
An Efficient Algorithm
for the Fast Delivery Problem

Iago A. Carvalho1 Thomas Erlebach2

Kleitos Papadopoulos2

1Dept. of Computer Science, Universidada Federal de Minas Gerais, Brazil

2School of Informatics, University of Leicester, England

FCT 2019, Copenhagen, Denmark, 14 August 2019

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 1

Motivation: Delivery of Packages by Drones

What if drones (or agents) with different speeds need to
collaborate to deliver a package as quickly as possible?

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 2

Motivation: Delivery of Packages by Drones

What if drones (or agents) with different speeds need to
collaborate to deliver a package as quickly as possible?

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 2

Problem Definition: FastDelivery

Input:

Undirected graph G = (V ,E) with edge lengths `e > 0.
Convention: |V | = n, |E | = m

k ≤ n agents. For 1 ≤ i ≤ k , agent i is located at node
ai ∈ V at time 0 and has velocity vi > 0.

A package that needs to be delivered from source s ∈ V to
destination y ∈ V

Output:

Schedule of agent movements to collaboratively deliver the
package from s to y .

Objective:

Minimize the time when the package reaches y .

Remark:

Package handovers are instantaneous and can happen at a
node or at any point on an edge.

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 3

Problem Definition: FastDelivery

Input:

Undirected graph G = (V ,E) with edge lengths `e > 0.
Convention: |V | = n, |E | = m

k ≤ n agents. For 1 ≤ i ≤ k , agent i is located at node
ai ∈ V at time 0 and has velocity vi > 0.

A package that needs to be delivered from source s ∈ V to
destination y ∈ V

Output:

Schedule of agent movements to collaboratively deliver the
package from s to y .

Objective:

Minimize the time when the package reaches y .

Remark:

Package handovers are instantaneous and can happen at a
node or at any point on an edge.

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 3

Example

a3

y

a1

s

agent 1: v1 = 1
agent 2: v2 = 2

a2

1
1

1.4

3

t = 0

agent 3: v3 = 4
4

13

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 4

Example

a3

y

a1

s

agent 1: v1 = 1
agent 2: v2 = 2

a2

1
1

1.4

3

agent 3: v3 = 4
4

13

t = 1
agent 1 picks up package

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 4

Example

a3

y

a1

s

agent 1: v1 = 1
agent 2: v2 = 2

a2

1
1

1.4

3

agent 3: v3 = 4
4

13

t = 2

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 4

Example

a3

y

a1

s

agent 1: v1 = 1
agent 2: v2 = 2

a2

1
1

1.4

3

agent 3: v3 = 4
4

13

t = 3
handover from agent 1 to 2

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 4

Example

a3

y

a1

s

agent 1: v1 = 1
agent 2: v2 = 2

a2

1
1

1.4

3

agent 3: v3 = 4
4

13

t = 3.5
handover from agent 2 to 3

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 4

Example

a3

y

a1

s

agent 1: v1 = 1
agent 2: v2 = 2

a2

1
1

1.4

3

agent 3: v3 = 4
4

13

t = 3.75
agent 3 delivers package to y

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 4

Example

a3

y

a1

s

agent 1: v1 = 1
agent 2: v2 = 2

a2

1
1

1.4

3

agent 3: v3 = 4
4

13

t = 3.75
agent 3 delivers package to y

Note: The velocities of the agents
carrying the package are strictly increasing.

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 4

Previous Work

Bärtschi, Graf, Mihalák 2018:
O(k2m + kn2 + APSP) time algorithm for FastDelivery
based on dynamic programming
For minimizing the energy consumption among all fastest
delivery schedules: NP-hardness for planar graphs, polynomial
algorithms for paths and for equal velocities

Bärtschi et al. 2017:
Energy-efficient delivery by agents with equal speed: NP-hard
for multiple packages, polynomial for a single package

Chalopin et al. 2013, 2014; Bärtschi et al. 2017:
Energy-constrained collaborative delivery

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 5

Our Result

Theorem

FastDelivery can be solved in O(kn log n + km) time

Improvement over O(k2m + kn2 + APSP) by Bärtschi et al.
2018:

O(n4) to O(n3) for dense graphs and k = Ω(n)
O(n3) to O(n2 log n) for sparse graphs and k = Ω(n)

Main idea: Apply Dijkstra’s algorithm for graphs with edges
with time-dependent transit times (cf. Cooke and Halsey,
1966; Delling and Wagner, 2009)

Key Ingredient: Transport package over an edge as quickly
as possible (FastLineDelivery problem).

