger than the size of the fractional cut.

Similarly as Theorem 3.1 implies Corollaries 3.2 and 3.3, Theorem 3.4 implies
the next two corollaries.

Corollary 3.5. There exist infinite families of directed and undirected graphs
for which the ratio of the minimum integral length-bounded node-cut size to the
maximum fractional length-bounded flow is of order Θ(

√
n) for a graph with n

vertices, and this is the worst possible ratio. The same bound applies for edge-cuts
on series-parallel graphs.

Corollary 3.6. There exist infinite families of directed and undirected graphs
for which the ratio of the minimum integral length-bounded node-cut size to the
maximum number of length-bounded node disjoint paths is of order Θ(

√
n) for a

graph with n vertices, and this is the worst possible ratio. The same bound applies
for edge-cuts and edge-disjoint paths on series-parallel graphs.

We note that one of the main questions posed in the paper by Lovász et al. [1978]
was exactly about the ratio of the minimum integral length-bounded node cut size
and the maximum number of node disjoint length-bounded paths.

3.2 Cuts vs. Length-bounded Cuts

In this subsection we establish bounds on differences between the sizes of standard
minimum cuts and length-bounded minimum cuts.

Theorem 3.7. Let G = (V, E) be a directed or undirected multi-graph. The
difference between the size of a minimum node-cut in G and the size of a minimum
L-length-bounded node-cut is at most O(n

L). If G is a simple graph, the difference
between the size of a minimum edge-cut and the size of a minimum L-length-bounded
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s t

≈ n
L

L

L + 1

Fig. 3. Example of the n
L

gap between the standard and the length-bounded cut.

edge-cut is at most O(n2

L2 ); if L ≥ √
m, then that difference is at most O(

√
m), even

for multi-graphs.

Proof. Our arguments apply to directed or undirected graphs in the same way,
therefore we describe the proof for undirected graphs only.

First, consider the case of node-cuts. Let C1 be a minimum length-bounded
node-cut. We will construct a node-cut C of size at most |C1| + n

L . In G \ C1, all
s-t-paths have length at least L+1. The number of node-disjoint s-t-paths in G\C1

is at most (n − 2)/L ≤ n/L, as each such path contains at least L internal nodes
and no two such paths contain the same node. Therefore, a minimum node-cut in
G\C1 has size at most n/L. Let C2 be such a cut. Then C = C1∪C2 is a node-cut
in G of the desired size.

The proof for edge-cuts follows along the same lines. Let C1 be a minimum length-

bounded edge-cut. We will construct an edge-cut C of size at most |C1| + O(n2

L2 ),
and for L ≥ √

m we also give an upper bound |C1| +
√

m on the size of C. In
G \C1, all s-t-paths have length at least L + 1. A result of Even and Tarjan [1975]
(cf. [Galil and Yu 1995; Chekuri and Khanna 2007]) implies that the number of
edge-disjoint s-t-paths in G \ C1 is O(n2/L2) and thus, a minimum edge-cut in
G \C1 has size O(n2/L2). If L ≥ √

m, then the number of s-t-paths in G \C1 is at
most

√
m since each of these paths uses at least

√
m + 1 edges; again, this implies

that the minimum edge-cut in G \C1 has size at most
√

m. Let C2 be a minimum

cut in G \ C1. Then C = C1 ∪ C2 is an edge-cut in G of size |C1| + O(n2

L2 ) and if
L ≥ √

m, the size of C is at most |C1| +
√

m.

Figure 3 gives an example showing that the bound of n
L on the gap between

standard and length-bounded node-cuts given in Theorem 3.7 is tight. In this
example, s and t are connected by one path of length L and by n−L−1

L ≈ n
L paths

of length L + 1. A minimum L-length-bounded node-cut has size one while the
minimum standard node-cut needs to cut all paths and has size approximately n

L .

3.3 Hardness of Approximation

Table I provides an overview of known and new results concerning the complexity,
inapproximability, and polynomially solvable cases of length-bounded cut problems.
Furthermore, we give an NP-hardness proof for the edge version in weighted series-
parallel and outerplanar graphs. Note that the polynomial algorithms for L equals
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2, 3 and 1, 2 for the node and edge version, respectively, are easy exercises for both
directed and undirected graphs (for the case L = 3 node-cut or L = 2 edge-cut:
after directly cutting length 2 or length 1 paths, respectively Theorem 3.13 can be
applied).

3.3.1 Node-Cuts. We first present a simple polynomial time algorithm for length-
bounded node-cuts with L = n− c, where c ∈ N is an arbitrary constant. Then we
come to the main result of this section, which is the inapproximability result.

Theorem 3.8. If c ∈ N is constant and L = n − c, then a minimum length-
bounded node-cut can be computed in polynomial time in directed and undirected
graphs.

Proof. Enumerate all C ⊆ V with |C| ≤ c and return the smallest C which is
a length-bounded node-cut, if there is any. Otherwise, any length-bounded node-
cut C contains at least c + 1 nodes so that the longest remaining s-t-path has a
length at most n−c−1 and therefore C actually cuts all s-t-paths. Thus, returning
a standard minimum node-cut suffices.

