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Abstract

For t > 0 and g ≥ 0, a vertex-weighted graph of total weight W is (t, g)-trimmable

if it contains a vertex-induced subgraph of total weight at least (1− 1/t)W and with
no simple path of more than g edges. A family of graphs is trimmable if for every
constant t > 0, there is a constant g ≥ 0 such that every vertex-weighted graph
in the family is (t, g)-trimmable. We show that every family of graphs of bounded
domino treewidth is trimmable. This implies that every family of graphs of bounded
degree is trimmable if the graphs in the family have bounded treewidth or are planar.
We also show that every family of directed graphs of bounded layer bandwidth (a
less restrictive condition than bounded directed bandwidth) is trimmable. As an
application of these results, we derive polynomial-time approximation schemes for
various forms of the problem of labeling a subset of given weighted point features
with nonoverlapping sliding axes-parallel rectangular labels so as to maximize the
total weight of the labeled features, provided that the ratios of label heights or the
ratios of label lengths are bounded by a constant. This settles one of the last major
open questions in the theory of map labeling.
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1 Introduction

In this paper we first show that certain families of vertex-weighted graphs have the property
that a vertex subset of small weight suffices to hit all long simple paths. This finding allows
us to address an application in map labeling, namely the problem of labeling a subset of
given weighted point features with axes-parallel rectangular labels. In the following we
discuss these two research directions in turn.

1.1 Graph Trimming

We study the following problem: Given a graph in which each vertex has a nonnegative
weight, delete vertices of small total weight such that the remaining graph does not contain
any long simple paths. Whereas there is an extensive literature on separators, which can be
viewed as serving to destroy all large connected components, we are not aware of previous
work on vertex sets that destroy all long simple paths. Let us make our notions precise.
The length of a path π is the number of edges on π.

Definition 1.1. For t > 0 and g ≥ 0, a (t, g)-trimming of a vertex-weighted graph G =
(V, E) of total weight W is a set U ⊆ V of weight at most W/t such that every simple
path in G of length more than g contains a vertex in U . If G has a (t, g)-trimming, we
also say that G is (t, g)-trimmable. A family of graphs is trimmable if, for every constant
t > 0, there is a constant g ≥ 0 (that depends only on t) such that every vertex-weighted
graph in the family is (t, g)-trimmable.

Definition 1.1 applies to directed and undirected graphs. Of course, trimming undi-
rected graphs is the harder task in the sense that a (t, g)-trimming of the undirected
version of a directed graph G, for arbitrary t > 0 and g ≥ 0, is also a (t, g)-trimming of G.
In order to demonstrate the trimmability of a family of graphs, it suffices to verify that
the condition of Definition 1.1 holds for all integers t larger than an arbitrary constant.

Not every family of graphs is trimmable, even in the unweighted case where all vertices
are taken to have weight 1. For example, for n, t ≥ 2, if we delete a (1/t)-fraction of the
vertices in an unweighted n-clique Kn, the remaining graph still has a simple path of length
n(1 − 1/t) − 1. This expression is not bounded by a function of t alone, so the family of
complete graphs is not trimmable.

With a little effort, one can show the family of trees to be trimmable. One popular
generalization of trees is based on the definition below. Given a graph G = (V, E) and a
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set U ⊆ V , we denote by G[U ] the subgraph of G induced by U . The union of graphs
Gi = (Vi, Ei), for i = 1, . . . , m, is the graph

⋃m
i=1 Gi = (

⋃m
i=1 Vi,

⋃m
i=1 Ei).

Definition 1.2. A tree decomposition of an undirected graph G = (V, E) is a pair (T, B),
where T = (X, ET ) is an undirected tree and B : X → 2V maps each node x of T to a
subset of V , called the bag of x, such that

(1)
⋃

x∈X G[B(x)] = G, and

(2) for all x, y, z ∈ X, if y is on the path from x to z in T , then B(x) ∩ B(z) ⊆ B(y).

The width of the tree decomposition (T, B) is maxx∈X |B(x)| − 1, and the treewidth of G
is the smallest width of any tree decomposition of G.

The notions related to treewidth were introduced by Robertson and Seymour [RS86].
We refer to condition (2) of Definition 1.2 as the connectedness property. The family of
graphs of treewidth at most 1 coincides with the family of forests. By analogy with many
other generalizations from the family of trees to families of graphs of bounded treewidth,
it seems natural to ask whether every family of graphs of bounded treewidth is trimmable.
At present we cannot answer this question; we need a concept stronger than bounded
treewidth alone.

Definition 1.3. The elongation of a tree decomposition (T, B) is the maximum length
of a simple path in T between two nodes with intersecting bags. For every s ≥ 0, the s-
elongation treewidth of an undirected graph G is the smallest width of a tree decomposition
of G with elongation at most s.

Ding and Oporowski [DO95] use the term “diameter” to denote what we call elongation;
our different terminology is motivated by a desire to avoid any possible confusion with the
diameter of the tree T . Since every graph has a trivial tree decomposition of elongation 0,
the s-elongation treewidth of every graph is well-defined for every s ≥ 0. The 1-elongation
treewidth is the domino treewidth studied, e.g., by Bodlaender [Bod99]. While every family
of bounded domino treewidth trivially has bounded s-elongation treewidth for every s ≥ 1,
the converse is not true. For example, for n ≥ 2, the n-vertex star graph has 2-elongation
treewidth 1, but domino treewidth ⌊n/2⌋.

Our main result about graph trimming, proved in Section 2, is that for all fixed
s ≥ 0, every family of graphs of bounded s-elongation treewidth is trimmable. Ding
and Oporowski [DO95] showed that the domino treewidth of a graph can be bounded by
a function of its usual treewidth and its maximum degree. It follows that every family of
graphs of bounded treewidth and bounded degree is also trimmable. We derive from this
that all families of planar graphs of bounded degree are trimmable. We also consider the
following variation of directed bandwidth.

Definition 1.4. The layer bandwidth of a directed acyclic graph G = (V, E) is the smallest
integer D for which there exists an integer-valued mapping f defined on V such that
1 ≤ f(v) − f(u) ≤ D for all (u, v) ∈ E.
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If the mapping f is additionally required to be a bijection from V to {1, 2, . . . , |V |},
this definition yields the known concept of directed bandwidth [GGJK78]. Of course, the
layer bandwidth of a directed acyclic graph is at most its directed bandwidth. We are
not aware of previous studies of layer bandwidth. Our second result about graph trim-
ming, also proved in Section 2, is that every family of directed acyclic graphs of bounded
layer bandwidth is trimmable. These results have applications described in the following
subsection.

One may phrase the definition of a (t, g)-trimming of an unweighted n-vertex graph
G = (V, E) in the language of ε-nets [HW87]. A range space is a pair (X, R), where X
is a set and R is a set of subsets of X. In our case, we would take X = V and let R be
the set of vertex sets of simple paths in G. In the context of a range space S = (X, R), a
subset A ⊆ X is shattered by R if every subset of A is of the form A ∩ r for some r ∈ R.
If some integer d bounds the cardinality of every subset of X shattered by R, the smallest
such d is called the (Vapnik-Chervonenkis) dimension of S; otherwise the dimension of
S is infinite. For 0 ≤ ε ≤ 1, an ε-net of X is a subset of X that contains at least one
element of every r ∈ R with |r| > ε|X|. With the choice of (X, R) indicated above and for
ε = (g + 1)/n, an ε-net of X of size at most n/t is precisely a (t, g)-trimming of G. For
range spaces of finite dimension d, ε-nets of size roughly d/ε are known to exist. Results of
this kind do not appear useful in our context, however, because the relevant range spaces
have dimension Ω(n) for even very simple graphs, e.g., graphs of domino treewidth 2.

1.2 Label Placement

Our main motivation for investigating trimmable graph families arose in the context of
labeling maps with sliding labels. Generally speaking, map labeling is the problem of
placing a set of labels, each in the vicinity of the object that it labels, while satisfying certain
conditions. For an overview, see the map-labeling bibliography of Wolff and Strijk [WS08].
A fundamental requirement in map labeling is that labels are not allowed to overlap. As a
consequence, it may not be possible to label all objects in a map, and the goal is to make
an optimal selection according to some criterion. We consider the labeling of point features
such as towns or mountain tops, each of which is located at a point in the plane called a
site. The label of such a feature can usually be approximated without much loss by an
open axes-parallel rectangular shape that must be placed in the plane without rotation so
that its boundary touches the site of the feature. One distinguishes between fixed-position
models and slider models. In fixed-position models, each label has a predetermined finite
set of anchor points on its boundary (e.g., the four corners), and the label must be placed
so that one of its anchor points coincides with the site of the feature to be labeled. In
slider models, the anchor points form anchor segments on the boundary of the label (e.g.,
its bottom edge).