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 6

Our Result

Theorem

FastDelivery can be solved in O(kn log n + km) time

Improvement over O(k2m + kn2 + APSP) by Bärtschi et al.
2018:

O(n4) to O(n3) for dense graphs and k = Ω(n)
O(n3) to O(n2 log n) for sparse graphs and k = Ω(n)

Main idea: Apply Dijkstra’s algorithm for graphs with edges
with time-dependent transit times (cf. Cooke and Halsey,
1966; Delling and Wagner, 2009)

Key Ingredient: Transport package over an edge as quickly
as possible (FastLineDelivery problem).

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 6

Our Result

Theorem

FastDelivery can be solved in O(kn log n + km) time

Improvement over O(k2m + kn2 + APSP) by Bärtschi et al.
2018:

O(n4) to O(n3) for dense graphs and k = Ω(n)
O(n3) to O(n2 log n) for sparse graphs and k = Ω(n)

Main idea: Apply Dijkstra’s algorithm for graphs with edges
with time-dependent transit times (cf. Cooke and Halsey,
1966; Delling and Wagner, 2009)

Key Ingredient: Transport package over an edge as quickly
as possible (FastLineDelivery problem).

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 6

Reminder: Standard Dijkstra Algorithm

2

6

∞1

1

s

1

2

1

2

3

1

5

final

1

unfinished

In each step:

find the unfinished node v with smallest tentative distance
make v final and update the tentative distances of its
unfinished neighbors (“relax” edges)

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 7

Dijkstra with Time-Dependent Transit Times

2

6

∞1

1

s

final

f1(t)

f2(t)

f3(t)

f4(t)

f5(t)

f6(t)

f7(t)

f8(t)

unfinished

In each step:

find the unfinished node v with smallest tentative earliest
arrival time (EAT)
make v final and update the tentative EAT of its unfinished
neighbors, using current transit times

Correct if transit times satisfy FIFO property (no overtaking).

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 8

Diagram for Package Transport Over One Edge

For any edge uv ∈ E , let at(u, v) be the earliest time when a
package present at u at time t can reach v over edge uv

The transport of the package from u to v can be visualised in
a time-space diagram:

u v

ti
m

e

location

t

at(u, v)

u v

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 9

Package Transport Satisfies FIFO

Claim

For t < t ′, at(u, v) ≤ at′(u, v).

Proof.

Assume otherwise:

u v

ti
m

e

location

t

t ′

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 10

Package Transport Satisfies FIFO

Claim

For t < t ′, at(u, v) ≤ at′(u, v).

Proof.

Assume otherwise:

u v

ti
m

e

location

t

t ′

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 10

Package Transport Satisfies FIFO

Claim

For t < t ′, at(u, v) ≤ at′(u, v).

Proof.

Assume otherwise:

u v

ti
m

e

location

t

t ′

At the crossover point, the
faster agent could take over
from one of the agents
starting at time t, so the
package could be trans-
ported to reach v before
at(u, v). Contradiction!

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 10

Time-Dependent Dijkstra for FastDelivery

d(s)← ts ; /* time when first agent reaches s */

d(v)←∞ for all v ∈ V \ {s};
final(v)← false for all v ∈ V ;
insert s into priority queue Q with priority d(s);
while Q not empty do

u ← node with minimum d value in Q;
delete u from Q; final(u)← true;
if u = y then break;
t ← d(u); /* time when package reaches u */

forall neighbors v of u with final(v) = false do
at(u, v)← FastLineDelivery(u, v , t);
if at(u, v) < d(v) then

d(v)← at(u, v);
if v ∈ Q then decrease priority of v to d(v);
else insert v into Q with priority d(v);

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 11

Running-Time for Whole Algorithm

Run standard Dijkstra from each of the k agent nodes ai to
find the earliest arrival time for each agent at each node in V :
O(k(n log n + m)) time.

Sort agent arrivals at each node (and discard slower agents
that arrive after faster agents): O(nk log k) time.