Theorem 3.9. For any ε > 0 and L ∈ {5, . . . , ⌊n1−ε⌋}, it is NP-hard to ap-
proximate the minimum length-bounded node-cut in directed and undirected graphs
within a factor of 1.1377.

Proof. We first look at the case L = 5 in directed graphs and give a reduction
from the well known Vertex Cover problem. A vertex cover for an undirected
graph Gvc = (Vvc, Evc) is a subset V ′

vc of the nodes Vvc such that for each edge
{u, v} ∈ Evc at least one of the nodes u, v is in V ′

vc. The problem of finding
a minimum vertex cover has been shown to be NP-hard to approximate within a
factor ≈ 1.3606 [Dinur and Safra 2005]. Given a Vertex Cover instance Gvc with
nvc = |Vvc| nodes, we construct a length-bounded node-cut instance G = (V, E)
as follows: start with V = {s, t} and no edges. For each node v ∈ Vvc we add a
node gadget to G consisting of seven nodes which are interconnected with s, t and
themselves as shown in Figure 4 (left) – the nodes in the top half surrounded by
a gray box. For each edge {u, v} ∈ Evc we add an edge gadget consisting of four
nodes and six edges connecting them to the node gadgets corresponding to u and
v as shown in Figure 4 (left).

Lemma 3.10. From a vertex cover V ′
vc in Gvc of size x one can always construct

in polynomial time a length-bounded node-cut C in G of size nvc +x and vice versa,
for x ≤ nvc.

Proof. We start with the easier direction “⇒”: Let V ′
vc ⊆ Vvc be a vertex cover

with |V ′
vc| = x. For each node v ∈ V ′

vc we add two nodes lv and rv to our node-cut
C ⊆ V and for each node u ∈ Vvc \ V ′

vc we add mu to C (see Figure 4 for an
example). Clearly this ensures |C| = nvc + x.

To see that no 5-length-bounded path between s and t remains after removing
the nodes C from G, first consider paths that use vertices of the node gadgets only,
apart from s and t. With respect to a node gadget for a node v there are two cases
to distinguish. In the case that mv was added to the cut, no length-bounded path
remains in the gadget. In the case that lv and rv were added, the only remaining
path (via mv) has length 6, which is greater than the length-bound 5.
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rulu mu

mv rv

ts s t

node gadget for u node gadget for u

v

u

node gadget for v

G for node-cut: Gvc : G for edge-cut:

lv

node gadget for v

Fig. 4. Gadgets for the reduction of Vertex Cover to length-bounded node-cut (left) and length-
bounded edge-cut (right), respectively. Both correspond to two connected nodes u, v of the given
Vertex Cover instance, shown in the middle. The highlighted nodes (edges) are in the cut and
in the vertex cover.

Now assume that after removing nodes in C there remains an s-t-path of length
at most five that uses vertices from an edge gadget for some edge {u, v} ∈ Evc.
Then either lv and ru are not in the cut C or lu and rv are not in the cut C. By
construction this means that both u and v are not in V ′

vc which is a contradiction
to V ′

vc being a vertex cover. We conclude that no length-bounded s-t-path remains
in G after removing C.

Now we come to the direction “⇐”: Let C ⊆ V be a length-bounded node-cut
of size |C| = nvc + x. With two simple transformations we ensure that C contains
nodes from the node gadgets only, and that for each node gadget either the m-type
node or both the l- and r-type nodes are contained in C.

No nodes from edge gadgets in C. Consider an edge gadget, say for an edge
{u, v} ∈ Evc, for which at least one of its four nodes is in C. The edge gadget
consists of two paths, one from lv to ru and one from lu to rv. If an inner node
of the lv-ru-path or the lu-rv-path is in C, we replace it by lv or lu, respectively.
This introduces no new length-bounded paths and does not increase the size of the
node-cut.

Node gadget: either m-type node or both l- and r-type nodes in C. Consider a
node gadget for a node v ∈ Vvc. First note that at least one node of the gadget must
be in C; otherwise there exist three s-t-paths of length at most 5 via this gadget. If
only one node of the gadget is in C, it must be mv; otherwise there exists at least
one length-bounded path via this gadget. If two or more nodes of the gadget are
in C, we replace them by lv and rv; this guarantees that no 5-length-bounded path
via this node gadget exists. The transformation clearly does not increase the size
of the node-cut C.

A vertex cover V ′
vc of size |C|−nvc can easily be derived from the transformed C

as follows: include in V ′
vc all nodes v ∈ Vvc for which both nodes lv and rv are in C.