Van Kreveld et al. [vKSW99] introduced a taxonomy of fixed-position and slider models,
which was later extended by Poon et al. [PSS+03]. We use the slider models 1SH, 2SH,
1SV, 2SV and 4S of Poon et al., which define the anchor segments of a label to be its bottom
edge, its top and bottom edges, its left edge, its left and right edges, and its entire boundary,
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respectively. An illustration of the three slider models 1SH, 2SH and 4S is given in the top
row of Fig. 1, adapted from [PSS+03]. We assume that each feature comes equipped with a
nonnegative weight, which may be used to express priorities among the features. If features
represent villages, towns and cities on a map, priorities may correspond to the number of
inhabitants, for example. Our objective is to label features with nonoverlapping labels so
as to maximize the sum of the weights of those features that actually receive a label. This
objective function favors the labeling of features of large weight (e.g., large cities) over
those of smaller weight. We refer to the specific map-labeling problems described in this
paragraph as weighted 1SH-labeling, etc.

1SH 2SH 4S

1MH 2MH 4M

Fig. 1: Slider models (top row) and fixed-position models (bottom row). Possible positions of
the label boundary are indicated in gray.

We define the height ratio of an instance of a map-labeling problem as the ratio of the
maximum height of a label to the minimum such height. If the height ratio is bounded
by a constant in a class of instances, the class is of bounded height ratio. If all labels are
of the same height, we use the term unit-height. Instances of bounded height ratio and,
in particular, unit-height instances are of great practical importance because they model
the common case in which each label contains a single or a few lines of text of a common
character height. We apply the qualifier “unit-height” to map-labeling problems to indicate
that the input is restricted to be a unit-height instance. The length ratio of an instance
of a map-labeling problem is the ratio of the maximum length of a label to the minimum
such length, and similarly to above we can consider classes of instances with bounded length
ratio. Finally, we say that an instance has height or length ratio ρ if its height ratio or its
length ratio is ρ, and a class of instances has bounded height or length ratio if there is a
fixed ρ ≥ 1 such that every instance in the class has height or length ratio at most ρ.

For c ≤ 1, a c-approximation algorithm for a maximization problem is an algorithm
that always outputs a solution whose value under the objective function is at least c times
the optimal value. An algorithm that takes an additional parameter ε > 0 and, for each
fixed ε, is a polynomial-time (1 − ε)-approximation algorithm is called a polynomial-time
approximation scheme (PTAS ). If the running time depends polynomially on ε as well, the
algorithm is a fully polynomial-time approximation scheme (FPTAS ).
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Poon et al. [PSS+03] show weighted unit-height 1SH-labeling to be NP-hard, even if all
sites lie on a horizontal line and the weight of each feature equals the length of its label. For
the one-dimensional case, in which all n sites lie on a horizontal line, they give an FPTAS,
which yields an O(n2/ε)-time (1/2 − ε)-approximation algorithm for the two-dimensional
unit-height case for arbitrary ε > 0. Poon et al. also describe a PTAS for unit-square
labels. They raise the question of whether a PTAS exists for rectangular labels of arbitrary
lengths and unit height. This is known to be the case for fixed-position models [AvKS98]
and for sliding labels of unit weight [vKSW99]. The corresponding (1 − ε)-approximation
algorithms run in nO(1/ε) and in nO(1/ε2) time, respectively, for arbitrary ε > 0. The
question of whether the combination of both sliding labels and arbitrary weights allows a
PTAS in the unit-height case has been one of the last major open problems in theoretical
map labeling.

In Section 3 we settle the open question of Poon et al. and, in fact, a slightly more
general question by presenting, for every fixed ρ ≥ 1, a PTAS for the weighted 1SH-
labeling problem for instances of height ratio at most ρ. There are no restrictions on label
lengths and weights. Our approach is to discretize a given instance I of the weighted 1SH-
labeling problem, i.e., to turn it into a fixed-position instance I ′, after which we can apply a
generalization of a known fixed-position algorithm to I ′. The main difficulty lies in finding
a suitable set of discrete label positions for each site. “Suitable” means that the weight of
an optimal labeling of I ′ must be close enough to the weight of an optimal labeling of I.
Dependencies between labels can be modeled via a graph, and long paths in this graph
translate into large sets of anchor points that cannot be left out of consideration. Here our
results from Section 2 come into play. We prove that the family of dependency graphs, if
suitably defined, is trimmable, and we show how this may be used to bound the number
of anchor points by a polynomial. This yields the PTAS. Then we show how to obtain a
PTAS for weighted 1SH-labeling also on classes of instances with bounded length ratio,
and for weighted 2SH-labeling, 1SV-labeling, 2SV-labeling and 4S-labeling on classes of
instances with bounded height or length ratio.

In this paper, our objective is to maximize the sum of the weights of those features
that receive a label. Let us call this objective label-weight maximization. In the literature,
a different objective has also been considered. In label-size maximization one insists that
all features receive a label, and the objective is to maximize a factor by which each label is
scaled before it is attached to its feature. Label-size maximization has also been combined
with multi-label map labeling, where each feature may receive several labels. Approximation
algorithms have been given for labeling points with maximum-size congruent squares or
disks, two per site [QWXZ00, Jia06]. Labeling points with maximum-size squares, three
per site, can be solved exactly in polynomial time [DQVZ03]. In this paper we combine,
for the first time, multi-label map labeling with label-weight maximization. Our labeling
models and approximation schemes are flexible enough to allow the user to specify several
features with sites at the same position, each with its own label and weight.

We use Z and N to denote the set of integers and the set of positive integers, respectively.
By R, R>0 and R≥0 we denote the sets of real numbers, of positive real numbers and of
nonnegative real numbers, respectively, and R

2 is the two-dimensional Euclidean plane.
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2 Trimming of Graphs

In this section we show that two generalizations of trees are trimmable. First, we prove
that for every constant s ≥ 0, every family of graphs of bounded s-elongation treewidth is
trimmable. This implies that every family of graphs of bounded degree is trimmable if the
graphs in the family have bounded treewidth or are planar. Subsequently we show that for
every constant D ≥ 1, the family of directed acyclic graphs of layer bandwidth at most D
is trimmable.

Theorem 2.1. Let k, s ≥ 0 and suppose that a vertex-weighted undirected graph G has a
tree decomposition of width k and elongation s. Take a = k + 1 if s ≥ 2 and a = ⌈k/2⌉ if
s ≤ 1. Then, for every integer t ≥ 2, G has a (t, g)-trimming, where

g =

{

(2(s + 1)t − 3)(k + 1) − 1 if a ≤ 1;

(a(s+1)t−2(a + 1) − 2)(k + 1)/(a − 1) − 1 otherwise.

Therefore, for every constant s, every family of graphs of bounded s-elongation treewidth
is trimmable.

Proof. Let (T, B) be a tree decomposition of G of width k and elongation s, root T at an
arbitrary node and let U be the set of vertices in bags of nodes whose depth d in T satisfies
d mod (s + 1)t = i, with the integer i chosen to minimize the weight of U . We show that
U is a (t, g)-trimming of G.

Let G = (V, E) and denote the total weight of the vertices in V by W . Since each vertex
in V occurs in bags of nodes on at most s + 1 levels in T , the sum, over all levels, of the
weight of the vertices occurring in bags of nodes on the level under consideration is at most
(s + 1)W . Therefore, by the choice of i, the weight of U is at most (s + 1)W/((s + 1)t) =
W/t, as desired.

