A (4 4+ €)-Approximation for the
Minimum-Weight Dominating Set Problem in
Unit Disk Graphs

Thomas Erlebach! and Matis Mihaldk?

! Department of Computer Science, University of Leicester, England
2 Institute of Theoretical Computer Science, ETH Zurich, Switzerland

Abstract. We present a (4 + €)-approximation algorithm for the prob-
lem of computing a minimum-weight dominating set in unit disk graphs,
where € is an arbitrarily small constant. The previous best known approx-
imation ratio was 5+e¢€. The main result of this paper is a 4-approximation
algorithm for the problem restricted to constant-size areas. To obtain the
(4 + €)-approximation algorithm for the unrestricted problem, we then
follow the general framework from previous constant-factor approxima-
tions for the problem: We consider the problem in constant-size areas,
and combine the solutions obtained by our 4-approximation algorithm
for the restricted case to get a feasible solution for the whole problem. Us-
ing the shifting technique (selecting a best solution from several consid-
ered partitionings of the problem into constant-size areas) we obtain the
claimed (4 + €)-approximation algorithm. By combining our algorithm
with a known algorithm for node-weighted Steiner trees, we obtain a
7.875-approximation for the minimum-weight connected dominating set
problem in unit disk graphs.

1 Introduction

A subset D C V of the vertices of an undirected graph G = (V, E) is called a
dominating set if every vertex in V is contained in D or has a neighbor in D.
A vertex in D is called a dominator, and we say that a dominator dominates
itself and all its neighbors. The minimum dominating set problem (MDS) is
to compute a dominating set of smallest size. MDS belongs to the classical
NP-hard optimization problems listed in the book of Garey and Johnson [7].
MDS for general graphs is equivalent to the set cover problem, and can thus
be approximated within a factor of O(logn) for graphs with n vertices using a
greedy algorithm (see, e.g., [16]), but no better unless all problems in A”P can be
solved in n@(°g1°87) time [6]. If every vertex of the input graph is associated with
a weight, the minimum-weight dominating set problem (MWDS) is to compute
a dominating set of minimum weight. Approximation ratio O(logn) can also be
achieved for the weighted set cover problem and thus for MWDS [7]. The variants
of the problems where the dominating set is asked to be connected in the input
graph are called, in an obvious way, the minimum connected dominating set

problem (MCDS) and the minimum-weight connected dominating set problem
(MWCDS), respectively. The best known approximation ratio for MWCDS in
general graphs is O(logn) as well [8].

We consider the problem of computing a minimum-weight (connected) dom-
inating set in unit disk graphs. A unit disk graph is a graph where every vertex
is associated with a disk of unit radius in the plane and there is an edge between
two vertices of the graph if the two corresponding disks intersect. These prob-
lems are N'P-hard already for the unweighted case [4, 12]. We are thus interested
in approximation algorithms. An algorithm for MDS (or MWDS) is called a p-
approzimation algorithm, and has approximation ratio p, if it runs in polynomial
time and always outputs a dominating set whose size (or total weight) is at most
a factor of p larger than the size (or total weight) of the optimal solution. The
definitions for MCDS and MWCDS are analogous. A polynomial-time approxi-
mation scheme (PTAS) is a family of approximation algorithms with ratio 1+e¢
for every constant ¢ > 0.

Constant-factor approximation algorithms for MDS and MCDS in unit disk
graphs were given by Marathe et al. [13]. For MDS in unit disk graphs, a PTAS
was presented by Hunt et al. [11], based on the shifting strategy [2,9]. These
algorithms, however, do not extend to the weighted version. In particular, the
PTAS is based on the fact that the optimal dominating set for unit disks in a
k x k square has size at most O(k?) and can thus be found in polynomial time
using complete enumeration if k is a constant. In the weighted case, there is no
such bound on the size of an optimal (or near-optimal) solution, as an optimal
solution may consist of a large number of disks with tiny weight. For MCDS in
unit disk graphs, a PTAS was presented in [3]. For unit disk graphs with bounded
density, asymptotic fully polynomial-time approximation schemes (with running
time polynomial in % and in the size of the input, but achieving ratio 1+ ¢ only
for large enough inputs) were presented for MDS and MCDS in [15].

