
Minimum Spanning Tree Verification under

Uncertainty

Thomas Erlebach and Michael Hoffmann

Department of Computer Science, University of Leicester, England
{te17,mh55}@mcs.le.ac.uk

Abstract. In the verification under uncertainty setting, an algorithm
is given, for each input item, an uncertainty area that is guaranteed to
contain the exact input value, as well as an assumed input value. An
update of an input item reveals its exact value. If the exact value is equal
to the assumed value, we say that the update verifies the assumed value.
We consider verification under uncertainty for the minimum spanning
tree (MST) problem for undirected weighted graphs, where each edge is
associated with an uncertainty area and an assumed edge weight. The
objective of an algorithm is to compute the smallest set of updates with
the property that, if the updates of all edges in the set verify their as-
sumed weights, the edge set of an MST can be computed. We give a
polynomial-time optimal algorithm for the MST verification problem by
relating the choices of updates to vertex covers in a bipartite auxiliary
graph. Furthermore, we consider an alternative uncertainty setting where
the vertices are embedded in the plane, the weight of an edge is the Eu-
clidean distance between the endpoints of the edge, and the uncertainty
is about the location of the vertices. An update of a vertex yields the ex-
act location of that vertex. We prove that the MST verification problem
in this vertex uncertainty setting is NP-hard. This shows a surprising dif-
ference in complexity between the edge and vertex uncertainty settings
of the MST verification problem.

1 Introduction

In this paper we consider settings where a solution to a combinatorial problem
needs to be computed and where the input data of the problem might change
over time. We assume that the data cannot change arbitrarily and thus the
new data is guaranteed to be somewhat close to the old data, represented by
an uncertainty area for each input data item. The operation of checking the
current exact value of an input item, which we also refer to as an update, may
be expensive, so we want to avoid applying it to all input data items. Moreover,
it is possible that the input data is stable and has not changed. One would then
like to verify for a small set of input data that their values have not changed
so that a solution to the combinatorial problem can be calculated based on the
verified input data and the given uncertainty areas. We refer to problems of this
kind as verification under uncertainty.

In practice, such settings arise naturally, e.g., when maintaining an optimal
routing structure in wireless networks with nodes that are generally static but
may occasionally move within a limited area. If the exact node positions were
known at some point in the recent past, the possible node positions at the current
time are known to lie in uncertainty areas that are limited regions around the
original positions of the nodes. One can also imagine scenarios in which nodes
automatically send a notification message if their location changes by more than
a certain threshold. In such scenarios, if none of the nodes has sent a notification
since the last determination of exact positions, the area within the threshold
distance of the previous location of a node becomes its uncertainty area. As the
size of such uncertainty areas is independent of the time that has elapsed since the
last determination of the exact position, frequent requests to compute a solution
are better addressed in the verification setting. Finally, in a network setting
where edge weights represent link congestion, we may again have scenarios where
exact weights were known at a point in the past and the current edge weights
are guaranteed to lie in certain intervals represented by uncertainty areas. These
scenarios have in common that it is possible to obtain the exact current data
(node positions or link congestion values) at some cost, and one is interested in
being able to compute a solution after verifying only for a small subset of the
input data that the data has not changed.

In this paper, we consider the minimum spanning tree (MST) verification
problem under uncertainty. The MST is one of the most fundamental graph
structures and relevant in many application areas, including routing in wireless
ad-hoc networks. We study two uncertainty settings: In the edge uncertainty
setting, each edge e has an uncertainty area Ae that is guaranteed to contain its
current weight, and an update of the edge reveals its exact current weight. In
the vertex uncertainty setting, the graph is a complete graph embedded in the
plane and the weight of an edge is the Euclidean distance between its endpoints.
The uncertainty is in the positions of the nodes, and an update of a node reveals
its exact current position. In both settings, the goal is to compute a minimum
set of updates such that, if these updates verify the expected input data, the
edge set of an MST can be calculated.
Our Results. We obtain the following results for MST verification under un-
certainty:

– For MST verification under edge uncertainty, provided that the uncertainty
areas are open sets or trivial (i.e., contain only one value), we obtain a
polynomial-time optimal algorithm by relating sets of updates to vertex cov-
ers in a bipartite auxiliary graph that is constructed by adapting a witness
set algorithm.