Let π = (v0, . . . , vm) be a simple path in G of length m ≥ 1 and, for i = 1, . . . , m,
choose a node xi in T whose bag contains both vi−1 and vi. For i = 1, . . . , m − 1, we call
the unique path in T from xi to xi+1 the stroke of vi. By the connectedness property of
T , every bag of a node on the stroke of a vertex v contains v. Concatenating the strokes
of v1, . . . , vm−1 in this order, we obtain a walk π′ in T (that, informally, can be viewed as
induced by π). The walk π′ may visit a node x in T several times. Every edge on π′ that
has x as an endpoint, however, must lie on the stroke of a vertex in B(x), and two such
edges can lie on the stroke of the same vertex only if they are consecutive on π′. It follows
that x occurs at most |B(x)| ≤ k+1 times on π′. If s ≤ 1, we can strengthen this statement
as follows: Every stroke is of length at most 1, so every visit to x by π′ “uses” either the
strokes of at least two vertices in B(x), rather than one, or—at the ends of π′—a stroke
and a vertex in B(x) that has no stroke. It follows that if s ≤ 1, the number of occurrences
of x on π′ is bounded by ⌊(k + 1)/2⌋ = ⌈k/2⌉. Since T is a tree, if π′ leaves x over an edge
e, its next return to x, if any, must also happen over e. Therefore the nodes on π′ span a
subtree T ′ of T in which no node has more than a + 1 neighbors, where a is defined in the
statement of the theorem. In other words, no node in T ′ has more than a children, except
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that the root may have a + 1 children. The number of nodes at depth d in such a tree is
bounded by (a + 1)ad−1, for all d ≥ 0, and therefore the number of nodes at depth at most
d is bounded by 2d+1 if a = 1 and by 1+(a + 1)(ad − 1)/(a − 1) = ((a+1)ad−2)/(a−1)
if a ≥ 2.

Suppose that π contains no vertex in U . Then, by the choice of U , the depth of T ′

is at most (s + 1)t − 2, and the number of nodes in T ′ is at most 2(s + 1)t − 3 if a = 1
and at most (a(s+1)t−2(a + 1) − 2)/(a − 1) if a ≥ 2. Since each bag contains at most
k + 1 vertices, it follows that m + 1 ≤ (2(s + 1)t − 3)(k + 1) if a = 1 and that m + 1 ≤
(a(s+1)t−2(a + 1) − 2)(k + 1)/(a − 1) if a ≥ 2.

Corollary 2.2. For all integers k ≥ 0, d ≥ 1 and t ≥ 2, every vertex-weighted undirected
graph of treewidth k with maximum degree d has a (t, ⌈K/2⌉2t)-trimming, where K =
(9k + 7)d(d + 1) − 1. Therefore every family of graphs with bounded degree and bounded
treewidth is trimmable.

Proof. According to [Bod99, Theorem 3.1], every such graph has a domino tree decom-
position of width at most K. Except in the trivial case k = 0, we have K ≥ 31. By
Theorem 2.1, used with s = 1, the graph has a (t, g)-trimming, where

g =
(⌈K/2⌉2t−2(⌈K/2⌉ + 1) − 2)(K + 1)

⌈K/2⌉ − 1
− 1 ≤ ⌈K/2⌉2t.

We can extend this result to planar graphs of bounded degree.

Corollary 2.3. For all integers d, t ≥ 1, every vertex-weighted undirected planar graph
of maximum degree d has a (t, ⌈K/2⌉4t)-trimming, where K = (54t − 29)d(d + 1) − 1.
Therefore every family of planar graphs of bounded degree is trimmable.

Proof. Let G = (V, E) be a planar graph with maximum degree d and denote the total
weight of the vertices in V by W . We first follow the approach of Baker [Bak94] to obtain
a (2t − 1)-outerplanar subgraph of G by deleting vertices of total weight at most W/(2t).
Process an arbitrary planar embedding of G by repeatedly deleting the vertices on the
boundary of the outer face until no vertex remains. The vertices deleted in one iteration
of this process form a layer. Number the layers R1, R2, . . . in the order of their deletion.
For j = 0, . . . , 2t − 1, let Vj be the set of vertices in layers Ri with i mod (2t) = j, choose
j such that the total weight of Vj is at most W/(2t) and consider the subgraph Hj of G
induced by V \ Vj .

Hj is (2t− 1)-outerplanar and thus has treewidth at most 6t− 4 [Bod98, Theorem 83].
By Corollary 2.2, Hj has a (2t, ⌈K/2⌉4t)-trimming U . The set Vj ∪ U has weight at most
W/(2t) + W/(2t) = W/t and therefore is a (t, ⌈K/2⌉4t)-trimming of G.

Finally, we consider directed graphs of bounded layer bandwidth.

Lemma 2.4. Let G = (V, E) be a vertex-weighted directed acyclic graph of layer band-
width D. Then, for every integer t ≥ 2, G has a (t, g)-trimming, where g = D(t − 1) − 1.
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Proof. Let f : V → Z be a mapping such that 1 ≤ f(v) − f(u) ≤ D for all (u, v) ∈ E.
For each i ∈ Z, we call f−1(i) = {v ∈ V | f(v) = i} the ith layer of G and define
V (i) =

⋃

i≤j<i+D f−1(j) as the union of the D consecutive layers of G starting with the
ith layer. For k = 0, . . . , t − 1, let Uk =

⋃

i∈Z
V ((k + it)D). The set Uk consists of groups

of D consecutive layers, with any two consecutive groups separated by a band of (t− 1)D
layers that are not in Uk. By the properties of f , the layer numbers of the vertices on a
path in G form a strictly increasing sequence with gaps of at most D. For k = 0, . . . , t−1,
therefore, a path in G[V \ Uk] must lie entirely within one band and be of length at most
D(t−1)−1 = g. Moreover, the t sets U0, . . . , Ut−1 are disjoint, so one of them of minimum
weight is a (t, g)-trimming of G.

3 Labeling Weighted Point Features with Sliding La-

bels

In this section we define the labeling problems of principal relevance to us formally and show
that there are, for every fixed ρ ≥ 1, polynomial-time approximation schemes for weighted
1SH-labeling, 2SH-labeling, 1SV-labeling, 2SV-labeling and 4S-labeling on instances of
height or length ratio at most ρ.

3.1 Problem Definitions

Instances of all of the labeling problems corresponding to slider models can be formalized
in the uniform way set out in the following definition.

Definition 3.1. A sliding-label instance is a tuple I = (F, x, y, l, h, w), where F is a finite
set and x, y : F → R, l, h : F → R>0 and w : F → R≥0 are functions defined on F . The
size of I is |F |.

For a sliding-label instance I = (F, x, y, l, h, w) and a p ∈ F , we write xp, yp, lp, hp and
wp for x(p), y(p), l(p), h(p) and w(p), respectively.

In Definition 3.1, the set F represents the set of (point) features to be labeled. For
an instance of size n, we can typically take F to be the set {1, 2, . . . , n}. For all p ∈ F ,
(xp, yp) is the site of the feature p, lp and hp are the length and the height of the label
of p, respectively, and wp is the weight of p. The definition allows different features to have
identical sites; this can be useful if different features to be labeled are located at the same
point in the plane. For each set Q ⊆ F , we call w(Q) =

∑

p∈Q wp the weight of Q.
We next define the most general problem, weighted 4S-labeling, and then derive the

other labeling problems from it.

Definition 3.2. A 4S-labeling of a sliding-label instance I = (F, x, y, l, h, w) is a pair
L = (Q, z), where Q ⊆ F and z : Q → R

2 is a function that maps each feature p ∈ Q
to a point z(p) in such a way that, if we let R(p) denote the open axes-parallel rectangle
with bottom left corner z(p), width lp and height hp, then for all p, q ∈ Q with p 6= q,

9



hp

lp

z(p)

(xp, yp)

(a) A 4S-labeling of a sliding-label instance I.

hp

lp

(xp, yp)

zx(p)

(b) A 1SH-labeling of I (optimal for unit weights).

Fig. 2: Two labelings of a sliding-label instance.

Type of labeling Additional constraints

4S –
2SH zy(p) ∈ {yp − hp, yp}
1SH zy(p) = yp

2SV zx(p) ∈ {xp − lp, xp}
1SV zx(p) = xp

Table 1: Additional constraints on z(p) for all p ∈ Q that a 4S-labeling (Q, z) must satisfy in
order to be a 2SH-labeling, a 1SH-labeling, etc.

the rectangles R(p) and R(q) are disjoint, and for all p ∈ Q, the site (xp, yp) lies on the
boundary of R(p). The weight of L is the weight of Q.

Informally, Q is the set of features that receive a label, and the label of each p ∈ Q is
placed with z(p) at its bottom left corner; see Fig. 2(a). When considering a 4S-labeling
(Q, z), we let zx and zy be the functions that map each p ∈ Q to the x- and y-coordinate
of z(p), respectively, so that z(p) = (zx(p), zy(p)) for each p ∈ Q.

The (weighted) 4S-labeling problem is the optimization problem of, given a sliding-label
instance I, computing a 4S-labeling of I of largest possible weight. The corresponding
definitions for (weighted) 2SH-labeling, 1SH-labeling, 2SV-labeling and 1SV-labeling are
similar, the only difference being additional constraints on z as listed in Table 1.

