In Proceedings of the 31st International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2005), LNCS 3787, 2005, pp. 127-138. (©Springer-Verlag

Network Discovery and Verification*

Zuzana Beerliova', Felix Eberhard!, Thomas Erlebach?, Alexander Hall®,
Michael Hoffmann?, Mata§ Mihaldk?, and L. Shankar Ram!

! Department of Computer Science, ETH Ziirich
{bzuzana,mhall,lshankar}@inf.ethz.ch
2 Department of Computer Science, University of Leicester
{tel7 ,mh55,mm215}0@mcs.le.ac.uk

Abstract. Consider the problem of discovering (or verifying) the edges
and non-edges of a network, modeled as a connected undirected graph,
using a minimum number of queries. A query at a vertex v discovers (or
verifies) all edges and non-edges whose endpoints have different distance
from v. In the network discovery problem, the edges and non-edges are
initially unknown, and the algorithm must select the next query based
only on the results of previous queries. We study the problem using
competitive analysis and give a randomized on-line algorithm with com-
petitive ratio O(v/nlogn) for graphs with n vertices. We also show that
no deterministic algorithm can have competitive ratio better than 3. In
the network verification problem, the graph is known in advance and the
goal is to compute a minimum number of queries that verify all edges
and non-edges. This problem has previously been studied as the prob-
lem of placing landmarks in a graph or determining the metric dimension
of a graph. We show that there is no approximation algorithm for this
problem with ratio o(logn) unless P = N'P.

1 Introduction

In recent years, there has been an increasing interest in the study of networks
whose structure has not been imposed by a central authority but arisen from local
and distributed processes. Prime examples of such networks are the Internet and
unstructured peer-to-peer networks such as Gnutella. For these networks, it is
very difficult and costly to obtain a “map” providing an accurate representation
of all nodes and the links between them. Such maps would be useful for many
purposes, e.g., for studying routing aspects or robustness properties.

In order to create maps of the Internet, a commonly used technique is to
obtain local views of the network from various locations (vantage points) and
combine them into a map that is hopefully a good approximation of the real
network [2, 13]. More generally, one can view this technique as an approach for
discovering the topology of an unknown network by using a certain type of
queries—a query corresponds to asking for the local view of the network from

* Research partially supported by the EU within the 6th Framework Programme under
contract 001907 (DELIS).

one specific vantage point. In this paper, we formalize network discovery as
a combinatorial optimization problem whose goal is to minimize the number of
queries required to discover all edges and non-edges of the network. We study the
problem as an on-line problem using competitive analysis. Initially, the network
is unknown to the algorithm. To decide the next query to ask, the algorithm
can only use the knowledge about the network it has gained from the answers
of previously asked queries. In the end, the number of queries asked by the
algorithm is compared to the optimal number of queries sufficient to discover
the network. We consider a query model in which the answer to a query at
a vertex v consists of all edges and non-edges whose endpoints have different
(graph-theoretic) distance from v.

In the off-line version of the network discovery problem, the network is known
to the algorithm from the beginning. The goal is to compute a minimum number
of queries that suffice to discover the network. Although an algorithm for this
off-line problem would not be useful for network discovery (if the network is
known in advance, there is no need to discover it), it could be employed for
network verification, i.e., for checking whether a given map is accurate. Thus,
we refer to the off-line version of network discovery as network verification. Here,
we are interested in polynomial-time optimal or approximation algorithms.

Motivation. As mentioned above, the motivation for our research comes from
the problem of discovering information about the topology of communication
networks such as the Internet or peer-to-peer networks. The query model that we
study is motivated by the following considerations. First, notice that our query
model can be interpreted in the following way: A query at v yields the shortest-
path subgraph rooted at v, i.e., the set of all edges on shortest paths between
v and any other vertex. To see that this is equivalent to our definition (where
a query yields all edges and non-edges between vertices of different distance
from v), note that an edge connects two vertices of different distance from v if
and only if it lies on a shortest path between v and one of these two vertices.
Furthermore, the shortest-path subgraph rooted at v implicitly confirms the
absence of all edges between vertices of different distance from v.