– We show that MST verification under vertex uncertainty is NP-hard even
if the uncertainty areas are trivial or open disks. The proof is by reduction
from the vertex cover problem for planar graphs with maximum degree 3.

– As an auxiliary result used in the NP-hardness proof, we show that every
planar graph of maximum degree 5 can be represented by a unit disk graph
(after introducing degree-two vertices on each edge of the planar graph).

2

Although embeddings of planar graphs as unit disk graphs have been used in
the past for NP-hardness proofs, our embedding of planar graphs of degree 5
may be of independent interest.

Our work contributes to the wider research area of computing under uncertainty
that studies the problem of minimizing the cost of obtaining exact input values
in settings where some of the input data is uncertain. Traditional research in
optimization assumes that all input data is given precisely. In cases where the
input data is not known precisely (e.g., only a probability distribution for the
input data values is known), a substantial amount of research in areas such
as stochastic programming or robust optimization has focussed on computing
solutions that are good (e.g., in expectation, with high probability, or in the
worst case) no matter what the exact values of the input data are. The area
of computing under uncertainty approaches problems with uncertain input data
from a different angle by assuming that an algorithm can obtain the exact value
of an input data item at a certain cost (by performing an update), and aiming
to minimize the cost of updates while guaranteeing that an exact solution can
be computed.

Work in computing under uncertainty falls in three main categories: In the
adaptive online setting an algorithm initially knows only the uncertainty areas
and performs updates one by one (determining the next update based on the
information from previous updates) until it has obtained sufficient information
to determine a solution. Algorithms are typically evaluated by competitive anal-
ysis, comparing the number of updates they make with the minimum number
of updates that, in hindsight, would have been sufficient to determine a solution
(referred to as the offline optimum). In the non-adaptive online setting an algo-
rithm is also given only the uncertainty areas initially, but it must determine a
set U of updates such that after performing all updates in U it is guaranteed
to have sufficient information to determine a solution. Finally, there is the ver-
ification setting that was already described above. It is worth noting that the
optimal update set of the verification setting is also the offline optimum of the
adaptive online setting. Therefore, algorithms solving the verification problem
are also useful for the experimental evaluation of algorithms for the adaptive
online setting.

Related Work. Kahan [7] presented a model for handling imprecise but up-
dateable input data. He demonstrated his model on a set of real numbers where
instead of the precise value of each number an interval was given. That interval
when updated reveals that number. The aim is to determine the maximum, the
median, or the minimal gap between any two numbers in the set, using as few
updates as possible. His work included a competitive analysis for this type of
online algorithm, where the number of updates is measured against the optimal
number (OPT) of updates. For the problems considered, he presented online
algorithms with optimal competitive ratio. Feder et al. [4] studied the problem
of computing the value of the median of an uncertain set of numbers up to a
certain tolerance. Applications of uncertainty settings can be found in many dif-

3

ferent areas including databases, geometry and structured data such as graphs.
The work presented in this paper mainly concerns the latter two areas.

Bruce et al. [1] studied geometric uncertainty problems in the plane. Here, the
input consists of points in the plane and the uncertainty information is for each
point of the input an area that contains that point. They presented algorithms
with optimal competitive ratio for the maximal point problem and the convex
hull problem. Both algorithms are based on a more general technique called a
witness set algorithm that was introduced in their paper.

Examples of uncertainty applications to graphs include [3], where Feder et
al. investigated shortest paths on graphs with uncertain edge weights. They
allowed a precision factor limiting the deviation from the actual shortest path
and presented results on adaptive as well as non-adaptive updates.

In [2], Erlebach et al. studied the adaptive online setting for MST under two
types of uncertainty: the edge uncertainty setting, which is the same as the one
considered by Feder et al. [3], and the vertex uncertainty setting. In the latter
setting, all vertices are points is the plane and the graph is a complete graph with
the weight of an edge being the distance between the vertices it connects. The
uncertainty is given by areas for the location of each vertex. For both settings,
Erlebach et al. presented algorithms with optimal competitive ratio for the MST
under uncertainty. The competitive ratios are 2 for edge uncertainty and 4 for
vertex uncertainty, and the uncertainty areas must satisfy certain restrictions
(which are satisfied by, e.g., open and trivial areas in the edge uncertainty case).
A variant of computing under uncertainty where updates yield more refined
estimates instead of exact values was studied by Gupta et al. [6].