Assume, for a contradiction, that V ′
vc is not a vertex cover, that is, there exists an
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2nvc

L − 5

s′s

Fig. 5. Replacing s by a path of length L − 5.

edge {u, v} ∈ Evc that is uncovered by V ′
vc. Then both mu and mv are in the cut C

(and no other nodes of the node gadgets for u and v) which implies that there exist
two 5-length-bounded s-t-paths via the edge gadget for {u, v}, a contradiction to C
being a node-cut. Concerning the size of V ′

vc, we observe that every node gadget
after the two transformations contains either one or two nodes from C; thus, by
construction, the size of V ′

vc is |C| − nvc.
If the size of C was decreased by the two transformations and the resulting

vertex cover V ′
vc has therefore smaller size than claimed in the lemma, we artificially

increase the size of the vertex cover by adding other vertices to it.

The proof of Theorem 1.1 in [Dinur and Safra 2005] gives the following gap. There
are graphs Gvc for which it is NP-hard to distinguish between two cases: the case
where a vertex cover of size nvc · (1 − p + ε′) exists, and the case where any vertex
cover has size at least nvc ·(1−4p3+3p4−ε′), for any ε′ ∈ R>0 and p = (3−

√
5)/2. If

we plug this into the result of Lemma 3.10, we have shown that the length-bounded
node-cut is hard to approximate within a factor (there is an ε′ ∈ R>0 for which the
inequality holds): (nvc +nvc · (1−4p3 +3p4− ε′))/(nvc +nvc · (1−p+ ε′)) > 1.1377.

For other values of L ∈ {5, . . . , ⌊n1−ε⌋}, we modify the construction of G as
follows: (1) Add a path of length L − 5 from a new source node s′ to s. (2)
Stepwise replace each node on this path after s′ and until s (inclusive) by a group
of 2nvc nodes, and connect each new node with all neighbors of the replaced node
(see Figure 5).

We need to verify that Lemma 3.10 applies for the new construction too. The
proof of the left to right implication goes through without any modification. For the
right to left implication, we first observe that if only a few nodes of a group are in
the cut, we easily find a smaller cut by removing these nodes from the cut. Further,
for every cut that contains all nodes from a group, we can find a smaller cut by
taking the l- and r-type nodes of all node gadgets but one and taking the m-type
node of the last node gadget in the cut. Thus, we can assume that none of the new
nodes appear in the length-bounded cut which makes it possible to transform again
a cut of size nvc + x in a vertex cover of size x. The total number of nodes in G
depends on L and is n = Θ(L · nvc + nvc + mvc), where mvc = |Evc|. Therefore, we
can create instances for which L is as large as ⌊n1−ε⌋, for arbitrarily small ε ∈ R>0.

To see that the reduction also works for undirected graphs, observe that by
removing the edge directions in the gadgets, no new undirected paths of length less
than L are introduced.

3.3.2 Edge-Cuts. The polynomial time algorithm for node-cuts with length-
bound n − c does not carry over for the edge version of the problem since by
removing c edges one cannot guarantee that computing a standard cut suffices.
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t

an/∞a2/∞a1/∞
s

0/a1 0/a2 0/an

Fig. 6. Reduction of 2-Partition to the length-bounded cut problem. The labels denote
length/capacity.

The inapproximability result does carry over, as stated in the following theorem.
The proof is a straightforward modification of the proof of Theorem 3.9 and there-
fore we omit it; the difference is that other gadgets (described in Figure 4, right)
are used.

Theorem 3.11. For any ε > 0 and L ∈ {4, . . . , ⌊n1−ε⌋}, it is NP-hard to
approximate the length-bounded edge-cut in directed and undirected graphs within a
factor of 1.1377.

If we allow the edges to have different lengths and capacities, the length-bounded
cut problem is NP-hard even for the classes of series-parallel and outerplanar
graphs.

Lemma 3.12. For series-parallel and outerplanar directed and undirected graphs
with general capacities and lengths it is NP-hard to decide whether there is a length-
bounded edge-cut of size less than a given value.

Proof. We will show a reduction of 2-Partition to the length-bounded cut
problem. We are given an arbitrary 2-Partition instance a1, . . . , ak ∈ N. We have
to decide if there exists a partition A1, A2 of the ground set A1 ∪A2 = {a1, . . . , ak}
such that

∑
i∈A1

ai =
∑

i∈A2
ai =: B holds.

Graph G is a single s-t-path with k multi-edges; each multi-edge consists of
two parallel edges, see Figure 6. All k upper edges have length 0 and succes-
sively a1, . . . , ak as capacity. The lower edges get successively a1, . . . , ak as length
and capacity ∞ (or any finite capacity larger than B). Note that to obtain a simple
graph, we can simply subdivide the parallel edges which still yields a series-parallel
and outerplanar graph. For the directed version simply direct the edges from left
to right.

Let the length-bound be L = B − 1. We will show that there is an L-length-
bounded edge-cut of value at most B if and only if the instance of 2-Partition is
a yes-instance.

“⇐”: Given a solution A1, A2 to the 2-Partition instance, we take the upper
edges corresponding to set A1 as our edge-cut. Clearly only s-t-paths of length at
least B remain and the cut has value B.