Real-life scenarios where the shortest-path subgraph rooted at a node of the
network can be determined arise as follows. With traceroute tools, one can deter-
mine the path that packets take in the Internet if they are sent from one’s node
to some destination. If each traceroute experiment returns a random shortest
path to the destination, one could use repeated traceroute experiments to all
destinations to discover all edges of the shortest-path subgraph. Making a query
at v would mean getting access to node v and running repeated traceroute exper-
iments from v to all other nodes. If we assume that the cost of getting access to a
node is much higher than that of running the traceroute-experiments, minimiz-
ing the number of queries is a meaningful goal. Along similar lines, in a network
that routes all packets along arbitrary shortest paths, one could imagine a rout-
ing protocol in which each node stores the shortest-path subgraph rooted at that
node. In this case, reading out the routing table at a node would correspond to
making a query at that node.

Our model of network discovery is a simplification of reality. In real net-
works, routing is not necessarily along shortest paths, but may be affected by
routing policies, link qualities, or link capacities. Furthermore, routing tables or
traceroute experiments will often reveal only a single path (or at most a few
different paths) to each destination, but not the whole shortest-path subgraph.
Nevertheless, we believe that our model is a good starting point for a theoretical
investigation of fundamental issues arising in network discovery.

Related Work. Graph discovery problems have been studied in distributed
settings where one or several agents move along the edges of the graph (see,
e.g., [3]); the problems arising in such settings appear to require very different
techniques from the ones in our setting.

It turns out, however, that the network verification problem has previously
been considered as the problem of placing landmarks in graphs [9]. Here, the
motivation is to place landmarks in as few vertices of the graph as possible in
such a way that each vertex of the graph is uniquely identified by the vector
of its distances to the landmarks. The smallest number of landmarks that are
required for a given graph G is also called the metric dimension of G [8]. For a
survey of known results, we refer to [5]. Results for the problem variant where
extra constraints are imposed on the set of landmarks (e.g., connectedness or
independence) are surveyed in [11].

The problem of determining whether k landmarks suffice (i.e., of determining
if the metric dimension is at most k) is N'P-complete [6]; see [9] for an explicit
proof by reduction from 3-SAT. In [9] it is also shown that the problem of min-
imizing the number of landmarks admits an O(logn)-approximation algorithm
for graphs with n vertices, based on SETCOVER. For trees, they show that the
problem can be solved optimally in polynomial time. Furthermore, they prove
that one landmark is sufficient if and only if G is a path, and discuss properties
of graphs for which 2 landmarks suffice. They also show that if £ landmarks
suffice for a graph with n vertices and diameter D, we must have n < D* + k.
For d-dimensional grids they show that d landmarks suffice. For d-dimensional
hypercubes, a special case of d-dimensional grids, it was shown in [12] (using an
earlier result from [10] on a coin weighing problem) that the metric dimension is
asymptotically equal to 2d/log, d. See also [4] for further results on the metric
dimension of Cartesian products of graphs.

Our Results. For network discovery, we give a lower bound showing that no
deterministic on-line algorithm can have competitive ratio better than 3, and we
present a randomized on-line algorithm with competitive ratio O(y/nlogn) for
networks with n nodes. For the network verification problem, we prove that it
cannot be approximated within a factor of o(logn) unless P = NP, thus show-
ing that the approximation algorithm from [9] is best possible (up to constant
factors). We also give a useful lower bound formula for the optimal number of
queries of a given graph. The remainder of the paper is structured as follows.
Section 2 gives preliminaries and defines the problems formally. Sections 3 and 4
give our results for network discovery and network verification, respectively. Sec-
tion 5 points to open problems and promising directions for future research.

2 Preliminaries and Problem Definitions

Throughout this paper, the term network refers to a connected, undirected
graph. For a given graph G = (V, E), we denote the number of nodes by n = |V|
and the number of edges by m = |E|. For two distinct nodes u,v € V, we say
that {u,v} is an edge if {u,v} € E and a non-edge if {u,v} ¢ E. The set of
non-edges of G is denoted by E. We assume that the set V of nodes is known
in advance and that it is the presence or absence of edges that needs to be
discovered or verified.