A different setting of the MST under vertex uncertainty was studied by Ka-
mousi et al. [8]. They assume that point locations are known exactly, but each
point i is present only with a certain probability pi. They show that it is #P-
hard to compute the expected length of an MST even in 2-dimensional Euclidean
space, and provide a fully polynomial randomized approximation scheme for met-
ric spaces.
Paper Outline. In Section 2 we give formal definitions and preliminaries.
Section 3 presents our optimal algorithm for MST verification under edge uncer-
tainty. In Section 4 we give the proof of NP-hardness for MST verification under
vertex uncertainty.

Some proofs of Sections 3 and 4 are omitted.

2 Preliminaries

Within the wider field of problems under uncertainty we consider the minimum
spanning tree problem for graphs under uncertainty. We consider undirected
weighted graphs G = (V,E) under two different types of uncertainty. In an edge
uncertainty graph, the weight We of an edge e might not be known exactly, but
instead a set Ae of possible values of We is given. We let W be the set that
contains for each e ∈ E the exact weight We, and A the set that contains for
each e ∈ E its uncertainty area Ae. We refer to A as the areas of uncertainty.

4

In this type of uncertainty, the update of an edge e reveals its exact weight We.
This effectively changes the uncertainty area Ae to the singleton set containing
just We (we call such a set trivial). An instance of the mst-edge-uncertainty
problem is given by (G,W,A).

In the second type of uncertainty, we consider vertex uncertainty graphs. Here
the graph is a complete graph embedded in the plane. The weight of each edge
is given by the distance of the vertices that it connects. For each vertex v ∈ V
the location of v might not be known exactly, but instead a set Av of possible
locations of v is given, and A is the family of all these uncertainty areas Av.
An update of a vertex v reveals the exact location Pv of v. An instance of the
mst-vertex-uncertainty problem is given by (G,P,A), where P is the set
containing the precise vertex location Pv for each v ∈ V .

In the online setting, the precise information (W for edge uncertainty and
P for vertex uncertainty graphs) is not known to the algorithm; the algorithm
has to request updates until A is precise enough to allow the calculation of an
MST of G. In the verification setting, the sets W or P respectively are given to
the algorithm. This additional information is not used to calculate an MST of
G directly, but it is used to determine which updates should be made so that an
MST of G can be calculated based on the updated areas of uncertainty. A set of
updates that reveals enough information so that an MST ofG can be calculated is
called an update solution, and the set of all update solutions is denoted by S. For
a given instance of a problem, we denote the size of the smallest update solution
by OPT . In the verification setting, the goal of an algorithm is to calculate an
update solution of size OPT .

In the remainder of the paper we will use the following notion: G = (V,E) is
the weighted undirected graph for which an MST should be found; we say U is
an uncertainty graph of G if it consists of the same edges and vertices as G, but
only contains the uncertain information as specified by A. S is the set of update
solutions, and OPT is the size of the smallest element of S.

 a

f

 c

1

(6−12)

(2−7)

(1−6)

 d

 e

4

b

3 a c

f

8

4

1

3

 d

 e

4

 b

3

Fig. 1. Example of graph G (left) and edge uncertainty graph U (right)

In Figure 1, the left-hand side shows a graph G, and an uncertainty graph
U of G is given on the right. G has two minimal spanning trees, with edge
sets {b, c, d, f} and {b, d, e, f}. None of them can be calculated based on the
information of U alone, as for example the weight of the edge a could be smaller

5

than that of b. The set of update solutions is S = {{a, b, e}, {a, e}, {b, e}}, and
both {a, e} and {b, e} have minimum size. Thus, in this example OPT is 2.

3 Verification under Edge Uncertainty

In this section we give a polynomial-time algorithm formst-edge-uncertainty.
We assume that the uncertainty areas of the edge weights are trivial or open ar-
eas. The first phase of the algorithm is based on the algorithm U-Red that
was presented in [2] for the adaptive online version of the MST under edge
uncertainty problem. Adopting the principles of this online algorithm to the
verification setting is non trivial. Roughly speaking, the algorithm U-Red re-
peatedly identifies an edge e that, based on the current areas of uncertainty, may
or may not be in an MST. It then identifies at most two edges such that without
updating any of the two edges the edge e can neither be included nor excluded
from any MST (these two edges thus form a so-called witness set), and updates
both of the edges.