When considering a sliding-label instance I = (F, x, y, l, h, w) in the context of the
1SH-labeling problem, we say that two features p, q ∈ F y-overlap if yp ≤ yq < yp + hp

or yq ≤ yp < yq + hq, i.e., if their labels, when placed with (xp, yp) and (xq, yq) on their
respective bottom edges, have overlapping projections on the y-axis. In a 1SH-labeling
L = (Q, z) of I, the second component of z is determined by I and therefore redundant,
for which reason we may also specify L through the pair (Q, zx) and call zx(p) the position
of the label of p for each p ∈ Q; see Fig. 2(b). For a given sliding-label instance I =
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(F, x, y, l, h, w), a pair (Q, zx) with Q ⊆ F and zx : Q → R is a 1SH-labeling of I if and
only if xp − lp ≤ zx(p) ≤ xp for all p ∈ Q and for all y-overlapping features p, q ∈ Q with
p 6= q, either zx(p) + lp ≤ zx(q) or zx(q) + lq ≤ zx(p).

Interchanging the roles of the x- and y-dimensions or, equivalently, mirroring the
Euclidean plane in the line through the origin of slope 1, one can translate 1SH- and
2SH-labeling to 1SV- and 2SV-labeling, respectively, or vice versa. For example, to com-
pute a 2SV-labeling of a sliding-label instance (F, x, y, l, h, w), compute a 2SH-labeling of
(F, y, x, h, l, w) and interchange its x- and y-components.

Our proofs operate not only with slider models, but also with the fixed-position models
1MH, 2MH, 1MV, 2MV and 4M, which allow the set of anchor points of a label to be an
arbitrary finite subset of its bottom edge, of its bottom and top edges, of its left edge, of
its left and right edges, and of its entire boundary, respectively. Some of these models are
illustrated in the bottom row of Fig. 1. Formally, we define a fixed-position instance as
a pair (I,M), where I = (F, x, y, l, h, w) is a sliding-label instance and M is a function
that maps each feature in F to a finite subset of R

2. The size of (I,M) is defined as
|F |+

∑

p∈F |M(p)|. A 4M-labeling of (I,M) is a 4S-labeling (Q, z) of I that is consistent
with M, i.e., that satisfies z(p) ∈ M(p) for all p ∈ Q. The (weighted) 4M-labeling problem
is the optimization problem of, given a fixed-position instance (I,M), computing a 4M-
labeling of (I,M) of largest possible weight. A 2MH-labeling of a fixed-position instance
(I,M) is a 2SH-labeling of I that is consistent with M, and labelings for the other fixed-
position models are defined analogously. The mirroring transformation discussed above
applies to fixed-position labeling problems as well in an obvious way.

Similarly to our simplifying convention that omits the y-coordinates of 1SH-labelings,
we may also, when dealing with 1MH-labelings, specify a fixed-position instance as a pair
(I,Mx), where I = (F, x, y, l, h, w) is a sliding-label instance and Mx maps each p ∈ F to
a finite subset of R that represents the possible x-coordinates of the left edge of the label
of p. In this case, if Mx maps all p ∈ F to the same set M , we may write (I,Mx) as
(I, M).

The principal technical contribution of this section is a reduction of weighted 1SH-
labeling to weighted 1MH-labeling. Once this reduction has been established, correspond-
ing reductions from 2SH- to 2MH-labeling, from 1SV- to 1MV-labeling, from 2SV- to
2MV-labeling, and from 4S- to 4M-labeling follow with little additional effort. Under the
assumption that the reductions are applied to instances of bounded height or length ratio,
they work in polynomial time, and the resulting fixed-position instances can be solved
using an adaptation of the PTAS of Agarwal et al. [AvKS98], so that we obtain a PTAS
for each of the slider models. We first present our results for 1SH-labeling and then discuss
the extensions to the other slider models.

3.2 Normalization, Dependency Graphs, and Trimming

This subsection introduces the notions and preliminary results that form the backbone of
our main reduction of 1SH-labeling to 1MH-labeling. It begins with a less formal overview
that introduces and motivates the necessary complications one by one.
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(a) A 1SH-labeling L = (Q, z) after normaliza-
tion, i.e., pushing all labels towards the left.
ggg ggg g ggg ggg ggg ggg ggg ggg

(b) A 1SH-labeling L′ = (Q′, z′) obtained from
L by removing two features from Q and re-
stricting z to Q′.

(c) The result of renormalizing L′ without the
use of stopping lines—long paths of touch-
ing labels may again form.

(d) The result of renormalizing L′ with a stop-
ping line drawn through every site.

Fig. 3: The process of normalizing (a), trimming (b) and renormalizing without (c) and with (d)
stopping lines.

Let a sliding-label instance I = (F, x, y, l, h, w) of size n and a constant ε > 0 be given.
Our goal is to describe a polynomial-time computation of a fixed-position instance (I,M)
that is almost as good as I in the sense that the weight of an optimal 1MH-labeling of
(I,M) is at least 1 − ε times that of an optimal 1SH-labeling of I. The fixed-position
instance will in fact be of the form (I, M), where M ⊆ R. It therefore suffices to show
that a suitable set M exists and can be computed sufficiently fast.

In a 1SH-labeling (Q, zx) of I, a priori, zx(p) could assume any value in the continuum
between xp − lp and xp for every p ∈ Q. A normalization procedure to be described next
shows that nothing is lost by restricting attention to a finite set of candidate values. The
normalization is introduced for the sake of argument only and is not actually carried out
as part of the reduction.

The normalization can be applied to an arbitrary 1SH-labeling (Q, zx) of I and results
in a normalized labeling. The basic idea is to process the labels of the features in Q in the
order from left to right, pushing each label as far to the left as it can go without bumping
into another label or being separated from its site. Fig. 3(a) shows a possible outcome of
this procedure. In a normalized labeling (Q, z′x), the position z′x(q) of the label of a feature
q ∈ Q is either xq − lq (no other label blocked the movement of the label of q) or z′x(p) + lp
for some p ∈ Q (whose label stopped the movement of that of q and therefore is to the
left of it and was processed before it). In the latter case, we introduce the edge (p, q) with
length lp in an auxiliary graph G on the vertex set Q.

For every q ∈ Q, z′x(q) can be read off any maximal path π in G that ends in q. Denote
the length of π, i.e., the sum of the lengths of its edges, by l(π). Then, if π starts at p, we
simply have z′x(q) = xp − lp + l(π). The auxiliary graph G depends on the original labeling
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(Q, zx) to which the normalization was applied. Even so, the expression just found for
z′x(q) depends only on the sequence of the vertices on π, for which there are clearly no
more than nn choices. It follows that for every 1SH-labeling of I, in particular, for one
of maximum weight, there is a 1MH-labeling of (I, M) of the same weight for an easily
computable set M with |M | ≤ nn.

The set M found so far, though finite, is much too large for our intended use, which
requires a set of size polynomial in n. If no path in G contains more than g ≥ 0 edges, the
number of such paths is bounded by ng+1, and we obtain a valid set M of the same size.
When g is a constant, the size of M is polynomial, as desired. However, paths in G may
contain many more than a constant number of edges.

Accepting a small deviation from optimality, as allowed by the constant ε, we may try
to bring the notion of graph trimming studied in Section 2 into play. Removing a vertex
p ∈ Q from G corresponds to excluding it from Q and losing its weight wp in the solution—
more intuitively, we will speak of dropping the label of p. With t = ⌈1/ε⌉, we can afford
to remove vertices whose weight is 1/t of the total weight from G, and we would like this
to destroy all paths in G with more than g edges for some constant g. If G belongs to
a trimmable family of graphs, this is always possible. The resulting situation may be as
shown in Fig. 3(b).

Apart from the question of whether the auxiliary graph G belongs to a trimmable family,
the approach outlined in the previous paragraph meets with the following difficulty: After
the trimming of G, i.e., after the dropping of some labels, the labeling defined by the
remaining labels must be renormalized. If this is not done, of course, the labels have the
positions that they had before the trimming, and the trimming buys us nothing. The
renormalization, on the other hand, may create new long paths in the auxiliary graph of
the resulting labeling, as shown in Fig. 3(c) for our running example, thus defeating the
original purpose of the trimming. Informally, the problem stems from the fact that other
labels may close the gap left by a dropped label. In order to counter this, we introduce
vertical stopping lines and redefine the process of normalization to never push the left edge
of a label past a stopping line (see Fig. 3(d)).

The exact choice of stopping lines is largely a technical matter that cannot be well
motivated at this point. Each feature p ∈ F gives rise to exactly three stopping lines, one
passing through the site of p and the other two to its left and right at a distance of lp. Two
labels that are (disjoint from and) separated by a stopping line before a normalization can
never influence each other in the normalization, so we redefine the auxiliary graph G to
not have any such edges.