A query is specified by a vertex v € V and called a query at v. The query at v
is also denoted by v. The answer of a query at v consists of a set E, of edges and
a set £, of non-edges. These sets are determined as follows. Label every vertex
u € V with its distance (number of edges on a shortest path) from v. We refer
to sets of vertices with the same distance from v as layers. Then E, is the set of
all edges connecting vertices in different layers, and E, is the set of all non-edges
whose endpoints are in different layers. Because the query result can be seen as
a layered graph, we refer to this query model as the layered-graph query model.

A set Q C V of queries discovers (all edges and non-edges of) a graph G =
(V,E) if Uyeq By = E and U, By = E. In the off-line case, we also say
“verifies” instead of “discovers”. The network verification problem is to compute,
for a given network G, a smallest set of queries that verifies G. The network
discovery problem is the on-line version of the network verification problem. Its
goal is to compute a smallest set of queries that discovers G. Here, the edges
and non-edges of G are initially unknown to the algorithm, the queries are made
sequentially, and the next query must always be determined based only on the
answers of previous queries.

We denote by OPT(G), for a given graph G, the cardinality of an optimal
query set for verifying G, and by A(G) the cardinality of the query set produced
by an algorithm A. The quality of an algorithm is measured by the worst possible
ratio A(G)/OPT(G) over all networks G. In the off-line case, an algorithm is
a p-approximation algorithm (and achieves approximation ratio p) if it runs in
polynomial time and satisfies A(G)/OPT(G) < p for all networks G. In the
on-line case, an algorithm is p-competitive (and achieves competitive ratio p)
if A(G)/OPT(G) < p for all networks G. It is weakly p-competitive if A(G) <
p- OPT(G)+ c for some constant c. If the on-line algorithm is randomized, A(G)
is replaced by E[A(G)] in these definitions. We do not require on-line algorithms
to run in polynomial time.

We use LG-ALL-DISCOVERY to refer to the network discovery problem
with the layered-graph query model and the goal of discovering all edges and
non-edges, and we use LG—ALL—VERIFICATION to refer to its off-line version.

3 Network Discovery

We consider the on-line scenario. Clearly, any algorithm that does not repeat
queries has competitive ratio at most n—1, since n—1 queries are always sufficient

to discover a network. Furthermore, the inapproximability result that we will de-
rive in Section 4 (Theorem 3) shows that we cannot hope for a polynomial-time
on-line algorithm with competitive ratio o(logn); it may still be possible to ob-
tain such a ratio using exponential-time on-line algorithms, however. We present
a lower bound on the competitive ratio of all deterministic on-line algorithms.

Theorem 1. No deterministic on-line algorithm for LG-ALL-DISCOVERY can
have weak competitive ratio 3 — € for any € > 0.

Proof. Let A be any deterministic algorithm for LG-ALL-Di1SCOVERY. We
first give a simpler proof that A cannot be better than 2-competitive. Con-
sider Fig. 1(a). We refer to the subgraph induced by the vertices labeled r, x, y,
and z as a 2-gadget. Assume that the given graph G consists of a global root g
and k, k > 2, disjoint copies of the 2-gadget, with the r-vertex of each 2-gadget
connected to the global root g. One can easily verify that OPT(G) = k for this
graph, and that the set of all z-vertices of the 2-gadgets constitutes an optimal
query set. On the other hand, algorithm A can be forced to make the first query
at g (as, initially, the vertices are indistinguishable to the algorithm). This will
not discover any information about edges or non-edges between vertices x, y
and z of each 2-gadget. The only queries that can discover this information are
queries at x, y and z. In fact, a query at x or y suffices to discover the edge be-
tween x and y and the non-edges between x and z and between y and z. When
A makes the first query among the vertices in {z,y, z} of a 2-gadget, we can
force it to make that query at z, since the three vertices are indistinguishable to
the algorithm. The query at z does not discover the edge between x and y. The
algorithm must make a second query in the 2-gadget to discover that edge. In
total, the algorithm must make at least 2k + 1 queries. As the construction works
for arbitrary values of k, this shows that no deterministic on-line algorithm can
guarantee weak competitive ratio 2 — ¢ for any constant € > 0.