Whereas U-Red updates both of these edges, we utilize the additional infor-
mation of the precise values that are available in the verification setting. It turns
out that with this information we can always arrive at one of the following two
cases: (1) There is a single edge f such that, without updating f , the edge e can
neither be included nor excluded from any MST. In this case, we record that f
is needed to be in any update solution and simulate for U-Red the update of f .
(2) There is a choice of edge sets whose updates can determine whether e is in
an MST or not. In this case, we record the choice. We can prove that this can
only happen when e is not in any MST, so we remove that edge and continue
the simulation of U-Red.

After the simulated run of U-Red, we have established a set of updates
that are common among all update solutions and we have also recorded a set of
choices. We show that each choice is between a single edge and a single set of
edges. We also show that the set of choices has additional properties that allow
us to model it as a bipartite graph in such a way that a minimum vertex cover of
the bipartite graph yields a minimum set of updates to cover all choices. Together
with the already established set of common updates this gives a minimum update
solution for mst-edge-uncertainty.

Theorem 1. There is a polynomial-time algorithm that computes an optimal
update solution for instances of mst-edge-uncertainty where the uncertainty
areas are trivial or open areas.

In the remainder of this section we present the algorithm and prove its cor-
rectness, thus establishing Theorem 1. The algorithm runs in three phases. In
the first phase, two sets A and R are constructed. The set A ⊆ E is the set of
edges that are common to all update solutions, i.e., A =

⋂
s∈S s. (Recall that S

denotes the set of all update solutions.) The set R ⊆ E ×P(E) consists of pairs
(d,B) with d ∈ E and B ⊆ E. Each pair (d,B) ∈ R represents a choice with
the property that every update solution must contain d or all elements of B.

6

In addition, R is of the form that any combination of choosing either the single
edge or the set of edges together with the set A is an update solution. As we will
refer to these properties later on, we state them formally as follows.

Property 1. The sets A and R = {(d1, B1), . . . , (dn, Bn)} satisfy the following
properties:

– p1: A =
⋂

s∈S s
– p2: If s is an update solution, then for all 1 ≤ i ≤ n we have di ∈ s or

Bi ⊆ s.
– p3: S′ = {A ∪ {di|i ∈ I} ∪

⋃

j∈J

Bj | I, J form a partition of {1, . . . , n}} is

a set of update solutions.

As a consequence of p1–p3, for every update solution s there exists s′ ∈ S′ such
that s′ ⊆ s.

From the outset it is not clear that a set R satisfying p1–p3 exists. We
will show that it does and how to construct it. In the second phase, redundant
choices in R will be removed without altering the properties of R. In the third
and final phase, we model the choice selection for R as a vertex cover problem in
a bipartite graph. We will show that an optimal solution to the latter problem
results in an update solution for the MST verification problem of minimum size.
Phase 1. The aim of this phase is to establish the sets A and R described
above. The algorithm used in this phase is based on (a simulation of) the online
algorithm U-Red presented in [2]. The significant changes include: (1) The on-
line algorithm U-Red restarts after each update, whereas our algorithm avoids
restarts and sorts the updated edges back into the running process. (2) When
the online algorithm U-Red updates the edges in a witness set, we utilize the
information of the exact weights of the edges involved and determine the ap-
propriate contribution to the sets A and R instead. The resulting Algorithm
Phase1 is given in Figure 2. It uses the notation of the following definitions.

Definition 1. For an edge e in an edge-uncertainty graph, we denote the actual
weight of the edge by We and the upper limit of Ae by Ue = lim sup {a | a ∈ Ae}
and the lower limit of Ae by Le = lim inf {a | a ∈ Ae}.

Note that, as edges are updated in the algorithm, the values for Ue and Le

for an edge e may change. In particular, after updating the edge e we have that
Le = We = Ue.

Definition 2. The order by which the edges are sorted in Algorithm Phase1

is as follows: Let U be an edge-uncertainty graph and let e, f be two edges of U .
We define e < f if Le < Lf or (Le = Lf and Ue < Uf). Edges with the same
upper and lower weight limit are ordered arbitrarily.

Definition 3. Let C be a cycle in U and e ∈ C. The edge e is said to be always
maximal in C if for all possible weights that are consistent with the uncertainty
areas given by U the weight of e is maximal among the weights of all edges in C.