The first constant-factor approximation algorithms for MWDS and MWCDS
in unit disk graphs were given by Ambiihl et al. [1], with approximation ratios 72
and 89, respectively. Huang et al. [10] presented approximation algorithms with
approximation ratio 6 + € and 10+ ¢, respectively. Currently the best approxima-
tion algorithms for MWDS is due to Dai and Yu [5], with approximation ratio
5+ €. Zou et al. [17] present an approximation algorithm with ratio 2.5p < 3.875
for the node-weighted Steiner tree problem in unit disk graphs, where p = 1+ ng
is the best known approximation ratio for the classical Steiner tree problem [14].
This result can be used to connect a dominating set by adding nodes of weight
at most 2.5p times the weight of an optimal connected dominating set, yielding
the currently best approximation ratio of 8.875 for MWCDS.

Our Results. We present a (4 + €)-approximation algorithm for MWDS in
unit disk graphs. Our algorithm is based on several ideas of previous constant-
factor approximation algorithms for the problem [1,10]. We partition the plane
into areas of size K x K, where K is an arbitrary constant. For each of these
areas we consider the following subproblem: find a minimum-weight set of disks
that dominate all disks that have a center in the area. The union of feasible

solutions for each subproblem yields a dominating set for the original problem.
Using the shifting technique as presented in [10], the loss in the approximation
factor is only (1 4+ O(1)/K), i.e., if the solution for every subproblem is a p-
approximation, then, using the shifting technique, the (best) combination of the
solutions is a (p + O(1)/K)-approximation for the original problem. Thus, for
any constant €, one can set K such that the obtained solution is a (p + €)-
approximation. We present a 4-approximation algorithm for the subproblem,
which thus leads, using the shifting technique and setting K appropriately, to a
(4 + €)-approximation algorithm. We note that Huang et al. [10] presented a 6-
approximation for the subproblem, and Dai and Yu [5] a 5-approximation for the
subproblem. Connecting the dominating set computed by our algorithm using
the node-weighted Steiner tree algorithm of Zou et al. [17], we obtain a 7.875-
approximation for MWCDS, which improves the previously best approximation
ratio of 8.875.

We note that independently from our work, Zou et al. [18] have also obtained
a (4 4 €)-approximation algorithm for MWDS.

The Problem as a Covering Problem. We assume an instance of the
problem is given by a set D of n weighted unit disks in the plane, where every
disk d € D has radius 1 and weight wy. We denote by C the centers of the disks
in D. Also, for a set of disks X C D, we denote by w(X) the total weight of
disks in X, i.e., w(X) =} o x wa-

In the following we consider the problem as a covering problem — for a set C
of centers of disks D, every disk of the same radius, find a minimum-weight set
D’ C D of disks the union of which contains all points in C. If a disk d contains
point p, we say that the disk d covers point p, and that p is covered by d. It is
not difficult to see that the original problem and this covering problem are in
fact equivalent — a dominating set for input D of unit disks induces a solution
for the covering problem given by disks of radius 2 with centers identical to
centers C, and a solution to the covering problem induces a dominating set for
the original problem. Thus, given an instance of MWDS, we can consider the
equivalent covering problem with disks of radius 2. Scaling the setting down by
a factor of 2 (i.e., dividing the coordinates of the center of every disk by 2, and
considering disks of unit radius) we obtain an instance of the covering problem
with unit disks. From now on we assume we have performed such a modification
to the setting, and our goal is to find a minimum-weight subset of unit disks D
that cover all points C.

Structure of the paper. We first present the general approach to solving
the covering problem by considering covering subproblems induced by constant-
size squares in Sect. 2. In Sect. 3 we present our 4-approximation algorithm for
the covering subproblem. We conclude the paper in Sect. 4.

2 General Algorithm for the Covering Problem

The general algorithm follows the approach of Huang et al.