To get a stronger lower bound of 3, we create a new gadget, called the 3-
gadget, as shown in Fig. 1(b). The 3-gadget is the subgraph induced by all
vertices except ¢ in the figure. We claim that A can be forced to make 6 queries
in each 3-gadget, whereas the optimum query set consists of only 2 vertices in
each 3-gadget (drawn shaded in the figure). If we construct a graph with k,
k > 2, disjoint copies of the 3-gadget, the s-vertex in each of them connected to
the global root g as indicated in the figure, we get a graph G for which we claim
that OPT(G) = 2k and the algorithm A can be forced to make at least 6k + 1
queries. This shows that no deterministic on-line algorithm can guarantee weak
competitive ratio 3 — ¢ for any constant € > 0.

To see that OPT(G) = 2k, let Q be the set of queries consisting of the two
shaded vertices from each copy of the 3-gadget as shown in Fig. 1(b). We claim
that @ discovers G. This can be verified manually as follows: For every vertex
in a 3-gadget II, consider the 3-tuple whose components are the distances from
that vertex to the two query vertices in I and the distance to an arbitrary query
vertex from @ outside I7. One finds that each vertex in I has a unique 3-tuple,
showing that all edges and non-edges of I are discovered by @. Each non-edge

Fig. 1. Lower bound constructions

between two different 3-gadgets is discovered by one of the queries inside these
two 3-gadgets. The edges and non-edges between g and each 3-gadget are also
discovered. Hence, OPT(G) < 2k. We have OPT(G) > 2k, because each of the
edges {z,y} and {2’,y'} (see Fig. 1(b)) of a 3-gadget requires a separate query.

To show that A(G) > 6k + 1, we argue as follows. First, we can force A to
make the first query at g. This will not reveal any information about edges within
the same layer of any of the 3-gadgets. We view each 3-gadget as consisting of
s and a left part, a middle part, and a right part. The left part consists of
the left child of s and its four adjacent vertices below (these four vertices are
called bottom vertices, and the left child of s is called the root of that part); the
middle and right part are defined analogously. The three parts of a 3-gadget IT
are indistinguishable to A until it makes its first query inside I7. A query at s
would not discover any new information about I, so we can ignore queries that
A might make at s in the following arguments. When A makes its first query
inside I1, we can force this query to be in the middle part, and we can force it to
be at u or v. In both cases, the query does not discover any information about
the edges and non-edges between the bottom vertices of the left part, nor does
it discover any information about the edges and non-edges between the bottom
vertices of the right part, nor does it discover the edge drawn dashed. When A
chooses its second query in 17, it could be in the left part, in the middle part, or
in the right part. Assume that A chooses the left part; since the bottom vertices
of the left part are still indistinguishable to A, we can force A to make the query
either at the root of the left part or at the bottom vertex ¢. Similarly, in the
right part we can force A to make the query at its root or at ¢’. In the middle
part, A can make the query anywhere. In any case, the second query made by A
does not discover any information about edges and non-edges between vertices
in the set {z,y, z} and in the set {2/, 3/, 2’}. Similarly as in the case of Fig. 1(a),
for each of these sets we can force A to make the first query at z (at 2’) and thus
require a second query at z or y (at =’ or y') to discover everything about these
groups. In total, A must make at least 6 queries in each 3-gadget. a

With the gadget of Fig. 1(a) one can prove easily that no randomized on-line
algorithm for LG-ALL-DISCOVERY can have weak competitive ratio 4/3 — ¢ for
any € > 0; just observe that we can force a randomized algorithm to make the