Even with stopping lines, it can happen that an edge (p, q) that is not present in the
original auxiliary graph appears in the auxiliary graph of the labeling obtained by dropping
some labels and renormalizing. The creation of new edges is undesirable because it may
lead to new long paths. We therefore redefine the auxiliary graph one last time by including
all such potential edges from the outset and call the resulting graph the dependency graph
of (Q, zx). It turns out that the dependency graph G is planar and—if I is of bounded
height ratio—of bounded degree, which implies that it is trimmable, as needed above. If
I is of bounded length ratio, we show that G is trimmable by virtue of having bounded

13



layer bandwidth.
We now make these ideas precise and begin with a formal definition of dependency

graphs.

Definition 3.3. Given a sliding-label instance I = (F, x, y, l, h, w), the dependency graph
of a 1SH-labeling (Q, zx) of I is a directed graph on the vertex set Q that, for all p, q ∈ Q,
contains the edge (p, q) exactly if xp < xq, p and q y-overlap, and there is no x̄ ∈ SI =

⋃

r∈F

{xr − lr, xr, xr + lr} with zx(p) + lp ≤ x̄ ≤ zx(q).

The set SI corresponds to the set of (vertical) stopping lines through the points (x̄, 0)
for x̄ ∈ SI . With this correspondence in mind, we may also refer to SI as the set of stopping
lines of I.

If the label of a feature q ∈ Q, moving left, may hit that of another feature p ∈ Q
without crossing a stopping line, then certainly xp < xq holds, p and q y-overlap, and
there is no stopping line whose x-coordinate lies between zx(p) + lp and zx(q), inclusive.
Conversely, if an edge (p, q) is present in the dependency graph of (Q, zx) according to
Definition 3.3, the label of q will indeed hit the label of p if all labels that y-overlap q and
are located between the labels of p and q are dropped.

Lemma 3.4. Let (Q, zx) be a 1SH-labeling of a sliding-label instance of height ratio ρ. The
dependency graph of (Q, zx) is planar, and its in-degrees and out-degrees are bounded by
⌈ρ + 1⌉.

Proof. To demonstrate the planarity of a graph G = (V, E), it clearly suffices to map each
vertex u ∈ V to an open rectangle R(u) in R

2 and each edge in E to an open line segment
in R

2 in such a way that all of these rectangles and line segments are pairwise disjoint and
that each edge (u, v) ∈ E is mapped to a line segment with an endpoint on the boundary
of each of R(u) and R(v). The reason is that arbitrary points on the boundary of an open
rectangle R can be connected to an arbitrary point z in R (its center, say) with closed line
segments that intersect only in z.

In the case of a dependency graph G = (Q, E), such a mapping is immediate: For
each feature p ∈ Q, take R(p) to be the area occupied by the label of p, shrunk slightly
horizontally to allow for labels that touch, and map each edge (p, q) to a part of a horizontal
line ℓ that intersects both R(p) and R(q), namely the open line segment on ℓ between R(p)
and R(q) (see Fig. 4). That this line segment intersects no R(r) with r ∈ Q follows from
the fact that the stopping line through (xr, yr) would prevent (p, q) from being an edge
of G, a contradiction.

If the vertices in a set P ⊆ Q have a common out-neighbor or a common in-neighbor
r in G, some vertical line intersects R(p) for all p ∈ P . Otherwise R(p) and R(q) could
be separated by a vertical line for some p, q ∈ P , and the stopping line through the site
of one of the features p and q would prevent the other feature from being a neighbor of r
in G. If |P | ≥ 3, it is now easy to see that the height of R(r) exceeds the total height of
the |P | − 2 “middle” rectangles in {R(p) | p ∈ P} (see Fig. 5), so that |P | − 2 < ρ and
therefore |P | ≤ ⌈ρ + 1⌉.
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Fig. 4: A plane drawing of the dependency graph of a 1SH-labeling.

ρ

1

Fig. 5: A site with label height ρ = 2.9 can have at most ⌈ρ + 1⌉ = 4 out-neighbors with label
heights at least 1.

Corollary 3.5. Let G be the dependency graph of a 1SH-labeling of a sliding-label instance
with height ratio ρ. Then for every integer t ≥ 1, G is (t, g)-trimmable, where g = (ρt)O(t).

Proof. According to Lemma 3.4, G is planar and of maximum degree at most 2(ρ + 2).
Applying Corollary 2.3 now yields a (t, g)-trimming with g = (ρ2t)O(t) = (ρt)O(t).

Next we consider classes of sliding-label instances with bounded length ratio.

Lemma 3.6. Let G be the dependency graph of a 1SH-labeling of a sliding-label instance
with length ratio ρ. Then for every integer t ≥ 2, G is (t, g)-trimmable, where g = ⌈2ρ⌉(t−
1) − 1.

Proof. Let G = (Q, E) be the dependency graph of a 1SH-labeling (Q, z) of a sliding-
label instance I = (F, x, y, l, h, w) with length ratio ρ. Without loss of generality, we
assume label lengths to lie between 1 and ρ, inclusive. Consider the function f : Q → Z

with f(p) = ⌊zx(p)⌋ for all p ∈ Q. Let (p, q) ∈ E. Since p and q y-overlap, we have
zx(q) − zx(p) ≥ lp ≥ 1. Moreover, the stopping line through (xq − lq, 0) forces zx(p) + lp >
xq − lq ≥ zx(q) − lq, implying zx(q) − zx(p) < lp + lq ≤ 2ρ and ⌊zx(q)⌋ − ⌊zx(p)⌋ ≤ ⌈2ρ⌉.
We can conclude that 1 ≤ f(q) − f(p) ≤ ⌈2ρ⌉ for all (p, q) ∈ E. This shows that G has
layer bandwidth at most ⌈2ρ⌉, and the claim now follows from Lemma 2.4.
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3.3 Reduction to a Fixed-Position Model

After developing the necessary prerequisites in the previous subsection, in this subsection
we complete the description of the reduction from 1SH-labeling to 1MH-labeling.

Recall that the basic intention of the dependency graph G was that the position of each
label after normalization (which can be omitted), trimming and renormalization should be
given essentially by the length of a path in G. This correspondence was invalidated by
the introduction of stopping lines, but can be approximately re-established by adding an
additional vertex O and, for every stopping line ℓ, passing through (x̄, 0), say, and for every
feature p ∈ Q, an edge from O to p of length x̄. The idea behind this new edge is simply
that if the label of p moves to ℓ and stops there, it will be at a position of x̄.

Suppose that, after the removal of the vertices corresponding to dropped labels, each
label of a remaining feature p is moved to a position that is the largest length, no larger
than the original position of the label, of a path from O to p in what remains of the
graph. This procedure is closely related to the normalization discussed in the previous
subsection. In actual fact, it may move some labels a shorter distance to the left than the
normalization would. Nonetheless, it will be easy to establish the pairwise disjointness of
the labels in their resulting positions, and the process immediately suggests a suitable set
M of candidate label positions. The fact that the left edge of a label crosses no stopping
line in SI as it moves left—a property that we will need in the proof of Theorem 3.14—can
be expressed by saying that the movement leaves invariant the rank in SI of the position
of the label.

If I = (F, x, y, l, h, w) is a sliding-label instance and I ′ = (F, x, y′, l, h, w) differs from I
only in the y-coordinates of the sites of an arbitrary (possibly empty) subset of the features,
we call I ′ a y-modification of I, with x-modifications defined analogously. Of course, every
sliding-label instance is an x-modification and a y-modification of itself. By considering
1SH-labelings of all y-modifications of a given sliding-label instance in the following lemma,
we gain the additional flexibility that allows us to apply the lemma also in the context of
2SH-labeling, as needed in the proof of Lemma 3.11.

Lemma 3.7. Let a sliding-label instance I = (F, x, y, l, h, w) of size n and a t ∈ N be given
such that the dependency graph of every 1SH-labeling of a y-modification of I is (t, g)-
trimmable for some computable g = g(t) ≥ 0. Then, in O(ng+1) time, we can compute a
set M ⊆ R with |M | ≤ 3ng+1 that does not depend on the y-coordinates of the sites of I and
satisfies that, for every y-modification I ′ of I, the fixed-position instance (I ′, M) has the
following property: For every 1SH-labeling (Q, zx) of I ′, there is a 1MH-labeling (Q′, z′x) of
(I ′, M) with Q′ ⊆ Q of weight at least (1−1/t)w(Q) such that for all p ∈ Q′, z′x(p) ≤ zx(p)
and z′x(p) and zx(p) have the same rank in SI.