“⇒”: We start by showing that any L-length-bounded edge-cut must have value
at least B. Assume C is a cut of value less than B, then the path which takes
the upper edges complementary to C will have length less than B, which gives a
contradiction. Thus, a given edge-cut of value at most B has value exactly B and
yields a 2-Partition in the obvious way.

We will show in Theorem 4.2 that it is NP-hard to decide whether a fractional
length-bounded flow of a given flow value exists in a graph with edge-lengths even
if the graph is series-parallel and outerplanar. Since the primal and dual programs
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have identical optimal objective function values, the same holds for the fractional
length-bounded edge-cut problem.

3.4 Approximation Algorithms

If the length-bound L is so large that the system of L-length-bounded s-t-paths con-
tains the set of all s-t-paths, then length-bounded cuts and flows reduce to standard
cuts and flows. The maximum-flow minimum-cut equality holds and there are many
efficient algorithms to compute minimum cuts and maximum flows exactly. If the
length-bound L equals the distance between s and t, we get another case solvable
in polynomial time. Lovász et al. [1978] show a special version of the following
theorem in the context of length-bounded node-disjoint paths.

Theorem 3.13. In directed and undirected multi-graphs with general capacities
and edge lengths, for L = dist(s, t) the minimum length-bounded edge- and node-cut
problem and the maximum length-bounded flow problem can be solved in polynomial
time. In particular, the maximum flow value and the minimum cut value coincide
if L = dist(s, t).

Proof. We first consider directed graphs. Let G be such a graph with edge-
capacities and non-negative edge-lengths and let L = dist(s, t). First we generate
the subgraph G induced by all edges which are contained in at least one shortest s-
t-path in G. This subgraph can be found with a slightly modified Dijkstra-labeling
algorithm; one has to remember for each node all incoming edges generating the
smallest label at this node. The edges in G that have positive length form a directed
acyclic graph, and the edges in G with length 0 connect nodes that have the same
distance to t in G. Each s-t-path in G is a shortest s-t-path in G. Therefore, a
standard minimum cut and a maximum flow in G correspond to a minimum length-
bounded cut and a maximum length-bounded flow in G. The theorem follows
from standard flow theory. For undirected graphs we replace each edge by two
antiparallel directed edges with the capacity and length of the original edge. The
subgraph G is then constructed in the same way, and any cut or flow in G directly
translates into a length-bounded cut or flow in the original graph.

For graphs with unit-lengths, Theorem 3.13 yields the following approximation
result for the minimum length-bounded cut problem. A similar result for node-cuts
appears implicitly in [Ben-Ameur 2000].

Corollary 3.14. In directed and undirected multi-graphs with general capac-
ities and unit-lengths, one can find in polynomial time an (L + 1 − dist(s, t))-
approximation to the minimum L-length-bounded edge- or node-cut by at most
L + 1 − dist(s, t) standard minimum cut calculations.

Proof. Removing a minimum dist(s, t)-length-bounded cut from the graph in-
creases the distance of s and t by at least 1. Repeating this iteratively increases
the s-t-distance to L + 1 within at most L + 1 − dist(s, t) iterations. The value
of each intermediate minimum cut is a lower bound on the value of the minimum
L-length-bounded cut. Thus, their union has value at most L + 1− dist(s, t) times
the minimum value of an L-length-bounded cut.

In Figure 7 we provide an instance showing that the performance bound in the
above corollary is tight in the worst case. The core of the graph is a path on n− 2
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t
v

s

Fig. 7. An example showing that the performance bound is asymptotically tight. The
length bound is L = n − 1.

vertices, the last of which is a node t, and two other vertices v and s. Each of the
n−2 vertices on the path is connected to the vertex v, and the vertex v is connected
to the vertex s. All edges have unit length and unit capacity. The length bound is
L = n − 1. If the algorithm breaks ties in favor of edges that are incident with v
but not incident with s, the algorithm finds a cut of value n−2 while the minimum
cut has value 1.

Another way to obtain an L-approximation for the L-length-bounded edge-cut is
the following: while dist(s, t) ≤ L, remove edges on the shortest s-t-path. Since all
removed paths are edge disjoint, their number is a lower bound on the L-length-
bounded edge-cut value which, together with the fact that the removed paths have
length at most L, implies the approximation ratio.

Consider the following combination of the two approaches described above. First,
while there exists an s-t-path of length at most L/2, remove all edges on such a
path. Then, while there exists an s-t-path of length at most L, find a minimum
cut in the subgraph consisting of edges on the shortest s-t-paths in the current
graph, and remove edges in the cut. We observe that the number of iterations of
the first phase (i.e., the number of edge disjoint paths of length at most L/2 that
the algorithm finds) plus the size of any cut from the second iteration, is a lower
bound on the size of the minimum L-bounded cut. Since the length of each path
deleted in the first phase is at most L/2 and since there are at most L/2 iterations
of the second phase, the algorithm computes an L/2-approximation.

For the sake of completeness we mention again yet another L-approximation
algorithm that appeared already in the proof of Theorem 3.1: given a fractional
L-length-bounded cut, round every dual length with le ≥ 1/L to 1 and all others
to 0.