E —0; /* discovered edges */
N —0; /* discovered non-edges */
A — (‘2/), /* all pairs of distinct nodes */
/* Phase 1 */
for i =1 to 3vnlnn do
v «— randomly chosen node from V/;
(Ey, Ny) « query(v);
E—FEUE;
N «— N U Ny;
od;
/* Phase 2 */
while FUN # A do
{u,v} «— an arbitrary element of A\ (EU N);
(Eu, Nu) < query(u);
(Ev, Nv) < query(v);
E— FUFE,UFE,;
N «— N UN, U Ny;
S < set of nodes from which the (non-)edge {u, v} is discovered;
foreach z € S\ {u,v} do
(Ea, No) < query(z);
E — EUE,;
N +— NU Ng;
od;
od;

Fig. 2. On-line algorithm for LG-ALL-DISCOVERY

first query at z with probability at least 1/3. Note that all lower bounds on the
weak competitive ratio also hold for the (standard) competitive ratio where no
additive constant c is allowed.

Theorem 2. There is a randomized on-line algorithm that achieves competitive
ratio O(y/nlogn) for LG-ALL-DISCOVERY.

Proof. The on-line algorithm is shown in Fig. 2. In the first phase, it makes
3vnlnn queries at nodes chosen uniformly at random. In the second phase, as
long as node pairs with unknown status exist, it picks an arbitrary such pair
{u, v} and proceeds as follows. First, it queries v and v in order to determine the
distance of all nodes to u and v. From this it can deduce the set S of nodes from
which the edge or non-edge between uw and v can be discovered; these are simply
the nodes for which the distance to u differs from the distance to v. Then, it
queries all remaining nodes in S.

To analyze the algorithm, it is helpful to view LG-ALL-DISCOVERY as a
HITTINGSET problem. For every edge or non-edge {u,v}, let Sy, be the set of
nodes from which a query discovers {u, v}. The task of the LG-ALL-DISCOVERY
problem translates into the task of computing a subset of V that hits all sets
Suv- The goal of the first phase is to hit all sets that have size at least vnlnn

with high probability. If this succeeds, the problem remaining for the second
phase is a HITTINGSET problem where all sets have size at most vnlnn. The
algorithm of the second phase repeatedly picks an arbitrary set that is not yet
hit, and includes all its elements in the solution. As the sets have size at most
vnlnn, the number of queries made in the second phase is at most a factor of
vnlnn away from the optimum.

Let us make this analysis precise. Consider a node pair {u, v} for which the set
Suv has size at least vn Inn. In each query of the first phase, the probability that
Suv 18 not hit is at most 1 — —V”Tin” — 1 Yaon Thus, the probability that S, is

Jn
Vinn 3vVnlnn
not hit throughout the first phase is at most (1 — ¥ <e 3l — L
vn n

There are at most (}) sets Sy, of cardinality at least v/nInn. The probability
that at least one of them is not hit in the first phase is at most (}) - 5 < +.

Now consider the second phase, conditioned on the event that the first phase
has hit all sets Sy, of size at least vnlInn. In each iteration of the while-loop
of the second phase, the algorithm asks at most vnlInn queries. Let ¢ be the
number of iterations. It is clear that the optimum must make at least ¢ queries,
because no two unknown pairs {u,v} considered in different iterations of the
second phase can be resolved by the same query.

Since OPT(G) > 1 and OPT(G) > ¢, the number of queries made by the
algorithm is at most 3vnlnn + ¢vnlnn = O(y/nlogn) - OPT(G).

With probability at least 1 — %, the first phase succeeds and the algorithm
makes O(y/nlogn)- OPT(G) queries. If the first phase fails, the algorithm makes
at most n queries. This case increases the expected number of queries made by
the algorithm by at most % -n = 1. Thus, the expected number of queries is at

most O(y/nlogn) - OPT(G) + L -n = O(v/nTogn) - OPT(G). 0

4 Network Verification

Theorem 3. It is N'P-hard to approzimate LG—ALL—VERIFICATION within
ratio o(logn).

Proof. We prove the inapproximability result using an approximation-preserving
reduction from the test collection problem (TCP):

Problem TCP

Input: ground set S and collection C of subsets of S

Feasible solution: subset C’ C C such that for each two distinct elements
and y of S, there exists a set C' € C’ such that exactly one of z and y is in C.