Proof. Let I ′ = (F, x, y′, l, h, w) be a y-modification of I and let G be the dependency
graph of a 1SH-labeling (Q, zx) of I ′. We give each edge (p, q) of G the length lp. Let U be
a (t, g)-trimming of G and take Q′ = Q \ U . Moreover, let G be the multigraph obtained
from G by adding a new vertex O and, for each x̄ ∈ SI and each p ∈ Q, an edge from O
to p of length x̄.
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For all p ∈ Q′, let a p-path be a path in G[{O}∪Q′] from O to p and define the length of
a p-path as the sum of the lengths of its edges. For all p ∈ Q′, let z′x(p) be the largest length
of a p-path that does not exceed zx(p)—this is well-defined since zx(p) ≥ xp−lp, while there
is an edge, and hence a path, in G from O to p of length xp − lp. We will show that (Q′, z′x)
is a 1SH-labeling of I ′. First, for each p ∈ Q′, the relation xp − lp ≤ z′x(p) ≤ zx(p) ≤ xp

was essentially argued above. Second, we must show that the labels of the sites in Q′, if
placed as indicated by z′x, do not overlap.

Let p and q be y-overlapping features in Q′ and assume, without loss of generality, that
zx(p) < zx(q) and therefore zx(p) + lp ≤ zx(q). If G contains the edge (p, q), then, since
z′x(p) is the length of a p-path, z′x(p) + lp is the length of a q-path and, by definition of z′x,
we have z′x(q) ≥ z′x(p) + lp. If G does not contain the edge (p, q), there is an x̄ ∈ SI with
zx(p) + lp ≤ x̄ ≤ zx(q). Again by definition of z′x and since G contains an edge from O to
q of length x̄, we then have z′x(q) ≥ x̄ ≥ zx(p) + lp ≥ z′x(p) + lp. In either case, the labels
of p and q, placed according to z′x, do not overlap.

We have w(Q′) ≥ (1 − 1/t)w(Q), and for each p ∈ Q′, z′x(p) is the length of a p-path.
The length of every p-path belongs to the set M of all sums of an element of SI and at
most g elements of {lp | p ∈ F}. M is of size at most |SI |n

g ≤ 3ng+1, does not depend
on the y-coordinates of the sites of the features in F , and can be computed in O(ng+1)
time. Let p ∈ Q′. Since for each x̄ ∈ SI there is a p-path of length x̄, it is easy to see that
stepping from zx(p) to z′x(p) does not descend strictly below any x̄ ∈ SI , i.e., z′x(p) has the
same rank in SI as zx(p).

3.4 A Polynomial-Time Approximation Scheme for 4M-Labeling

We need to show how to solve the instances of weighted 1MH-labeling obtained using
Lemma 3.7. Agarwal et al. [AvKS98] have given a PTAS that finds a near-maximum
independent set in the intersection graph of any given set of closed axes-parallel unit-
height rectangles. It is easy to see that their PTAS for maximum independent set at
the same time is a PTAS for maximizing the number of features labeled with unit-height
closed rectangular labels in a fixed-position model. The reason is simply that, by definition,
any two label candidates of the same feature must touch the site of the feature. If label
candidates are closed, one label candidate automatically excludes the other one from the
solution. Unfortunately, this is not the case if labels are open, as we assume throughout;
e.g., in the 1MH-model the leftmost and the rightmost label candidate of a site may not
intersect, so an algorithm for maximum independent set that treats the labels as open
rectangles would not automatically yield a feasible solution for the fixed-position labeling
problem. Treating the labels as closed rectangles does not work either, because in our
models we allow labels of different sites to touch. Fortunately, we can adapt the PTAS
of Agarwal et al. to the fixed-position models arising in our setting and even extend it to
problems of bounded height or length ratio. In fact, the adapted PTAS can deal with the
most general fixed-position problem, that is, 4M-labeling.

Lemma 3.8. Given a fixed-position instance (I,M) of size n and with height or length
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ratio ρ and an ε ∈ R with 0 < ε ≤ 1, a 4M-labeling of (I,M) of weight at least 1 − ε
times the weight of an optimal 4M-labeling of (I,M) can be computed in nO(ρ/ε) time. For
every fixed ρ ≥ 1, the weighted 4M-labeling problem for instances of height or length ratio
at most ρ therefore admits a PTAS.

Proof. Let (I,M) with I = (F, x, y, l, h, w) be a fixed-position instance of size n. We
can assume without loss of generality that F is a set of integers and, in the light of the
mirroring transformation discussed in Section 3.1, that the height ratio of I is at most ρ.
Define an indexed rectangle to be an open rectangle R that is associated with an integer
index i(R). Each placement of the label of a feature p ∈ F as a rectangle R corresponds
to an indexed rectangle R with i(R) = p. Two indexed rectangles R1 and R2 intersect
if R1 ∩ R2 6= ∅ or i(R1) = i(R2). Computing a 4M-labeling of (I,M) of weight at least
1 − ε times the optimal weight is equivalent to computing an independent set of weight
at least 1 − ε times the optimal weight in the intersection graph of a set R of at most
n weighted indexed rectangles whose height ratios are bounded by ρ and that have the
following property: For each integer i, the indexed rectangles with index i share a common
point on their boundary. We show how to solve the latter problem. Referring implicitly to
the intersection graph, we will say that a subset S of R is independent if its elements are
pairwise nonintersecting, and we denote its weight by w(S).

Assume, without loss of generality, that the height hR of every rectangle R in R satisfies
1/ρ ≤ hR ≤ 1 and that no horizontal edge of a rectangle in R has an integer y-coordinate.
For every integer j, we call the horizontal line through (0, j) the stabbing line of index j.
We apply the shifting technique [Bak94, HM85]. Let k = ⌈1/ε⌉ and, for j = 0, . . . , k − 1,
denote by Rj the set of indexed rectangles in R that do not intersect any stabbing line
whose index modulo k is j. Our algorithm computes a maximum-weight independent
subset of each of R0, . . . ,Rk−1 and outputs a set of maximum weight among the k sets
obtained.

Let R∗ be a maximum-weight independent subset of R. Every indexed rectangle in R
is missing from at most one of the sets R0, . . . ,Rk−1, so the sets R∗ \ R0, . . .R

∗ \ Rk−1

are disjoint subsets of R∗. As a consequence, w(R∗ \ Rb) ≤ (1/k)w(R∗) and therefore
w(R∗ ∩Rb) ≥ (1 − 1/k)w(R∗) for some b ∈ {0, . . . , k − 1}. Since R∗ ∩Rb is independent
and ε ≤ 1/k, our algorithm indeed outputs an independent subset of R of weight at least
(1 − ε)w(R∗).

It remains to show how to compute a maximum-weight independent subset of Rb effi-
ciently for a fixed b ∈ {0, . . . , k−1}. Since all indexed rectangles intersecting a stabbing line
whose index modulo k is b have been removed, Rb decomposes into instances, each of which
is completely contained between two stabbing lines at distance k. Because indexed rect-
angles from different instances do not intersect, an overall maximum-weight independent
set can be obtained as the union of a maximum-weight independent set of each instance.

To compute a maximum-weight independent subset of a nonempty set S ⊆ R of indexed
rectangles that are all contained in a horizontal slab of height k, we apply a dynamic-
programming approach. Intuitively, one can imagine moving a vertical sweepline from left
to right while considering all possible independent sets of indexed rectangles that intersect
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the sweepline in its current position. Formally, we translate the problem into a longest-path
problem in an acyclic auxiliary graph H .

Let x1 < · · · < xm be the distinct x-coordinates of the left edges of indexed rectangles
in S. For j = 1, . . . , m, let Sj be the set of indexed rectangles in S whose left edge lies
to the left of or on the vertical line ℓ through (xj , 0) and whose right edge lies strictly to
the right of ℓ. Moreover, let Ij be the family of all independent subsets of Sj . Since the
indexed rectangles in R have height at least 1/ρ and two indexed rectangles in Sj can be
disjoint only if their projections on the y-axis are disjoint, the cardinality of every set in
Ij is bounded by kρ.

The directed auxiliary graph H is defined as follows. For j = 1, . . . , m and for all
A ∈ Ij , H contains a vertex vj,A. In addition, H contains a start vertex s and a goal
vertex t. The edges of H are the following:

• For each A ∈ I1, H contains the edge (s, v1,A) with weight w(A).