7

Note that updating edges in U only reduces the options for the edge weights.
Hence, an always maximal edge in C remains an always maximal edge in C after
updating arbitrary elements of U .

01 Create a list L of all edges in the order of Definition 2 from low to high
02 Let Γ be U without any edge
03 while L is not empty do
04 add the head of L to Γ

05 remove the head of L
06 if Γ has a cycle C then
07 case (a): C contains an always maximal edge e.
08 delete e from Γ

09 case (b): There exists e ∈ C whose update must be in any update solution.
10 update e, remove e from Γ , and add e to A

11 sort e back into L

12 case (c): There is a choice of updates that establish an edge as
13 an always maximal edge in the cycle C.
14 add the choice to R

15 delete the always maximal edge from Γ

16 end if
17 end while

Fig. 2. Algorithm Phase1

Before showing that there exists (in line 15) a unique always maximal edge,
and that the sets A and R are built correctly, we establish the following lemma
which gives a locality property: Updates required on the basis of just one cycle
will never be made redundant by other updates or cycles in the graph.

Lemma 1. During the run of the algorithm, when a cycle C is closed, let e be a
non-trivial edge in C. If updating a set U ⊆ E−{e} does not determine whether
e is always maximal in C, then updating U will also not verify that e is always
maximal in any other cycle.

Once a cycle in Γ is formed during the run of the algorithm, different ac-
tions are taken. We will show that the cases listed in the algorithm cover all
possibilities and that the sets A and R are built correctly.

The first check after a cycle C in Γ is formed is whether there exists, according
to the current uncertainty information, an edge in C that is always maximal. If
such an edge exists, the algorithm executes case (a) and the edge is deleted from
Γ , no update is made, and the sets A and R stay unaltered.

If case (a) does not apply, let h be an edge in C with maximum upper limit
Uh. Note that h must be non-trivial (otherwise case (a) would apply). There are
four possible cases for how the actual weight Wh relates to the weights and limits
of other edges in the cycle C. Case 1. If Wh is not maximal among the actual
weights of all edges in C, then h needs to be updated in any update solution
(the algorithm executes case (b)). Case 2. If Wh is maximal amongst the actual

8

weights of edges in C and there exists an f ∈ C with Uf > Wh, then f needs to be
updated in any update solution (the algorithm executes case (b)). Case 3. If Wh

is maximal amongst the actual weights of edges in C and there exists an f ∈ C
such that Wf > Lh, then h needs to be updated in any update solution (the
algorithm executes case (b)). Case 4. If Cases 1-3 do not apply, every update
solution must contain h or all edges of the set B = {c ∈ C − {h} | Uc > Lh}, so
the algorithm executes case (c).

Remark 1. In the situation of Case 4, the edge h is greater in the order of edges
used by the algorithm than any other edge in the cycle C (i.e., h > c for all
c ∈ C − {h}) and hence was the edge that closed the cycle.

From the above we can conclude that the set A only contains updates that
are in any update solution, that for all (d,B) ∈ R an update solution must
include the edge d or all edges in B, and that any set of edges containing all
elements of A and from every pair (d,B) ∈ R at least d or all edges in B is an
update solution. This shows that A and R satisfy properties p2 and p3.

Since for every pair (d,B) ∈ R the edge d is not in B (see also Lemma 2
below), there exists for every g /∈ A an update solution not containing g. This
shows that A is the intersection of all update solutions, establishing that p1 is
satisfied as well. Before tidying up R in phase 2 (in a way that maintains p1–p3),
we establish an additional property of R that will be used in phase 3 to build a
bipartite graph.

Lemma 2. Let (d,B) and (d′, B′) in R. Then d /∈ B′.

Proof. Assume there exist (d,B) and (d′, B′) in R with d ∈ B′. When a pair
(d,B) is added to R, the edge d is deleted from Γ and hence will not be part of
any pair that is added to R later. So for d being an element of B′, the pair (d′, B′)
must have been added to R before (d,B). By Remark 1, d′ ≤ d. Considering that
d ∈ B′ we also have by the same remark that d < d′, which gives a contradiction.

⊓⊔

Phase 2. As the sets A and R are built up simultaneously, it is possible that
for a pair (d,B) in R some edges in B are added to A later on in the run of
the Algorithm Phase1. Since the edge d is deleted from Γ when a pair (d,B) is
added to R, the edge d can never be added to A.