The algorithms described above for edge-cuts can be adapted to node-cuts in a
straightforward way.

For large values of the length-bound L, the O(L)-approximations are not very
satisfying. In such cases, a combination of Corollary 3.14 and Theorem 3.7 yields
the following theorem; we exploit the fact that minimum cuts can be computed in
polynomial time.

Theorem 3.15. For directed and undirected graphs there exists an O(min{L,
n/L}) ⊆ O(

√
n)-approximation algorithm for the minimum L-length-bounded node-

cut problem and an O(min{L, n2/L2,
√

m}) ⊆ O(n2/3)-approximation algorithm for
the minimum L-length-bounded edge-cut problem; the algorithms have polynomial
running times.
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For a large class of graphs a better approximation ratio is often possible. Let F
be the flow number of G, as defined by Kolman and Scheideler [2006]. The following
lemma from the same paper will be useful.

Lemma 3.16 Shortening Lemma [Kolman and Scheideler 2006]. Let an
undirected network with flow number F be given. Then, for any ε ∈ (0, 1] and any
feasible multicommodity flow with a flow value of f , there exists a feasible multi-
commodity flow with a flow value of f/(1 + ε) that can be decomposed into paths of
length at most 2 · F (1 + 1/ε).

Theorem 3.17. For undirected graphs and L ≥ 2 · F (1 + 1/ε), there exists a
polynomial-time (1+ε)-approximation algorithm for the minimum L-length-bounded
node-cut and minimum L-length-bounded edge-cut problems, where F is the flow
number of the given graph.

Proof. The proofs for node- and edge-cuts are identical. Consider a graph G
with flow number F . Let f denote the size of the standard minimum-cut between
two vertices s and t; by the duality of flows and cuts, f is also the size of the standard
maximum flow between s and t. By Lemma 3.16 there exists an L-length-bounded
flow between s and t of size at least f/(1 + ε). Since the size of a length-bounded
flow between s and t is a lower bound on the size of the minimum length-bounded
cut, we conclude that a standard minimum-cut is a (1 + ε)-approximation for the
L-length-bounded cut.

As the flow number of hypercubes or expander graphs is O(log n), the theorem
implies polynomial-time O(1)-approximation algorithms for L ≥ 3F = O(log n) for
these graphs. We remark that the definition of the flow number can be adapted to
directed graphs in which for every node the total capacity of the in-edges equals
the total capacity of the out-edges [Kolman and Scheideler 2006]; the corresponding
version of Theorem 3.17 holds for such graphs.

We conclude this section with a simple observation that for a graph G with
a source s and a sink t one can easily obtain an O(max{degree(s), degree(t)})-
approximation by removing all edges adjacent to the source or the sink. Thus, we
have O(1)-approximations for constant degree graphs.

4. LENGTH-BOUNDED FLOWS

4.1 Complexity

Choosing infinity as a length-bound reduces the length-bounded flow problem to
the standard flow problem. For computing maximum standard flows, in most cases
one does not use the linear program (2), since the number of paths and thus the
number of variables may be exponential in the input size. It is more common to use
an edge-based formulation since it always uses a polynomially bounded number of
variables. For length-bounded (multicommodity) flows in unit-lengths graphs (and
general capacities), Kolman and Scheideler [2006] describe an edge-based linear
programming formulation of polynomial size. The main result of this section, The-
orem 4.2, implies that there is no linear programming formulation of polynomial size
for the problem in graphs with general lengths, unless P = NP ; the formulation of
Kolman and Scheideler [2006] has size Ω(L(n + m)). We also note that for graphs
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Fig. 8. The depicted graph possesses no small multi-commodity path-representation cor-
responding to the prescribed edge representation of the flow. As set of commodities we
choose all 9 pairs (ai, bj), i, j = 1, 2, 3. The capacity of all 6 edges is set to 1. For
each commodity (ai, bj) there is a flow of size 1/3 (going along the only path between ai

and bj). This is a feasible multi-commodity flow. However, the only corresponding path
representation has to use altogether all 9 paths which is greater than |E| = 6.

with unit-lengths (and general capacities), Baier [2003] describes how to solve the
linear program (2) in polynomial time. However, we are not aware of a combina-
torial algorithm with polynomial running time for the maximum length-bounded
flow problem in graphs with unit lengths.

When looking at a given length-bounded flow, from linear programming theory
we can infer the existence of a path-decomposition of small size, where all paths
fulfill the length-bound.

Theorem 4.1. For every L-length-bounded (multi-commodity) flow, there exists
an L-length-bounded path representation of the flow that uses at most m paths for
each commodity.

Proof. The theorem follows from the fact that the linear program in (2) has
only m linear constraints. Therefore, the rank of the linear program for a single
commodity is at most m. Consequently, there has to be a solution using no more
than m paths. We can modify the edge-capacities appropriately and apply this
argument to each commodity one after another.