[

10]. First, we par-
2T

tition the plane into squares of size p x p, where p = he square S;;,

2

i,J € Z, contains points with coordinates (x,y), where i-pu <z < (i+1) -, and
Jou<y<(j+1)-p We say that a disk d € D is from square S;;, if the center
of disk d lies in S;;. For a square S;; we denote by D;; the disks from S;;, and
by C;; the centers of disks in S;;. Notice that the size of squares is chosen such
that any disk from square S;; contains the whole square S;;, and thus covers all
centers C;;.

Second, we consider the squares S;;, 7, j € Z, in groups, each group consisting
of k X k squares, k > 1. We call such a group of squares a block. Formally a block
By consists of squares Sij, a -k <i<(a+1)-k,andb-k<j<(b+1) k. We
say that a disk d € D is from block B, if the center of d lies in B. We denote by
Dp the set of disks from block B, and by Cp the set of centers from block B.

For each block B, we consider the following covering subproblem induced by
block B: find a minimum-weight set of disks in D that covers the centers Cp. Let
Xp denote a feasible solution to the covering subproblem for block B. Clearly,
the union X of the solutions X g for every block B is a feasible solution for the
whole covering problem. Observe that only disks from B and disks with centers
at distance at most one from B need to be considered for Xp. Thus, only disks
close to the boundary of every block can be part of solutions to more than one
block. Consider now an optimum solution OPT for the covering problem. For an
appropriate choice of the origin of the coordinate system (which causes different
positioning of the grid formed by the blocks), a substantial part of OPT, in terms
of the weight of disks, is formed by disks in the area formed by the “central” parts
(i.e., not close to the boundary) of nonempty blocks. Thus, we can use the shifting
technique to try out different choices for the origin and construct a good feasible
solution X for the covering problem: Consider the k/4 partitionings in blocks
induced by the origin set to (p- (4u),p- (4p)), p=0,1,...,k/4 (observe that for
every such choice of the origin the partitioning into squares S;;, i, j € Z, is the
same, just every square has now different subscripts 4, j). For the partitioning
induced by p, let XP be the union of solutions for the covering subproblems
induced by every block B that were obtained by a p-approximation algorithm.
Our algorithm then returns X = argmin, w(X?) as the solution to the covering
problem. Generalizing (and restating) the result of Huang et al. (phase 2 in the
proof of Theorem 1 in [10]) we have that X is a (p + O(1)/k)-approximation.

Lemma 1 (Generalized formulation of [10]). Solution X is a (p+0O(1)/k)-
approzimation for the covering problem.

In the following section we present a 4-approximation algorithm for the cov-
ering subproblem induced by a block B. This together with the preceding dis-
cussion and Lemma 1 yields the main theorem of this paper.

Theorem 1. There is a (44 ¢)-approximation algorithm for MWDS in unit disk
graphs.

With the node-weighted Steiner tree algorithm by Zou et al. [17] that has
approximation ratio smaller than 3.875, we obtain:

Theorem 2. There is a 7.875-approzimation algorithm for MWCDS in unit
disk graphs.

3 4-Approximation for the Covering Subproblem

In this section we present a 4-approximation algorithm for the covering sub-
problem induced by a block B: given a block B of k x k squares S;;, compute a
minimum-weight set of disks that covers all points Cp.

Let OPTp denote the set of disks in an optimal solution for the covering
subproblem. In the following, we will often write that the algorithm “guesses”
certain properties of OPTp. By this we mean that the algorithm enumerates all
possible choices for the guess (there will be a polynomial number of such choices)
and computes a solution for each choice. If a choice leads to an infeasible solution,
the algorithm does not consider that solution anymore. The algorithm keeps the
best solution found and outputs it at the end. In the analysis of the algorithm,
we concentrate on the solution X3 for which the algorithm makes the right
guesses about OPTp. As the output of the algorithm is at least as good as this
solution, it is enough to show that the approximation ratio of X% is 4.

First, the algorithm guesses for each of the k& x k squares S;; in block B
whether there is a disk from OPTp in S;;, or not. If yes, the algorithm also

guesses one such disk (clearly, there are no more than (n + 1)’€2 guesses). The
guessed disks are then added to the set X% (empty in the beginning) that
will form a solution to the covering problem.