• For j = 1, . . . , m− 1, H contains every edge of the form (vj,A, vj+1,B), where A ∈ Ij ,
B ∈ Ij+1, A ∪ B is independent and A and B are consistent in the sense that every
indexed rectangle in Sj ∩ Sj+1 is contained either in both A and B or in none of
them. The weight of (vj,A, vj+1,B) is w(B \ A).

• For each A ∈ Im, H contains the edge (vm,A, t) with weight 0.

For each R ∈ S, J(R) = {j | 1 ≤ j ≤ m and R ∈ Sj} is a nonempty set of consecutive
integers. Given an s-t path π = (s, v1,A1, . . . , vm,Am

, t) in H , let A(π) =
⋃m

j=1 Aj . Because
of the consistency requirement in the definition of H , if some R ∈ S belongs to A(π), it
belongs to Aj for each j ∈ J(R). Now observe that if R and R′ are intersecting indexed
rectangles in S, then there are j ∈ J(R) and j′ ∈ J(R′) such that |j − j′| ≤ 1 (with
|j − j′| = 1 needed only in case R and R′ are disjoint but have the same index). If R
and R′ both belong to A(π), we must have R ∈ Aj and R′ ∈ Aj′, which contradicts the
independence of Aj ∪ Aj′. Therefore A(π) is independent for every s-t path π in H .

On the other hand, if A is an independent set in S, then π = (s, v1,A∩S1, . . . , vm,A∩Sm
, t)

is easily seen to be an s-t path in H with A(π) = A whose total edge weight is w(A).
Therefore finding a maximum-weight s-t path π in H and determining A(π) computes a
maximum-weight independent set in S.

With N = |S|, H has O(m · Nkρ) vertices and O(m · N2kρ) edges. Since m ≤ N , H
can be constructed in NO(kρ) time. By processing the vertices in H in topological order,
we can find a maximum-weight s-t path in H within the same time bound. Therefore
the algorithm computes a maximum-weight independent set in S in NO(kρ) time and a
maximum-weight independent set in Rb in nO(kρ) time, for b = 0, . . . , k − 1. The overall
running time is nO(kρ) = nO(ρ/ε).

3.5 Polynomial-Time Approximation Schemes for 1SH-Labeling

Clearly, the PTAS for 4M-labeling of Lemma 3.8 is also a PTAS for the more restricted
1MH-labeling problem. Therefore we now have all the ingredients that we need to obtain
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a PTAS for weighted 1SH-labeling. We first treat instances of bounded height ratio and
then instances of bounded length ratio.

Theorem 3.9. Given a sliding-label instance I of size n and with height ratio ρ and an
ε ∈ R with 0 < ε ≤ 1, a 1SH-labeling of I of weight at least 1 − ε times the weight
of an optimal 1SH-labeling of I can be computed in n(ρt)O(t)

time, where t = ⌈2/ε⌉. For
every fixed ρ ≥ 1, the weighted 1SH-labeling problem for instances of height ratio at most
ρ therefore admits a PTAS.

Proof. Let W ∗ be the weight of an optimal 1SH-labeling of I. By Corollary 3.5, the
dependency graph of every 1SH-labeling of a y-modification of I is (t, g)-trimmable, where
g = (ρt)O(t). By Lemma 3.7, we can compute a set M ⊆ R with |M | ≤ 3ng+1 such that the
fixed-position instance (I, M) has a 1MH-labeling of weight at least (1−1/t)W ∗. Applying
the PTAS of Lemma 3.8 to (I, M), we obtain a 1MH-labeling of (I, M), and therefore a
1SH-labeling of I, of weight at least (1 − 1/t)2W ∗ ≥ (1 − 2/t)W ∗ ≥ (1 − ε)W ∗ in time

(ng+2)O(ρt) = n(ρt)O(t)
, which dominates the time needed by the first step.

Theorem 3.10. Given a sliding-label instance I of size n and with length ratio ρ and an
ε ∈ R with 0 < ε ≤ 1, a 1SH-labeling of I of weight at least 1 − ε times the weight of an
optimal 1SH-labeling of I can be computed in nO(ρ2t2) time, where t = ⌈2/ε⌉. For every
constant ρ ≥ 1, the weighted 1SH-labeling problem for instances of length ratio at most ρ
therefore admits a PTAS.

Proof. Let W ∗ be the weight of an optimal 1SH-labeling of I. By Lemma 3.6, the de-
pendency graph of every 1SH-labeling of a y-modification of I is (t, g)-trimmable, where
g = ⌈2ρ⌉(t− 1)− 1. By Lemma 3.7, we can compute a set M ⊆ R with |M | ≤ 3ng+1 such
that the fixed-position instance (I, M) has a 1MH-labeling of weight at least (1− 1/t)W ∗.
Applying the PTAS of Lemma 3.8 to (I, M), we obtain a 1MH-labeling of (I, M), and
therefore a 1SH-labeling of I, of weight at least (1− 1/t)2W ∗ ≥ (1− 2/t)W ∗ ≥ (1− ε)W ∗

in time (ng+2)O(ρt) = nO(ρ2t2), which dominates the time needed by the first step.

3.6 Extension to Other Slider Models

Our results for 1SH-labeling can be extended with little additional effort to the other slider
models—2SH, 1SV, 2SV, and 4S. First, we adapt Lemma 3.7 to obtain a reduction from
2SH-labeling to 2MH-labeling.

Lemma 3.11. Let a sliding-label instance I = (F, x, y, l, h, w) of size n and a t ∈ N be
given such that the dependency graph of every 1SH-labeling of a y-modification of I is (t, g)-
trimmable for some computable g = g(t) ≥ 0. Then, in O(ng+2) time, we can compute a
function M : F → R

2 with |M(p)| ≤ 6ng+1 for all p ∈ F and with the following property:
For every 2SH-labeling (Q, z) of I, there is a 2MH-labeling (Q′, z′) of (I,M) with Q′ ⊆ Q
of weight at least (1 − 1/t)w(Q) such that for all p ∈ Q′, z′y(p) = zy(p), z′x(p) ≤ zx(p) and
z′x(p) and zx(p) have the same rank in SI .
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Proof. Observe that every 2SH-labeling (Q, z) of I is a 1SH-labeling of the y-modification
IQ,z = (F, x, y′, l, h, w) of I, where for all p ∈ F , y′

p = yp − hp if p ∈ Q and zy(p) = yp − hp

(i.e., p is labeled with a rectangle that has the site of p on its top edge), and y′
p = yp

otherwise. Let M be the set of cardinality at most 3ng+1 that can be computed in time
O(ng+1) by applying the algorithm of Lemma 3.7 to I. Now let M(p) = {(x̄, yp) | x̄ ∈
M} ∪ {(x̄, yp − hp) | x̄ ∈ M} for all p ∈ F . Clearly, |M(p)| = 2|M | ≤ 6ng+1 for all
p ∈ F . Consider now an arbitrary 2SH-labeling (Q, z) of I. As argued above, (Q, z) is
a 1SH-labeling of the y-modification IQ,z of I. By Lemma 3.7, there is a 1MH-labeling
(Q′, z′) of (IQ,z, M) with Q′ ⊆ Q of weight at least (1 − 1/t)w(Q) such that for all p ∈ Q′,
z′x(p) ≤ zx(p) and z′x(p) and zx(p) have the same rank in SI . That 1MH-labeling (Q′, z′) is
a 2MH-labeling of (I,M) with the required properties.

Theorem 3.12. For every fixed ρ ≥ 1, there is a PTAS for weighted 2SH-labeling on
instances of height or length ratio at most ρ.

Proof. Let a sliding-label instance I = (F, x, y, l, h, w) of size n and with height or length
ratio at most ρ and an ε with 0 < ε ≤ 1 be given and take t = ⌈2/ε⌉.

The dependency graph of every 1SH-labeling of a y-modification of I is (t, g)-trimmable,
where g = (ρt)O(t) if the height ratio of I is at most ρ (Corollary 3.5) and g = ⌈2ρ⌉(t−1)−1
if the length ratio of I is at most ρ (Lemma 3.6). In either case, apply Lemma 3.11 to I
to obtain a fixed-position instance (I,M) with |M(p)| ≤ 6ng+1 for all p ∈ F .

Then apply the PTAS of Lemma 3.8 to (I,M) to obtain a 2MH-labeling (Q̂, ẑ) of
(I,M) of weight at least 1 − 1/t times the weight of an optimal 2MH-labeling of (I,M).
Output (Q̂, ẑ) as a 2SH-labeling of I.