The argument in the proof of Theorem 4.1 can be applied simultaneously to
all commodities of a length-bounded flow. Hence, there always exists an optimal
solution (maximizing the sum of the flow values of all the commodities) that uses
no more than |E| paths in total. However, in general this transformation may
change the flow on some of the edges (and also the total flow value) for individual
commodities. An example is given in Figure 8.

We see that the theory of linear programming guarantees that there is always a
path representation of maximum flow value that has a small size. Nevertheless, for
graphs with general edge lengths, linear programming is unable to find maximum
fractional length-bounded flows efficiently, unless P = NP . We formalize this
statement in the following theorem.

Theorem 4.2. For the length-bounded flow problem in directed and undirected
series-parallel and outerplanar graphs with unit-capacities and general lengths it is
NP-complete to decide whether there is a fractional length-bounded flow of given
flow value.

Proof. First of all we observe that this decision problem is in NP . Theorem 4.1
guarantees the existence of a polynomially sized path representation of a flow. This
is a certificate which certainly can be checked in polynomial time.
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To prove NP-hardness we proceed similarly as in the proof of Lemma 3.12 by
giving a reduction of 2-Partition. We are given an arbitrary 2-Partition in-
stance a1, . . . , ak ∈ N. We have to decide if there exists a partition A1, A2 of the
ground set A1 ∪ A2 = {a1, . . . , ak} such that

∑
i∈A1

ai =
∑

i∈A2
ai =: B holds.

Graph G is a single s-t-path with k multi-edges; each multi-edge consists of two
parallel edges. All k upper edges have length 0 and the lower edges are successively
assigned a1, . . . , ak as lengths. All capacities are set to 1. The constructed graph
is the same as the one shown in Figure 6 except for the choice of capacities. Note
that to obtain a simple graph, we subdivide each of the parallel edges, which still
yields a series-parallel and outerplanar graph. For the directed version we direct
the edges from left to right. Let the length-bound be L = B.

Let us first consider a maximum integral flow (integral with respect to the path-
representation) respecting the length bound L. Obviously, the value of this flow is
bounded by 2 from above. Assume that the maximum flow has value 2. By the
integrality of the flow, there have to be exactly two edge-disjoint s-t-paths with
flow value 1 each. The total length of these two paths is 2L, thus both must have
length exactly L. The edges of length greater than 0 in one path define a feasible
partition for our 2-Partition instance. On the other hand, each feasible partition
for the 2-Partition instance describes two s-t-paths in G, each of length exactly L.
Thus, there is an integral L-length-bounded flow of value 2 in G if and only if the
2-Partition problem is a yes-instance.

To complete the proof, we have to show that there is an integral L-length-bounded
flow of value 2 if there is a fractional L-length-bounded flow of value 2. If the
fractional solution contains a single path of length exactly L we are done since this
path describes a feasible partition and thus an integral flow. We now show that
each path with flow value greater than 0 in a maximum fractional path-flow f must
have length exactly L. Assume that there is at least one path with nonzero flow
value and length strictly less than L. Let P< and P≥ denote the sets of s-t-paths
with nonzero flow value and length strictly less than L and greater or equal to L,
respectively. Since the fractional flow has a total flow value of 2, there is a total
of 1 unit of flow on each edge. Thus, for the “flow-weighted” sum of path lengths
we get: 2L =

∑
P∈P<

fP |P | +
∑

P∈P≥
fP |P |, where |P | denotes the length of a

path P . Since
∑

P∈P<∪P≥
fP = 2, by averaging, there must be a path of length

greater than L if there is a path of length less than L. This contradicts the condition
that the length of all flow-paths is bounded by L.

Finding a maximum length-bounded flow is computationally more difficult than
finding a standard maximum flow. For standard flows, the edge representation of a
flow is usually used. Each path representation of a flow can be easily transformed
into an edge representation. For standard flows, the reverse transformation can
also be efficiently computed. If length-bounds are present, one may use the edge
representation, too. However, as the following corollary shows, edge- and path-
representations are not polynomially equivalent for length-bounded flows. The
following result is an immediate consequence of the proof of Theorem 4.2 and has
been shown independently by Correa et al. [2007, Corollary 3.4].

Corollary 4.3. Unless P = NP, there is no polynomial algorithm to trans-
form an edge representation of a length-bounded flow in a graph with unit edge-

ACM Journal Name, Vol. X, No. Y, W 20Z.



22 · Georg Baier et al.

ts

k + 1

u

k + 1

Fig. 9. Graph Gk in which the unique maximum length-bounded flow sends more than one half
of the flow along paths with small flow values.

capacities and general edge-lengths, into a path representation, even if the graph is
series-parallel and outerplanar.

4.2 Structure of Optimal Solutions and Integrality Gap

For standard single-commodity flows with integral capacities there is always an
integral maximum flow. The situation is completely different in the presence of
length constraints. We will not only show that there need not exist an integral
maximum flow but also that there are instances where each fractional maximum
flow ships a large percentage of the flow along paths with very small flow values.

Theorem 4.4. There exist directed and undirected series-parallel and outerpla-
nar graphs with n vertices such that every maximum fractional length-bounded flow
ships more than one half of the total flow along paths with flow values O(1/n).