Objective: minimize the cardinality of C’

In the original application for TCP, S is a set of diseases and C is a collection of
tests. A test C' € C, applied to a patient, will give a positive result if the patient
is infected by a disease in C. If a patient is known to be infected by exactly one
of the diseases in .S, the goal of TCP is to compute a minimum number of tests
that together can uniquely identify that disease.

Without loss of generality, we can restrict ourselves to instances of TCP in
which any two elements of the ground set can be separated by at least one of
the sets in C; instances without this property do not have any feasible solutions.

Halldérsson et al. |[7] prove that TCP cannot be approximated with ratio
o(log|S|) unless P = N'P. Their proof uses an approximation-preserving reduc-
tion from SETCOVER; the latter problem was shown NP-hard to approximate
within o(logn), where n is the cardinality of the ground set, by Arora and
Sudan [1]. The proof by Arora and Sudan establishes the inapproximability re-
sult for SETCOVER even for instances in which the size of the ground set and
the number of sets are polynomially related. The reduction from SETCOVER to
TCP maintains this property. Hence, we know that it is NP-hard to approxi-
mate TCP with ratio o(log |S|) even for instances satisfying |C| < | S| for some
positive constant g.

Let an instance (S, C) of TCP be given. Let nrcp = |S| and mrcp = |C|. By
the remark above, we can assume that mrcp = ng&),. We construct an instance
G = (V, E) of LG-ALL-VERIFICATION as follows. First, we add nrcp + mrcp
vertices to V: an element vertex vs for every element s € S and a test vertex
uc for every C' € C. We initially add the following edges to F: Any two element
vertices are joined by an edge, and every test vertex uc¢ is joined to all element
vertices vy with s € C. The idea behind this construction is that queries at
test vertices verify all edges in the clique of element vertices if and only if the
corresponding tests form a test cover. We have to extend the construction slightly
since, in LG-ALL—-VERIFICATION, the edges and non-edges incident to the test
vertices need to be verified as well. We add h = 2([logmrcp]| + 2) auxiliary
vertices w1, ..., wy to take care of this. For each i, 1 < i < h/2, the auxiliary
vertices wo;_1 and wo; are said to form a pair. In addition, we add one extra
node z. We add the following edges:

— The two auxiliary vertices in each pair are joined by an edge.

— Number the mrcp test vertices arbitrarily from 0 to mrcp — 1. Both aux-
iliary vertices in the i-th pair, 1 < i < h/2 — 2, are joined to those of the
mrcp test vertices whose number has a 1 in the i-th position of its binary
representation.

— Both auxiliary vertices in the last two pairs are joined to all test vertices.

— The extra node z is joined to all other vertices of the graph.

The graph constructed in this way is denoted by G = (V, E). See Fig. 3 for an
illustration. We prove two claims:

Claim 1. Given a solution C’ to the TCP instance (S,C), there is a solution @
of the constructed instance G = (V, FE) of LG-ALL-VERIFICATION satisfying
Q| = IC"[+ [log mrcp] + 2.

Proof (of Claim 1). Let a solution C’ to the TCP instance (5, C) be given. Let Q
contain all test vertices corresponding to sets C' € C’ as well as the first vertex of
every pair of auxiliary vertices. Obviously, we have |Q| = |C’| 4+ [logmTcp | + 2.
It is not difficult to verify that @) discovers all edges and non-edges of G. a

element
vertices

test
vertices

auxiliar
1 2 3 *Z\“/ *g‘*/ verticesy
Fig. 3. Illustration of the construction of the graph G = (V, E) that is an instance
of LG-ALL—VERIFICATION. The auxiliary vertices in pairs 4 and 5 are adjacent to
all test vertices. The auxiliary vertices in pair i, 1 < i < 3, are adjacent to the test
vertices whose number has a 1 in position ¢ of the binary representation. For example,
the auxiliary vertices in pair 2 are adjacent to test vertices 2,3,6 and 7

Claim 2. Given a solution @ to the constructed instance G = (V, E) of LG—
ALL-VERIFICATION, one can construct in polynomial time a solution C’ of the
original TCP instance (S,C) satisfying |C'| < |Q| — [logmrcp]| — 2.