Next, for every square S;; containing an uncovered point, the algorithm
guesses whether there is a point in S;; that is covered in OPTp only by disks
from regions UM and LM. The regions UM and LM lie above and below .S;;,
respectively, and between the vertical lines that contain the vertical parts of
the boundary of S;; (see Fig. 1). We call such a point a middle-unique point.
If there is a middle-unique point in S;;, the algorithm further guesses whether
there is a middle-unique point that is covered by a disk from UM and, if yes,
the algorithm also guesses the “leftmost” and the “rightmost” (with respect to
the resulting sandglass lines, see below) such point p; and p, (p; and p, can be
the same point), together with the corresponding disks d,, and d,, from UM.
Similarly, the algorithm guesses whether there is a middle-unique point that is
covered by a disk from LM, and if yes, the algorithm also guesses the leftmost
and rightmost such point ¢; and g, together with the corresponding disks d,
and dg, from LM.

The leftmost and rightmost middle-unique points py, p., q;, ¢ define a special
region inside S;;, called the sandglass of S;; [10]: The union of the upper sandglass
and the lower sandglass. The upper sandglass is a region inside S;; determined
by the line of slope —1 going through p; and the line of slope 1 going through p,
as outlined in Fig. 1. The lower sandglass is, defined in a similar way, a region
inside S;; determined by the line of slope 1 going through ¢; and the line of slope
—1 going through ¢,. Note that the sandglass region can be empty, if there is
no middle-unique point in S;;. Note also that the guessed disks dp,, dp, ,dqg, , dq,
partially cover the sandglass, but there may be a region that is not covered
by these four disks. We define a sandglass point to be a point that lies in a
sandglass but is not covered by dp,,dp, ,dq, , d,, . Again, we add these four disks
to the solution set X 5.

UM . UM)
SiJ' ‘)Sia]'
P pr
LM LM

Fig. 1. Definition of regions UM and LM of a square S;; (left figure). An example of a
sandglass (the shaded area) for the case where ¢; = ¢». For the upper sandglass, also
the lines with slopes 1 and —1 are depicted (right figure)

The following lemma allows us to split the yet uncovered points in B into two
parts, which we consider separately in the following. We say that a point lies left
of Si; if the z-coordinate of the point is smaller than the smallest z-coordinate
of any point of S;;. We define similarly in a natural way the notions of lying
right of, above, and below S;;.

Lemma 2 ([10]). Any sandglass point is covered in OPTp only by disks with
center above or below S;j. Any point of Si; not contained in the sandglass of Si;
is covered in OPTp only by disks with center left or right of S;;.

Using this lemma, we can partition the yet uncovered points into two parts.
The horizontal part contains yet uncovered points that can be covered in OPTp
only by disks with center above or below the respective S;;. The vertical part
contains the rest of the yet uncovered points, i.e., the points that can be covered
in OPTp only by disks with center left or right of .S;;.

In the following we concentrate on the problem of covering the points in
the horizontal part by a set of disks of minimum weight. We present a 2-
approximation algorithm for this problem. Clearly, as the problem of covering
the points in the vertical part can be solved by the same 2-approximation algo-
rithm by rotating the setting by 90 degrees, we obtain a solution X' — all
guessed disks plus the disks obtained by applying the 2-approximation algorithm
to cover points in the horizontal and vertical part — which is a 4-approximation
of OPTpg, thus showing the following theorem.

Theorem 3. There is a 4-approzimation algorithm for the covering subproblem

i a block B.

3.1 Covering Points Only From Above or Below

In the following we consider a generalized version of the covering problem of
points in the horizontal part of block B. Let us consider k horizontal strips, each
of height p, containing m points P, where strip S;, i = 1,2, ..., k, lies between
the horizontal lines y = (i—1)-p and y = i u. Let D be a set of n unit disks. We
say that a disk d covers point p € P from abowve, if the center of disk d lies above

the strip in which p is located. Similarly, we say that a disk d covers point p € P
from below, if the center of disk d lies below the strip in which p is located. For a
given set X C D of disks we say that p is covered in X only from above or from
below, if p is covered by at least one disk from X, and for every disk d € X, d
covers p from below, or d covers p from above, or d does not cover p. We call
the problem of covering points inside a horizontal strip of constant height with
a minimum-weight set of disks for instances where there is an optimum solution
such that every point p € P is covered in the optimal solution only from above
or from below the horizontal covering problem.