Proof. We construct an infinite family {Gk}k∈N of series-parallel and outer-
planar graphs such that Gk has 3k + 4 vertices and a maximum fractional Lk-
length-bounded s-t-flow of value less than 2, for a certain length-bound Lk ∈ Θ(k).
The unique maximum Lk-length-bounded flow in Gk contains k + 1 paths each
with flow value 1

k+1 . We describe the construction for undirected graphs; for the
directed case, simply direct edges from left to right.

The graph Gk consists of a sequence of k + 1 triangles preceded by a path of
length k + 1 and a single edge that is parallel to the path; see Figure 9.

In Gk we consider a maximum fractional (2k + 2)-length-bounded s-t-flow, i. e.,

Lk = 2k+2. There is only one s-t-path P̃ of length at most 2k+2 that contains the
s-u-path of length k + 1. Indeed, this path has length exactly 2k + 2 and contains
the unique shortest u-t-path. To obtain a total flow value larger than 1, path P̃
has to be used. We call the edges in the shortest u-t-path ground edges.

All s-t-paths of length at most 2k + 2 except P̃ contain the edge su and at least
one of the ground edges. Consider the s-t-paths of length exactly 2k+2 that contain
edge su. There are k + 1 of those paths, one corresponding to each ground edge.
Routing a fraction of 1

k+1 units along each of them yields a feasible flow of value 1.
Each ground edge is contained in exactly one of these paths and has therefore a
residual capacity of 1− 1

k+1 . Thus, along path P̃ we can route further 1− 1
k+1 units

of flow and obtain a feasible (2k +2)-length-bounded s-t-flow of value 2− 1
k+1 . We

claim that this flow is maximum and unique.
Sending 1 unit of flow along path P̃ blocks each other path containing a ground

edge, i. e., each further feasible s-t-path. Assume 1 − δ units of flow are sent along
path P̃ , for an arbitrary 0 < δ < 1. Then all remaining paths have a flow value not
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s t

3

v

Fig. 10. A unit-length graph with an integral edge-flow of value 4 that corresponds to a max-
imum fractional 6-length-bounded path-flow but which has no integral 6-length-bounded path-
decomposition: edge vt has capacity 3, all other edges have unit capacity.

greater than δ each and thus altogether at most min{1, (k + 1)δ}. Therefore, the
maximum flow value dependent on δ is bounded by 1 − δ + min{1, (k + 1)δ}. This
expression, viewed as a function of δ, reaches its unique maximum for 0 < δ < 1
at δ = 1

k+1 . Hence, 2 − 1
k+1 is the maximum fractional s-t-flow value for the given

length-bound and the above constructed flow is unique.

For length-bounded flows, there is a surprising structural difference between in-
tegrality of path- and edge-representations, stated in the next theorem.

Theorem 4.5. There exist directed and undirected series-parallel graphs such
that a (maximum) fractional length-bounded flow has an integral edge representation
but does not have an integral length-bounded path representation.

Proof. For the sake of simplicity, we start by proving an analogous result for
graphs with general edge capacities, and then describe how to modify the construc-
tion for unit-capacity graphs. Consider the undirected graph in Figure 10 and a
length-bound L = 6. (For the directed case, direct edges from left to right.) We
show that there exists a 6-length-bounded s-t-flow of value 4 with an integral edge
representation and that no 6-length-bounded s-t-flow of value 4 has an integral path
representation.

We send half a unit of flow along each of the two 6-length-bounded paths avoiding
the edge vt. All remaining 6-length-bounded paths contain the edge vt and may use
up to two detours from the shortest s-v-paths. Consider only paths using exactly
two detours. There are three of them using the upper left side part and three using
the lower left side part of the graph. In each triple, every two of them share a
detour, and no two of them share an edge from the shortest s-v-paths. We send
half a unit of flow along each of these six paths. Altogether we get a feasible 6-
length-bounded s-t-flow of value 8

2 = 4 with integral edge representation; note that
the path representation is half-integral.

Assume now that there is a 6-length-bounded s-t-flow of value 4 that has an
integral path representation. All edges must have flow value 1 in such a flow. Since
the shortest s-v-path has length 3, each s-t-path not using edge vt must go along
one of the two shortest s-v-paths. An integral 6-length-bounded s-t-flow of value 4
must send one unit of flow along this path. Assume that this path uses the upper
half of the graph. Then each additional path in the upper half of the graph has
length 7 and is therefore infeasible. Thus, no integral 6-length-bounded s-t-flow
has value 4.

To prove the theorem for unit-capacity graphs, we replace the edge vt by three
paths of length two, the v-t-path of length 3 by a path of length 4 and we increase
the length bound to 7.
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Fig. 11. A graph with a large integrality gap for the maximum length-bounded s-t-flow.

Baier [2003] shows that the fractional length-bounded flow problem can be ap-
proximated within arbitrary precision. Having this in mind, it is interesting how far
the value of such a fractional solution is away from the maximum integral solution.
We note that the hardness results in [Guruswami et al. 2003] imply for directed
graphs an integrality gap of order Ω(n1/2−ε), for every ε > 0.