Proof (of Claim 2). Observe that @ must contain at least one vertex from
each pair of auxiliary vertices; otherwise, the edge joining this pair would not
be discovered. The queries at these vertices do not discover any edges between
element vertices (all element vertices are at distance 2 from any auxiliary vertex
because of the extra vertex z). Let Q' be the vertices in @) that are not auxiliary
vertices. We have |Q’| < |Q|—[log mTcp]—2. Now, Q' is a set of element vertices
and test vertices that, in particular, discovers all edges between element vertices.

Let Qs be the set of element vertices in Q" and let Q¢ be the set of test vertices
in Q. If Qs is empty, the queries at the vertices in Q¢ discover all edges of the
clique of element vertices. In particular, this means that for any two distinct
element vertices vs and v; in V, there must be a query at a vertex adjacent to
one of v, v; but not to the other. This shows that the set ¢’ = {C € C | uc € Q'}
is a solution of the original TCP instance of the required size.

Now assume g is nonempty. The set of edges between element vertices that
are not discovered by Q¢ is a disjoint union of cliques. The queries in Qs must
discover all edges in these cliques. As the only edges between element vertices
that a query at an element vertex discovers are the edges incident to that vertex,
a clique of size k requires k—1 queries. Assume that there are p cliques and denote
the number of vertices in these cliques by ki, ..., k,. Then Qs contains at least

P (k; — 1) vertices. All edges in a clique of size k can always be discovered by
k — 1 queries at test vertices: simply select these queries greedily by choosing,
as long as there is an edge {u,v} in the clique that has not yet been discovered,
any test vertex that is adjacent to one of u,v but not the other. Hence, we can
replace the queries in Qg by at most > ©_, (k; — 1) queries at test vertices and

add these to Q¢, obtaining a set of queries at test vertices that discovers all edges
between element vertices. As in the previous paragraph, this set of test vertices
gives a solution to the original TCP instance of cardinality at most |Q’|. O

Assume there is an approximation algorithm A for LG—ALL—VERIFICATION
that achieves ratio o(logn), where n = |V|. Consider the algorithm B for
TCP that, given an instance of TCP, constructs an instance of LG-ALL-
VERIFICATION as described above, applies A to this instance, and transforms the
result into a solution to the TCP instance following Claim 2. Recall that mrcp =
ngélll. We claim that B achieves ratio o(lognrcp) for TCP. Let OPTrcp be the
optimum objective value for the given TCP instance and OPT1¢ be the opti-
mum objective value for the constructed instance of LG—ALL—VERIFICATION.
Let Brcp and Ay denote the objective values of the solutions computed by B
and A, respectively. Note that OPTrcp > lognrcp always holds, since nrcp
elements cannot be separated by fewer than lognrcp test sets.

Claims 1 and 2 imply that OPTrcp = OPT1c — [logmrcp| — 2. We have
OPTigc = OPTrcp+ ﬂog mTCﬂ +2 < OPTrcp +O(10g ’nTcp) = O(OPTTCP).
Claim 2 implies Brcp < Apc and thus we get Brep < o(logn) - OPTLg =
o(logn) - O(OPTrcp) = o(lognrcp) - O(OPTrcp), where the last equality fol-
lows from n = nrcp + mrcp + 2([logmrcp] +2) +1 = ng&),. This shows
Brep < o(lognrep) - OPTrcp and completes the proof of Theorem 3. O

Theorem 4. If a graph G = (V, E) contains a subgraph H of diameter Dy with
ng vertices, then OPT(G) > logp, 1 nH.