In this short phase, R is tidied up by the following steps: For every (d,B) ∈ R
all elements of B that are also in A will be removed from B. Where, as a result, B
becomes empty, the entire pair (d,B) is removed from R. Formally R is replaced
by {(d,B) | ∃(d,B′) ∈ R,B = B′−A,B 6= ∅}. This does not affect the properties
p1–p3 of Property 1.
Phase 3. In this final phase, an optimal update set is calculated from the sets A
and R. As stated in p3 of Property 1, a set S′ of update solutions can be formed
from A and R. An update solution with minimum size amongst them can be
established by modelling the choices as a vertex cover problem in a bipartite
graph. We then show that there is no update solution with fewer updates. Recall

9

the notation of p3: R = {d1, B1), . . . , (dn, Bn)} and S′ = {A ∪ {di|i ∈ I} ∪⋃
j∈J Bj | I, J partition of {1, . . . , n}}. In phase 2, any overlap between elements

of A and elements appearing in the pairs of R was removed from R. So, to find
an element of S′ with minimum size it is enough to find an element of minimum
size in R′ = {{di|i ∈ I} ∪

⋃
j∈J Bj | I, J partition of {1, . . . , n}}, as A and the

elements of R′ are disjoint.
We now create a bipartite graph G′ for which any element of R′ is a vertex

cover and any vertex cover must contain one element of R′ as a subset. Loosely
speaking, every edge of the uncertainty graph U occurring inside any element of
R is a node in G′. For every choice (d,B) ∈ R, the node in G′ corresponding to
d is connected to the nodes in G′ corresponding to the elements of B.

Let G′ = (V ′, E′) be an undirected graph with V ′ = {d1, . . . , dn}∪B1∪ . . .∪
Bn and E = {(di, b) | b ∈ Bi, 1 ≤ i ≤ n}. By Lemma 2, the set {d1, . . . , dn}
and B1 ∪ . . . ∪ Bn are disjoint. As every edge in G′ connects an element from
{d1, . . . , dn} to an element of B1 ∪ . . . ∪Bn, G

′ is a bipartite graph.
Every element of R′ contains, for every i, the edge di or all elements of Bi.

Therefore, every element of R′ is a vertex cover for G′. Similarly if a vertex cover
of G′ does not include di for any i, then it must include all elements of Bi and
hence it must contain an element of R′ as a subset. Thus, a minimum vertex
cover r∗ of G′ is also an element of R′ with minimal size. Furthermore, A ∪ r∗

is an element of minimum size in S′. By Property 1, for every update solution s
there exists an s′ ∈ S′ such that s′ ⊆ s. So A ∪ r∗ is of minimum size amongst
all update solutions, and OPT = |A ∪ r∗|.

Noting that the minimum vertex cover problem is polynomial for bipartite
graphs, it is not difficult to show that the algorithm runs in polynomial time.
Hence, a minimal update solution (of size OPT) for mst-edge-uncertainty

under the restriction to open and trivial areas can be computed in polynomial
time. This completes the proof of Theorem 1.

Furthermore, we note that the algorithm can be extended to a version of the
problem where each edge e has an arbitrary update cost ce > 0 and the goal
is to minimize the total cost of the update solution. The approach is the same,
except that the vertex cover problem in the bipartite auxiliary graph needs to
be solved as a minimum-weight vertex cover problem.

Theorem 2. For the mst-edge-uncertainty problem with arbitrary positive
update costs and under the restriction to open or trivial areas, an optimal update
solution can be computed in polynomial time.

4 Verification under Vertex Uncertainty

In this section we prove that mst-vertex-uncertainty is NP-hard. The proof
uses a reduction from the vertex cover problem in planar graphs of maximum
degree 3, which was shown to be NP-complete in [5]. In the reduction we use
the following embedding result.

Theorem 3. Let G = (V,E) be a planar graph of maximum degree 5 with n
vertices. Then there exists a value s > 0 and an embedding of G such that

10

– vertices are mapped to integer coordinates in an n by n grid,
– edges are mapped to non-crossing paths (consisting of straight line segments

and circular arcs),
– the length of each path is polynomial in n,
– 1/s is polynomial in n,
– in the disk of radius s around each vertex, all edges are equally spaced straight

lines,
– everywhere else the edges are at least s apart,
– the embedding can be constructed in polynomial time.