Theorem 4. There is a 2-approzimation algorithm for the horizontal covering
problem.

Clearly, a constant-height horizontal strip can be seen as k strips of height
w, k being a constant. The simplest version of the problem is when k = 1. For
this case, Ambiihl et al. [1] present an algorithm that computes an optimum so-
lution in polynomial time. The algorithm is based on the dynamic programming
technique. The main idea is to consider the boundary of the disks that form an
optimum solution inside the strip: the disks from above form in the strip the
upper envelope, and the disks from below form in the strip the lower envelope
of the optimum solution. The dynamic programming considers the points from
left to right and stores, for each considered point and for each choice of current
disks on the lower and upper envelope at that point, a minimum-weight set of
disks that covers all points from the left up to the considered point.

The 2-approximation algorithm for the general case k > 1 can be obtained by
extending this approach. Let X C D denote a feasible solution for the covering
problem in k strips. In every strip S;, ¢ = 1,..., k, we define the upper envelope
U; of X to be the intersection of the strip with the disks of X that lie above
strip S;. Similarly, the lower envelope L; of X is the intersection of strip S; with
the disks of X that lie below .S;.

The algorithm uses a sweep line ¢; in every strip .S; to move on the boundary
of the upper and lower envelope of every strip. Suppose we know an optimum
solution OPT to the covering problem which covers every point only from above
or below. Consider the upper and lower envelopes of OPT. We can sweep the lines
£; through the solution OPT. All sweep lines l;, i = 1,2, ..., k, start somewhere
to the left of the setting such that they do not intersect any disk or point. We
move the sweep lines in discrete steps, always one line at a time. Every line [;
moves to the right, and visits (with its z-coordinate) the corners of the upper and
lower envelope of strip .S;. A corner of an envelope is the intersection point of two
disks which lies on the boundary of the envelope, or the intersection of a disk
with one of the horizontal lines that delineate the strip, and the intersection
lies on the boundary of the envelope. The sweeping process finishes when all
corners of every strip have been visited. For this we make the sweep lines finish
somewhere to the right of the setting, where no sweep line intersects a disk or a
point of the setting. If we count the weight of every visited disk, at the end we
end up with a weight that is at most three times w(OPT), as every disk can be

visited in at most three strips, and in every strip, we cannot count a disk more
than once (as the disk cannot appear more than once on the boundary of an
envelope [1]).

Our algorithm uses the sweeping approach to actually find a solution, i.e., to
find the corners of envelopes which then define the disks in the final solution. We
start with all sweep lines to the left of the setting. This indicates that no disk
was chosen to cover a point in any strip. For every sweep line ¢; we remember
the disks of the boundary of the upper and lower envelope that ¢; intersects at
any time (for this we see the horizontal lines that define the strip as virtual disks
of weight zero). The sweep line moves between corner points of the envelopes,
so the disks we remember are the two disks that form the newly visited corner
point, plus a disk that forms the boundary on the other envelope (upper or
lower). We assume here that if a sweep line visits a corner of the upper (lower)
envelope, then the lower (upper) envelope at this z-coordinate is formed by one
disk only. We note that this assumption is without loss of generality, as we can
initially rotate the whole problem setting so that this is true in every strip. For
this purpose, we denote the current status of line ¢; by ((d;,d,), (d;,d,.)) with
the meaning that d; and d, form the boundary of the upper envelope and dq
and d, form the boundary of the lower envelope at the position of the sweep
line [;. Since we assume that at any position of the sweep line one of the two
envelopes is formed by one disk only, we have d; = d, or d; = d,. For our
algorithm we require that a line ¢; can move from a corner point ¢ to a corner
point ¢’ only when all points between ¢ and ¢’ are covered by the disks that
form the boundary of the envelopes at ¢ and at ¢’. (That is, for example, if
line ¢; is at position = at state ((d;,d,), (d;,d,)) and moves to position 2’ with