Let (Q∗, z∗) be an optimal 2SH-labeling of I. By Lemma 3.11, there is a 2MH-labeling
(Q′, z′) of (I,M) of weight at least (1 − 1/t)w(Q∗). As the weight of (Q̂, ẑ) is at least
1 − 1/t times the weight of an optimal 2MH-labeling of (I,M), we have that w(Q̂) ≥
(1 − 1/t)w(Q′) ≥ (1 − 1/t)2w(Q∗) ≥ (1 − ε)w(Q∗).

The running time of the algorithm is dominated by the application of the PTAS of
Lemma 3.8 to (I,M) and amounts to (ng+2)O(ρt), which is n(ρt)O(t)

if the height ratio of I
is at most ρ and nO(ρ2t2) if the length ratio of I is at most ρ.

In conjunction with the mirroring transformation, Theorems 3.9, 3.10 and 3.12 imme-
diately imply the following result concerning vertically sliding labels.

Corollary 3.13. For every fixed ρ ≥ 1, there are polynomial-time approximation schemes
for weighted 1SV-labeling and for weighted 2SV-labeling on instances of height or length
ratio at most ρ.

A further generalization is to consider the most general slider model, 4S, in which a
label may have its site anywhere on its boundary. Informally, we deal with this case as
follows. Given a sliding-label instance I with height or length ratio at most ρ, we apply to I
two reductions, namely the one from 2SH-labeling to 2MH-labeling and the one from 2SV-
labeling to 2MV-labeling, and form for each feature the union of the two sets of anchor
points obtained for it. Then we run the PTAS of Lemma 3.8 for 4M-labeling with the
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Fig. 6: Two labels overlap if and only if each intersects the “lane” (shown in gray) of the other.
As no label enters the lane of another label during the normalization, the pairwise dis-
jointness among the labels is preserved.

corresponding combined fixed-position instance as its input. To analyze the algorithm,
we consider an optimal 4S-labeling and partition its labeled features into a 2SH-labeling
and a 2SV-labeling depending on whether the site of a feature lies on a horizontal or on
a vertical edge of its label. The two corresponding dependency graphs can be trimmed
separately, and because our choice of stopping lines prevents each horizontally moving label
from entering the “lane” of a vertically moving label, and vice versa (see Fig. 6), the union
of the two resulting renormalized labelings is a 4M-labeling of the combined fixed-position
instance and therefore a 4S-labeling of the original instance I.

In the proof we need to consider dependency graphs also of 1SV-labelings. Intuitively,
the dependency graph of a 1SV-labeling of a sliding-label instance I = (F, x, y, l, h, w)
is analogous to that of a 1SH-labeling, but models vertically instead of horizontally slid-
ing labels and horizontal stopping lines with y-coordinates in

⋃

p∈F{yp − hp, yp, yp + hp}.
Formally, we can define the dependency graph of a 1SV-labeling (Q, z) of a sliding-label
instance I = (F, x, y, l, h, w) to be the dependency graph of the 1SH-labeling (Q, z̄) of the
mirror image Ī = (F, y, x, h, l, w) of I, where z̄(p) = (zy(p), zx(p)) is the mirror image of
z(p) for all p ∈ Q.

Theorem 3.14. For every fixed ρ ≥ 1, there is a PTAS for weighted 4S-labeling on in-
stances of height or length ratio at most ρ.

Proof. Let a sliding-label instance I = (F, x, y, l, h, w) of size n and an ε with 0 < ε ≤ 1
be given and take t = ⌈2/ε⌉. Without loss of generality (if necessary, apply the mirroring
transformation), we assume the height ratio of I to be at most ρ.

By Corollary 3.5, the dependency graph of every 1SH-labeling of a y-modification of
I is (t, g)-trimmable for some g = (ρt)O(t). Applying the algorithm of Lemma 3.11 to I,
construct a fixed-position instance (I,Mh) of size O(ng+2). By Lemma 3.6, applied to
the mirror image Ī = (F, y, x, h, l, w) of I, which has length ratio bounded by ρ, the
dependency graph of every 1SV-labeling of an x-modification of I is (t, ḡ)-trimmable for
ḡ = ⌈2ρ⌉(t − 1) − 1. Applying the algorithm of a “mirrored” analogue of Lemma 3.11 for
2SV-labeling to I, construct a fixed-position instance (I,Mv) of size O(nḡ+2).

Now create a fixed-position instance (I,M) by letting M(p) = Mh(p) ∪Mv(p) for all
p ∈ F . Note that |M(p)| ≤ 6ng+1 +6nḡ+1 for all p ∈ F . Applying the PTAS of Lemma 3.8
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to (I,M), obtain a 4M-labeling of (I,M) of weight at least 1− 1/t times the weight of an
optimal 4M-labeling of (I,M) and output it as the desired 4S-labeling of I.

To analyze the approximation ratio achieved, partition an optimal 4S-labeling (Q∗, z∗)
of I into a 2SH-labeling (Q∗

h, z
∗
h) and a 2SV-labeling (Q∗

v, z
∗
v) by defining Q∗

h = {p ∈ Q∗ |
z∗y(p) ∈ {yp, yp − hp}} and Q∗

v = Q∗ \ Q∗
h and letting z∗h and z∗v be the restrictions of z∗

to Q∗
h and Q∗

v, respectively. By Lemma 3.11, there is a 2MH-labeling (Qh, z
′) of (I,Mh)

with Qh ⊆ Q∗
h of weight at least (1 − 1/t)w(Q∗

h) such that for all p ∈ Qh, z′y(p) = z∗y(p),
z′x(p) ≤ z∗x(p) and z′x(p) and z∗x(p) have the same rank in SI =

⋃

p∈F{xp − lp, xp, xp + lp}.
By the “mirrored” analogue of Lemma 3.11 for 2SV-labeling, there is a 2MV-labeling
(Qv, z

′′) of (I,Mv) with Qv ⊆ Q∗
v of weight at least (1 − 1/t)w(Q∗

v) such that for all
p ∈ Qv, z′′x(p) = z∗x(p), z′′y(p) ≤ z∗y(p) and z′′y(p) and z∗y(p) have the same rank in SĪ =
⋃

p∈F{yp − hp, yp, yp + hp}.

Consider the pair (Q̂, ẑ) with Q̂ = Qh∪Qv, ẑ(p) = z′(p) for p ∈ Qh, and ẑ(p) = z′′(p) for
p ∈ Qv. The weight of (Q̂, ẑ) is at least (1−1/t)w(Q∗

h)+(1−1/t)w(Q∗
v) = (1−1/t)w(Q∗).

We claim that (Q̂, ẑ) is a 4M-labeling of (I,M). Assume for a contradiction that the
label of a feature p ∈ Qh overlaps the label of a feature q ∈ Qv. The labels of p and q
are disjoint in the labeling (Q∗, z∗). In stepping from (Q∗, z∗) to (Q̂, ẑ), the label of each
p ∈ Qh reaches its position in (Q̂, ẑ) by sliding left without crossing a stopping line in SI ,
and the label of each q ∈ Qv reaches its position in (Q̂, ẑ) by sliding down without crossing
a stopping line in SĪ . By the definition of SI and SĪ , it is impossible for the two labels to
end in overlapping positions, so (Q̂, ẑ) is indeed a 4M-labeling of (I,M).

Applying the PTAS of Lemma 3.8 to (I,M) therefore gives a 4M-labeling of (I,M) of
weight at least (1 − 1/t)w(Q̂) ≥ (1 − 1/t)2w(Q∗) ≥ (1 − ε)w(Q∗).

The running time of the algorithm is dominated by the time needed for applying the
PTAS of Lemma 3.8 to (I,M). As (I,M) is of size O(ng+2 + nḡ+2), the running time

amounts to (n(ρt)O(t)
+ nO(ρt))O(ρt) = n(ρt)O(t)

.

4 Open Problems

Corollary 2.2 states that a family of graphs is trimmable if it is of bounded treewidth
and bounded degree. We cannot exclude, however, that the bounded-degree condition is
superfluous. In other words, is there a function g : N × N → N such that for all k, t ∈ N,
every weighted undirected graph of treewidth k has a (t, g(k, t))-trimming? The answer is
yes in the unweighted case, that is, if all weights are the same. If the answer were generally
yes, it would follow by the argument in the proof of Corollary 2.3 that the family of planar
graphs is also trimmable. This would then give a general polynomial-time reduction from
weighted 1SH-labeling to weighted 1MH-labeling (albeit not, by itself, a PTAS for weighted
1SH-labeling), and similarly for the other slider models. More generally, the question of
which families of graphs are trimmable deserves further study.
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