Time-dependent Dijkstra framework: O(n log n + T), where
T is the time for m calls of FastLineDelivery (including
preprocessing)

Components of T :

O(nk log k) for preprocessing each node in O(k log k) time
O(mk) for executing FastLineDelivery(u, v , t) in O(k)
time for m edges

⇒ Total: O(kn log n + km)

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 12

Running-Time for Whole Algorithm

Run standard Dijkstra from each of the k agent nodes ai to
find the earliest arrival time for each agent at each node in V :
O(k(n log n + m)) time.

Sort agent arrivals at each node (and discard slower agents
that arrive after faster agents): O(nk log k) time.

Time-dependent Dijkstra framework: O(n log n + T), where
T is the time for m calls of FastLineDelivery (including
preprocessing)

Components of T :

O(nk log k) for preprocessing each node in O(k log k) time
O(mk) for executing FastLineDelivery(u, v , t) in O(k)
time for m edges

⇒ Total: O(kn log n + km)

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 12

Running-Time for Whole Algorithm

Run standard Dijkstra from each of the k agent nodes ai to
find the earliest arrival time for each agent at each node in V :
O(k(n log n + m)) time.

Sort agent arrivals at each node (and discard slower agents
that arrive after faster agents): O(nk log k) time.

Time-dependent Dijkstra framework: O(n log n + T), where
T is the time for m calls of FastLineDelivery (including
preprocessing)

Components of T :

O(nk log k) for preprocessing each node in O(k log k) time
O(mk) for executing FastLineDelivery(u, v , t) in O(k)
time for m edges

⇒ Total: O(kn log n + km)

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 12

Running-Time for Whole Algorithm

Run standard Dijkstra from each of the k agent nodes ai to
find the earliest arrival time for each agent at each node in V :
O(k(n log n + m)) time.

Sort agent arrivals at each node (and discard slower agents
that arrive after faster agents): O(nk log k) time.

Time-dependent Dijkstra framework: O(n log n + T), where
T is the time for m calls of FastLineDelivery (including
preprocessing)

Components of T :

O(nk log k) for preprocessing each node in O(k log k) time
O(mk) for executing FastLineDelivery(u, v , t) in O(k)
time for m edges

⇒ Total: O(kn log n + km)

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 12

Preprocessing for FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Agent brings package to u at time t

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 13

Preprocessing for FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Same agent could carry package to v

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 13

Preprocessing for FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

arrivals of
faster agents

Faster agents may help

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 13

Preprocessing for FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Trajectories of faster agents

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 13

Preprocessing for FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

lower envelope
in O(k log k) time

Use sweepline algorithm (Bentley and Ottmann 1979)

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 13

Preprocessing for FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Fastest way for agents coming from u to deliver package to v

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 13

Preprocessing for FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Agents coming from v may help

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 13

Preprocessing for FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Trajectories of agents coming from v

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 13

Preprocessing for FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Arrangement in
O(k log k) time

Relevant arrangement of agents coming from v

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 13

Result of preprocessing for FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

u v

ti
m

e

location
t

lower envelope of
agents from u

relevant arrangement
of agents from v

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 14

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Trace the lower envelope from u to v

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Intersect slower agent, do nothing

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Intersect faster agent, hand over

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Intersect faster agent, hand over

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Intersect faster agent, hand over, update lower envelope

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Intersect faster agent, hand over

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Intersect faster agent, hand over

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Intersect faster agent, hand over, update lower envelope

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Intersect faster agent, hand over

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Intersect faster agent, hand over

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Intersect faster agent, hand over, update lower envelope

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Reach v

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

at(u, v)

Solution to FastLineDelivery(u, v , t)

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15

Summary of Solution to FastLineDelivery

Compute relevant arrangement once for every node:
O(k log k) time per node

Compute lower envelope for each node when it is made final:
O(k log k) time per node

Compute at(u, v) in O(k) time (once for each edge):

trace lower envelope of agents coming from u, in the direction
from u to v
update lower envelope whenever a faster agent of the relevant
arrangement of v is met

Correctness can be proved by induction (the current lower
envelope is always a fastest and foremost solution using only
the agents from u and those from v that could have reached
the package by now)

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 16

Conclusion

Our Result

FastDelivery can be solved in O(kn log n + km) time

Key ideas:

Use Dijkstra for time-dependent transit times
Solve FastLineDelivery using geometric representation of
agent movements

Future Work

Can the running-time be improved further?

Consider FastDelivery in the Euclidean plane?

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 17

Thank you!

Questions?