Theorem 4.6. The integrality gap of the linear program (2) is of order Ω(
√

n)
even for directed or undirected planar graphs with n nodes.

Proof. For each k we describe an undirected graph Gk on n = Θ(k2) vertices
such that the maximum integral length-bounded flow (integral with respect to the
path-representation) has value 1 while the maximum fractional length-bounded flow
has value Ω(

√
n). For ease of presentation, we first allow integral edge-lengths and

then at the end of the proof we explain how to modify the construction for unit-
lengths. The construction is inspired by Guruswami et al. [2003] and Kleinberg
[1996].

The basic structure is half of a k − 1 by k − 1 grid (see Figure 11). The top row
has k− 1 columns, and each subsequent row has one column less than the previous
one. Each element of the grid (gray ellipse) consists of two nodes (a left node
and a right node). In addition, there are k nodes s1, . . . , sk arranged vertically,
and k nodes t1, . . . , tk arranged horizontally, and two nodes s and t. The node s is
connected to all si nodes and the node t is connected to all ti nodes. For each grid
element, its left and right nodes are connected by a horizontal edge (drawn dashed).
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Further horizontal edges connect the right node of a grid element to the left node
of the grid element to the right (if any), and vertical edges connect the right node
of a grid element to the left node of the grid element above (if any). Furthermore,
for 2 ≤ i ≤ k, si is connected by a horizontal edge to the left node of the first
grid element in the corresponding row, and for 1 ≤ i ≤ k − 1, ti is connected by a
vertical edge to the right node of the top grid element in the corresponding column.
Finally, there are diagonal edges connecting the right node of the rightmost grid
element in each row (or s1) to the left node of the rightmost grid element in the
row above (or to tk).

All edges have capacity 1. All edges except those adjacent to s or t have length 1.
The edges {s, si} and {t, tk+1−i} are assigned length 2i, for i = 1, . . . , k. As length-
bound we choose L = 4k + 1.

Consider an s-t-path P of length at most L. Assume that P does not contain a
diagonal edge. Let {s, si} and {tj , t} be the first and last edge of P , respectively.
Because of the grid structure of the graph Gk, it is easy to see that between si and
tj , the path P must use at least k − i + 1 vertical edges and at least 2j + (k − i)
horizontal edges. Together with the lengths of the edges {s, si} and {tj, t}, path P
has length at least k − i + 1 + 2j + (k − i) + 2i + 2(k + 1 − j) = 4k + 3 > L, a
contradiction. Thus, each L-length-bounded s-t-path must contain a diagonal edge.
It is easy to see that any two such paths must share an edge. Therefore, there are
no two edge disjoint s-t-paths of length at most L.

The i-th canonical path, for 1 ≤ i ≤ k, is the path starting in s, going to si and
then horizontally to the right end of the row, then using one diagonal edge, and
then going vertically up to t via {ti, t} (using one horizontal dashed edge in each row
it passes through). The length of the i-th canonical path is exactly L. Since each
pair of such canonical paths shares a different single edge, we can feasibly send half
a unit of flow along each of them. That is, there is a fractional L-length-bounded
s-t-flow of value k/2.

Since the maximum number of edge-disjoint L-length-bounded s-t-paths is 1, the
gap between a maximum integral and a maximum fractional flow is at least k/2.
Since k is of size Θ(

√
n), this shows the lemma for integer edge-lengths. If we

subdivide each edge of length ℓ into a path with ℓ unit-length edges, we increase
the number of nodes by a constant factor only and obtain the same result for
unit-lengths.

Directed graphs with the same integrality gap can be obtained by directing the
edges from the undirected construction above in the following way: horizontal edges
towards the right, vertical and diagonal edges towards the top.

The big integrality gap in Theorem 4.6 is tied to the unit-capacities of the graph
used in the proof. Raising the edge-capacities in this graph to 2 brings the integral-
ity gap down to a constant. Indeed, the integrality gap is always constant for high
capacity graphs. The following result is a consequence of the randomized rounding
technique of Raghavan and Thompson [1987].

Theorem 4.7. Consider a directed or undirected graph with minimal edge-ca-
pacity at least c log n, for a suitable constant c. Using randomized rounding one
can convert any fractional length-bounded flow into an integral length-bounded flow
whose value is at most a constant factor smaller (with high probability). In partic-
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ular, the integrality gap is constant for high capacity graphs.

5. OPEN PROBLEMS

In the introduction and in Section 4.1 we mention that for graphs with unit lengths
it is possible to compute a maximum fractional length-bounded flow in polynomial
time using linear programming. However, we are not aware of a combinatorial al-
gorithm for this problem. Even worse, a combinatorial algorithm that would decide
in polynomial time whether a given length-bounded flow with a path representation
is maximum has not been found either.

Another problem is to design an approximation algorithm for the minimum
length-bounded cut with an approximation factor better than L/2.
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