We give an outline of the proof as the detailed proof is somewhat technical.
The starting point is an arbitrary planar graph of maximum degree 3. Find-
ing a minimum vertex cover for such graphs is NP-hard [5]. We transform this
graph to an instance of mst-vertex-uncertainty by the following three steps
(illustrated in Figure 3). The steps are given here in an order that reflects the
motivation for the steps, but for technical reasons the order will be different in
the actual reduction.

Fig. 3. Transformation of the graph G

Step 1: Create an uncertainty problem. After embedding the graph in the
plane, we shorten each edge so that instead of connecting two vertices, it falls
short at both ends. At one end it leaves a gap of 1 + 5ǫ to the vertex, and at
the other a gap of 1 + 8ǫ to the other vertex. Finally, each vertex is replaced by
an uncertainty area that is a disk of radius 2ǫ around the original location of
the vertex. So, each edge has at one end a gap between 1 + 3ǫ and 1 + 7ǫ and
at the other end a gap between 1 + 6ǫ and 1 + 10ǫ. If one wants to know for
each edge which end has the smaller gap, one has to update at least one of the
vertices that it connected originally. If the precise location of each vertex lies at
the center of its uncertainty disk, then updating either end vertex of an edge will
determine at which end the edge has a smaller gap. Thus, finding the smallest
set of vertices that needs to be updated to determine for each edge at which end
it has the smaller gap is equivalent to finding a minimum vertex cover of the
original graph.
Step 2: Create a vertex uncertainty graph. To convert the graph of step
1 to a vertex uncertainty graph, we replace each edge fragment by a dense
sequence of new vertices. The position of these vertices is given exactly (i.e.,
their uncertainty areas are trivial). The distance of two neighboring vertices is
less than 1/2.

11

Step 3: Create a minimum spanning tree problem. To turn the question
that asks at which side each former edge has the smaller gap into an MST
problem, we place additional vertices such that all original vertices are connected
via dense ‘lines’ made out of these new vertices, and the original vertices and
the new ‘lines’ form a tree. The gap of such a ’line’ to an original vertex is 1. If
all lines can be placed in such a way that all vertices on one line are far away
(at least distance 1) from any vertex on another line, solving the mst-vertex-

uncertainty problem requires updating for each original edge at least one of
its end points. The minimum set of such updates yields a minimum vertex cover
of the original graph. In the actual proof we add the auxiliary ‘lines’ of Step 3
already before embedding the graph for Step 1, and the distances mentioned
above are scaled down by an appropriate scaling factor.

Theorem 4. Calculating OPT for mst-vertex-uncertainty is NP-hard.

As the exact weight of any edge can be obtained by updating both of its
vertices, the polynomial optimal algorithm for mst-edge-uncertainty can be
used to obtain a 2-approximation of the mst-vertex-uncertainty problem.

Acknowledgements. The second author would like to thank the University
of Leicester for supporting this research in granting him academic study leave.

References

1. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies for
geometric computing with uncertainty. Theory of Computing Systems 38(4), 411–
423 (2005)

2. Erlebach, T., Hoffmann, M., Krizanc, D., Mihalák, M., Raman, R.: Computing
minimum spanning trees with uncertainty. In: Albers, S., Weil, P. (eds.) STACS.
LIPIcs, vol. 1, pp. 277–288. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany (2008)

3. Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing
shortest paths with uncertainty. Journal of Algorithms 62(1), 1–18 (2007)

4. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the me-
dian with uncertainty. SIAM Journal on Computing 32(2), 538–547 (2003)

5. Garey, M., Johnson, D.: The rectilinear Steiner tree problem is NP-complete. SIAM
Journal on Applied Mathematics 32(4), 826–834 (1977)

6. Gupta, M., Sabharwal, Y., Sen, S.: The update complexity of selection and related
problems. In: IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2011). LIPIcs, vol. 13, pp. 325–338.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)

7. Kahan, S.: A model for data in motion. In: Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing (STOC’91). pp. 267–277 (1991)

8. Kamousi, P., Chan, T.M., Suri, S.: Stochastic minimum spanning trees in Euclidean
spaces. In: Proceedings of the 27th Annual ACM Symposium on Computational
Geometry (SoCG’11). pp. 65–74. ACM (2011)

12