Lr

state ((d},d.),(d},d.)) then all points in strip S; between z and z’ have to be

1> Yr
covered by disks d;,d,, d;, d,.,d,,d.,d;,d...) This restriction makes sure that if a
sweep line gets from the start to the end, all points in the strip are covered by
the chosen (visited) disks. If we do not pose any other restriction on the way
the sweep line may move, we could use the dynamic programming approach of
Ambiihl et al. [1] for each strip individually and then combine the solutions of
each strip to obtain a solution for the whole covering problem in k strips. As
was shown in [10] this leads to a 3-approximation algorithm. The approximation
ratio 3 comes from the fact that every disk can be counted three times, as it can

appear as part of an upper or lower envelope in three strips.

We now show how to do sweeping in all strips simultaneously, achieving a
better approximation ratio. We pose a new constraint on when a sweep line can
move. Consider a disk d from strip S; (i.e., the center of d lies in S;). The disk
can cover from above or from below points in at most three strips. Recall that
the disk cannot cover any point in the strip S;, as we are looking for solutions
where every point is covered only from above or from below. Fig. 2 illustrates
how a disk can intersect, besides .S;, two or three strips. In any case, a disk from
strip S; always intersects strips S;—1 and S;11. The constraint we pose on the
sweep lines is that a line ¢;_; for which the lower envelope L;_1 is formed by
disk d from strip S; can move to the next corner point of L;_; not formed by d

Si—2

Si1 d & d/ \
s [V(= JL)
Sit1 \\

Sit2

Fig. 2. Various examples of how a disk can cover points in strips. Disk d” can cover
points in S;_2 from below. Disks d, d’ and d” can cover points in S;_1 from below, and
points in S;+1 from above. Disk d can cover points in S;t2 from below.

only if disk d has already appeared on the upper envelope of the sweep line ¢;41
in strip S;+1 (provided that it appears on that upper envelope at all). In other
words, sweep line ¢;_1 at L;_; formed by d can move and “leave behind” disk d
only if sweep line ¢; 1 has already “met” d. If this is not the case, the line ¢;_;
cannot move and we say that ¢;_1 waits for the sweep line ¢;1,. Naturally, we
pose a similar constraint for the line ¢;11 with respect to line ¢;_1, i.e., line £;41
can move from a corner point (d, d’) of the upper envelope U;;1 to the right and
“leave behind” disk d only if the sweep line ¢;_; has already “met” the disk d in
strip S;—1. We call these constraints the move compatibility constraints.

While sweeping through the strips, we count the weight of disks that were
visited (i.e., the weight of disks that form the corner points which the sweep lines
visit). We do not count, however, the weight of disk d every time (otherwise we
would obtain a 3-approximation). If a line ¢; moves from a corner point (d,d")
to a corner point (d',d"), the weight of disk d” is added to the considered total
weight only if at that moment no other sweep line contains the disk d” already.
Assume without loss of generality that d” forms the lower envelope L; in S;.
Then, with the previously posed constraint on how the sweep lines can move, we
count the weight of the disk d” in strips S; and S;y2 only once. Thus, in total,
the weight of any disk d” used in the solution found by sweeping the lines in the
strips is counted at most twice. This motivates the sweep lines to visit already
used disks, as subsequent visits of a visited disk can cover points at no cost. This
is the main reason why we get a 2-approximation algorithm.

We want to find a minimum-weight solution that moves the sweep lines from
left to right and covers all points with visited disks. To find such a solution, we
construct an auxiliary graph G4 and compute a shortest path in this graph. The
vertex set V4 of the auxiliary graph G4 contains every possible configuration
of the sweep lines. We will interchangeably call a vertex of G4 a configuration
of the sweep lines. Clearly, every sweep line can be in at most n® different
configurations, as there are at most n? corner points in every strip, and thus for
any sweep line at a corner point, there can be at most n other disks forming the
boundary of the other envelope. Thus, having k strips, there are no more than
(0] ((n3)k) vertices in G 4. There are two special configurations. The start vertex
(or the start configuration) s corresponds to the situation when all sweep lines