Proof. Tmagine the queries being performed sequentially. At any instant, the
unknown edges and non-edges induce disjoint cliques, which we call unknown
groups. Two vertices are in the same unknown group if and only if they were in
the same layer of all queries made so far. Consider the ny vertices of subgraph H.
Initially, all vertices form an unknown group. For each query, the ny vertices of
H will be in at most Dy + 1 consecutive layers of the layered graph returned
by the query. Therefore, after the first query, at least ny/(Dgy + 1) vertices of
H will still be in the same unknown group. Similarly, after k queries, at least
ny/(Dy + 1) vertices of H will be in an unknown group together. If k queries
suffice to verify all edges and non-edges, the unknown groups must be singletons
in the end. So we must have ny/(Dy + 1)¥ < 1. This proves the theorem. O

This theorem implies that a graph containing a clique on k vertices requires
at least log, k queries, and a graph with maximum degree A at least logs(A+1)
queries. For the former, take H to be the clique on k vertices, and for the latter,
take H to be the subgraph induced by a vertex of degree A and its neighbors.

5 Directions for Future Work

In this paper, we have considered network discovery and network verification
problems in the layered-graph query model. The goal was to discover or verify
all edges and non-edges of a network. For network discovery, the major problem

left open by our work is to close the gap between our randomized upper bound
of O(v/nlogn) and the small constant lower bounds.

The subject of our study is an example of a family of problem settings in
which the goal is to discover or verify information about a graph using queries.
Different problems are obtained if the query model is varied, or if the objective
is changed. Other natural query models are, e.g., that a query at v returns only
the distances from v to all other vertices of the graph; that a query is specified by
two vertices v and v, and returns the set of all edges on shortest paths between
u and v; or that a query returns an arbitrary shortest-path tree rooted at v.
Concerning the objective, the goal could be to discover or verify a certain graph
parameter such as diameter, average path length, or independence number. One
could also relax the requirement and only ask for an approximate answer, e.g.,
one could consider the problem of minimizing the number of queries required to
approximate the average path length within a factor of 1 + . We believe that
the study of such problems could be a fruitful area of research with applications
in the monitoring and analysis of communication networks such as the Internet.

References

1. S. Arora and M. Sudan. Improved low-degree testing and its applications. In Proc.
29th Ann. ACM Symp. on Theory of Computing (STOC’97), pages 485-495, 1997.

2. P. Barford, A. Bestavros, J. Byers, and M. Crovella. On the marginal utility of
deploying measurement infrastructure. In Proc. ACM SIGCOMM Internet Mea-
surement Workshop 2001, November 2001.

3. M. A. Bender and D. K. Slonim. The power of team exploration: Two robots can
learn unlabeled directed graphs. In Proc. 85th Ann. IEEE Symp. on Foundations
of Computer Science (FOCS’94), pages 75-85, 1994.

4. J. Céceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, and D. R.
Wood. On the metric dimension of Cartesian products of graphs. Manuscript, 2005.

5. G. Chartrand and P. Zhang. The theory and applications of resolvability in graphs:
A survey. Congr. Numer., 160:47-68, 2003.

6. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

7. B. V. Halldérsson, M. M. Halldorsson, and R. Ravi. On the approximability of
the minimum test collection problem. In Proc. 9th Ann. European Symposium on
Algorithms (ESA’01), LNCS 2161, pages 158-169. Springer-Verlag, 2001.

8. F. Harary and R. Melter. The metric dimension of a graph. Ars Combin., 2:191—
195, 1976.

9. S. Khuller, B. Raghavachari, and A. Rosenfeld. Landmarks in graphs. Discrete
Appl. Math., 70:217-229, 1996.

10. B. Lindstrom. On a combinatory detection problem I. Magyar Tud. Akad. Mat.
Kutatd Int. Kizl., 9:195-207, 1964.

11. V. Saenpholphat and P. Zhang. Conditional resolvability in graphs: A survey. Int.
J. Math. Math. Sci., 38:1997-2017, 2004.

12. A. Seb6 and E. Tannier. On metric generators of graphs. Math. Oper. Res.,
29(2):383-393, 2004.

13. L. Subramanian, S. Agarwal, J. Rexford, and R. Katz. Characterizing the Internet
hierarchy from multiple vantage points. In INFOCOM’02, June 2002.