are left of any disk, i.e., no disk forms an upper or lower envelope in any strip.
Similarly, the target vertex t of G 4 corresponds to the configuration where every
sweep line is right of any disk. We connect the vertices in G4 with weighted
edges. There is an edge between two configurations v and v’ if one move of a
sweep line /; in v results into the configuration v/, and the move of the sweep
line obeys the rule that all points between the original and new position of the
moved sweep line are covered by the disks that the sweep line registers. Let d”
be the disk that forms the corner point in v’ where the line ¢; moved to, but in v
the disk was not part of the envelopes in S;. The weight of the edge connecting
v and v’ is zero, if the disk d” appears at another sweep line in v, otherwise the
weight of the edge is wg, the weight of the disk d”.

Our algorithm finds a shortest path in G4 from s to t. This can be done in
polynomial time if & is a constant. The computed path determines a move of the
sweep lines from s to ¢, and the disks that the sweep lines meet is the solution of
our algorithm. If there exists a path between s and ¢ then clearly any such path
gives a solution to the covering problem in k strips. In the following we show that
the considered optimum solution OPT for the covering problem induces a path
between s and ¢ that additionally satisfies the move compatibility constraints.
As our algorithm computes a shortest path between s and ¢, the total weight
incurred by the sweep lines of our algorithm is at most the total weight incurred
by the sweep lines that follow the s-t path induced by OPT. As we have argued
above, the total weight of the s-t path induced by OPT is at most twice the
weight of disks in OPT, as every disk in OPT can be counted by the sweep
lines at most twice. Thus, the solution to the covering problem produced by our
algorithm is at most twice the weight of OPT, which shows that the algorithm
is a 2-approximation algorithm.

Lemma 3. Let G4 be the auziliary graph of the covering problem in k strips.
Let OPT be an optimum solution for the problem. There is a path from s tot in
G 4 that corresponds to OPT, i.e., the disks visited on the s-t path are ezactly
the disks of OPT, and satisfies the move compatibility constraints.

Proof. We will prove the claim by showing that at no point of time the sweep
lines traversing the optimum solution OPT get stuck, i.e., we show that there
is always a sweep line that can move to the right (unless, of course, the sweep
lines are at the target configuration t).

Clearly, at the beginning, all sweep lines are left of any disk (the configuration
s), and all sweep lines can move to the first disk in their respective strip (or to
the end, if there is no disk of OPT in the strip). Assume for a contradiction that
later in time, at a configuration v # t, no sweep line can move to the right, i.e.,
every sweep line ¢; that is not right of all disks waits for another sweep line to
move first. We say that the lines are in a deadlock.

Let S;« be the strip with the minimum index ¢, ¢ = 1,2,...,k, such that a
sweep line ¢; waits for another sweep line to move. Thus, from the minimality
of i*, the sweep line ¢;+» waits for a sweep line £;+ o to move. As we assume the
sweep lines are in a deadlock, sweep line ¢;« o waits for another sweep line —

% C/ b d'

*n

F

—
L]

X

¥’R
X
_/

Fig. 3. Illustration for the proof of Lemma 3

Ui 4o waits either for €, or for £;« 4. We will later show that no two sweep lines
l; and ¢; 1o can mutually wait for each other. Therefore, ;-5 does not wait for
l;«, and it thus waits for ¢;« 4. Then as the lines are in deadlock, ¢;«;4 waits
either for ¢;« o or for ¢;«,¢. Using the same argument, £;+ 4 waits for ;- .
Thus, using this argumentation iteratively, we end up claiming that ¢;«; waits
for £;« 15(j41), for any j > 0. This is not possible, as there are only k sweep lines.

We are left to show that the situation in which sweep lines ¢; and ¢; o wait
for each other does not occur. Assume such a situation. Sweep line ¢; waits for
sweep line ¢; o because ¢; wants to leave a disk d but the line ¢; ;5 did not pass
the disk d in strip S;y2 yet. Similarly, line ¢; 1o wants to leave a disk d’ but the
line ¢; did not pass the disk d’ in strip S;. We show that these assumptions give
contradicting claims on the position of the disks d and d’. Consider now the disks
d and d’ alone, i.e., without the other disks of OPT. Now, as ¢; is currently at
disk d and the line did not pass the disk d’ yet, disk d’ has to appear in S; after d.
This implies, however, that the center of d’ is strictly right of the center of d (in
terms of the z-coordinates). Fig. 3 illustrates this situation. Observe first that
if disk d’ (which appears right of d in S;) intersects disk d, say at point z, then
disk d’ can be seen as a rotation of disk d around point x in counterclockwise
direction. As the rotation leaves the center of the disk in the strip below, the
rotation translates the center of the disk strictly to the right. If the disk d’ does
not intersect d, we can move the disk d to the right until the first moment when
the translated disk d intersects d’. Repeating the argument we see that the center
of d' is strictly right of the center of d.

Similarly, we can argue for the positions of disks in strip S;42, leading to the
claim that the center of d’ is strictly left of the center of d. This is a contradiction
and the lemma follows. a

4 Conclusions

In this work we have presented a (44¢)-approximation algorithm for the problem
of computing a minimum-weight dominating set in unit disk graphs. The main
ingredient is a new 4-approximation algorithm for settings restricted to constant-
size squares. This, in turn, uses a new 2-approximation algorithm for the problem
of covering points in a constant-height strip only by disks from above or below.
The 2-approximation algorithm finds a solution by computing a shortest path in

an auxiliary graph that can be seen as mimicking a sweep-line approach with &
sweep lines, which in turn mimic computing k parallel dynamic programs. This
technique may be of independent interest. It remains open whether MWDS in
unit disk graphs admits a PTAS.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

C. Ambiihl, T. Erlebach, M. Mihaldk, and M. Nunkesser. Constant-factor approx-
imation for minimum-weight (connected) dominating sets in unit disk graphs. In
Proc. 9th International Workshop on Approzimation Algorithms for Combinatorial
Optimization Problems (APPROX), pages 3-14, 2006.

B. S. Baker. Approximation algorithms for NP-complete problems on planar
graphs. J. ACM, 41(1):153-180, 1994.

X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Du. A polynomial-time approx-
imation scheme for the minimum-connected dominating set in ad hoc wireless
networks. Networks, 42(4):202-208, 2003.

B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Math.,
86(1-3):165-177, 1990.

D. Dai and C. Yu. A 5+ e-approximation algorithm for minimum weighted domi-
nating set in unit disk graph. Theoret. Comput. Sci., 410(8-10):756-765, 2009.

. U. Feige. A threshold of In n for approximating set cover. J. ACM, 45(4):634-652,

1998.

M. R. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco, 1979.

S. Guha and S. Khuller. Improved methods for approximating node weighted
Steiner trees and connected dominating sets. Inform. and Comput., 150(1):57-74,
1999.

D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32(1):130-136, 1985.

Y. Huang, X. Gao, Z. Zhang, and W. Wu. A better constant-factor approximation
for weighted dominating set in unit disk graph. J. Comb. Optim., 2008.

H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz,
and R. E. Stearns. NC-approximation schemes for NP- and PSPACE-hard prob-
lems for geometric graphs. J. Algorithms, 26(2):238-274, 1998.

D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329-343,
1982.

M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple
heuristics for unit disk graphs. Networks, 25(2):59-68, 1995.

G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In
Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
770-779, 2000.

E. J. van Leeuwen. Approximation algorithms for unit disk graphs. In Proc. 31st
International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
pages 351-361, 2005.

V. V. Vazirani. Approzimation Algorithms. Springer, 2001.

F. Zou, X. Li, S. Gao, and W. Wu. Node-weighted steiner tree approximation in
unit disk graphs. Theoret. Comput. Sci., 18(4):342-349, 20009.

F. Zou, Y. Wang, X.-H. Xu, X. Li, H. Du, P. Wan, and W. Wu. New approxi-
mations for minimum-weighted dominating sets and minimum-weighted connected
dominating sets on unit disk graphs. Theoret. Comput. Sci., 2009. Article in Press.

