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Motivation: Delivery of Packages by Drones

What if drones (or agents) with different speeds need to
collaborate to deliver a package as quickly as possible?
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Problem Definition: FastDelivery

Input:

Undirected graph G = (V ,E ) with edge lengths `e > 0.
Convention: |V | = n, |E | = m

k ≤ n agents. For 1 ≤ i ≤ k , agent i is located at node
ai ∈ V at time 0 and has velocity vi > 0.

A package that needs to be delivered from source s ∈ V to
destination y ∈ V

Output:

Schedule of agent movements to collaboratively deliver the
package from s to y .

Objective:

Minimize the time when the package reaches y .

Remark:

Package handovers are instantaneous and can happen at a
node or at any point on an edge.
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agent 1 picks up package
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t = 3
handover from agent 1 to 2
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handover from agent 2 to 3
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agent 3 delivers package to y
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Example

a3

y

a1

s

agent 1: v1 = 1
agent 2: v2 = 2

a2

1
1

1.4

3

agent 3: v3 = 4
4

13

t = 3.75
agent 3 delivers package to y

Note: The velocities of the agents
carrying the package are strictly increasing.
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Previous Work

Bärtschi, Graf, Mihalák 2018:
O(k2m + kn2 + APSP) time algorithm for FastDelivery
based on dynamic programming
For minimizing the energy consumption among all fastest
delivery schedules: NP-hardness for planar graphs, polynomial
algorithms for paths and for equal velocities

Bärtschi et al. 2017:
Energy-efficient delivery by agents with equal speed: NP-hard
for multiple packages, polynomial for a single package

Chalopin et al. 2013, 2014; Bärtschi et al. 2017:
Energy-constrained collaborative delivery
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Our Result

Theorem

FastDelivery can be solved in O(kn log n + km) time

Improvement over O(k2m + kn2 + APSP) by Bärtschi et al.
2018:

O(n4) to O(n3) for dense graphs and k = Ω(n)
O(n3) to O(n2 log n) for sparse graphs and k = Ω(n)

Main idea: Apply Dijkstra’s algorithm for graphs with edges
with time-dependent transit times (cf. Cooke and Halsey,
1966; Delling and Wagner, 2009)

Key Ingredient: Transport package over an edge as quickly
as possible (FastLineDelivery problem).
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Reminder: Standard Dijkstra Algorithm
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In each step:

find the unfinished node v with smallest tentative distance
make v final and update the tentative distances of its
unfinished neighbors (“relax” edges)
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Dijkstra with Time-Dependent Transit Times
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f7(t)
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unfinished

In each step:

find the unfinished node v with smallest tentative earliest
arrival time (EAT)
make v final and update the tentative EAT of its unfinished
neighbors, using current transit times

Correct if transit times satisfy FIFO property (no overtaking).
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Diagram for Package Transport Over One Edge

For any edge uv ∈ E , let at(u, v) be the earliest time when a
package present at u at time t can reach v over edge uv

The transport of the package from u to v can be visualised in
a time-space diagram:
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Package Transport Satisfies FIFO

Claim

For t < t ′, at(u, v) ≤ at′(u, v).

Proof.

Assume otherwise:
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Package Transport Satisfies FIFO

Claim

For t < t ′, at(u, v) ≤ at′(u, v).

Proof.

Assume otherwise:

u v

ti
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location

t

t ′

At the crossover point, the
faster agent could take over
from one of the agents
starting at time t, so the
package could be trans-
ported to reach v before
at(u, v). Contradiction!
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Time-Dependent Dijkstra for FastDelivery

d(s)← ts ; /* time when first agent reaches s */

d(v)←∞ for all v ∈ V \ {s};
final(v)← false for all v ∈ V ;
insert s into priority queue Q with priority d(s);
while Q not empty do

u ← node with minimum d value in Q;
delete u from Q; final(u)← true;
if u = y then break;
t ← d(u); /* time when package reaches u */

forall neighbors v of u with final(v) = false do
at(u, v)← FastLineDelivery(u, v , t);
if at(u, v) < d(v) then

d(v)← at(u, v);
if v ∈ Q then decrease priority of v to d(v);
else insert v into Q with priority d(v);
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Running-Time for Whole Algorithm

Run standard Dijkstra from each of the k agent nodes ai to
find the earliest arrival time for each agent at each node in V :
O(k(n log n + m)) time.

Sort agent arrivals at each node (and discard slower agents
that arrive after faster agents): O(nk log k) time.

Time-dependent Dijkstra framework: O(n log n + T ), where
T is the time for m calls of FastLineDelivery (including
preprocessing)

Components of T :

O(nk log k) for preprocessing each node in O(k log k) time
O(mk) for executing FastLineDelivery(u, v , t) in O(k)
time for m edges

⇒ Total: O(kn log n + km)
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Preprocessing for FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Agent brings package to u at time t
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Preprocessing for FastLineDelivery(u, v , t)

u v
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Same agent could carry package to v
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Preprocessing for FastLineDelivery(u, v , t)

u v
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arrivals of
faster agents

Faster agents may help
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Preprocessing for FastLineDelivery(u, v , t)

u v

ti
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t

Trajectories of faster agents
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Preprocessing for FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

lower envelope
in O(k log k) time

Use sweepline algorithm (Bentley and Ottmann 1979)
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Preprocessing for FastLineDelivery(u, v , t)
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Fastest way for agents coming from u to deliver package to v
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Preprocessing for FastLineDelivery(u, v , t)
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Agents coming from v may help
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Preprocessing for FastLineDelivery(u, v , t)
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Preprocessing for FastLineDelivery(u, v , t)
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Arrangement in
O(k log k) time

Relevant arrangement of agents coming from v
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Result of preprocessing for FastLineDelivery(u, v , t)
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Computing FastLineDelivery(u, v , t)
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Trace the lower envelope from u to v
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Computing FastLineDelivery(u, v , t)
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Intersect slower agent, do nothing
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Computing FastLineDelivery(u, v , t)

u v
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Intersect faster agent, hand over
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Computing FastLineDelivery(u, v , t)

u v

ti
m

e

location
t

Intersect faster agent, hand over, update lower envelope
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Computing FastLineDelivery(u, v , t)
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Reach v
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Computing FastLineDelivery(u, v , t)
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Solution to FastLineDelivery(u, v , t)

I.A. Carvalho, T. Erlebach, K. Papadopoulos An Efficient Algorithm for the Fast Delivery Problem 15



Summary of Solution to FastLineDelivery

Compute relevant arrangement once for every node:
O(k log k) time per node

Compute lower envelope for each node when it is made final:
O(k log k) time per node

Compute at(u, v) in O(k) time (once for each edge):

trace lower envelope of agents coming from u, in the direction
from u to v
update lower envelope whenever a faster agent of the relevant
arrangement of v is met

Correctness can be proved by induction (the current lower
envelope is always a fastest and foremost solution using only
the agents from u and those from v that could have reached
the package by now)
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Conclusion

Our Result

FastDelivery can be solved in O(kn log n + km) time

Key ideas:

Use Dijkstra for time-dependent transit times
Solve FastLineDelivery using geometric representation of
agent movements

Future Work

Can the running-time be improved further?

Consider FastDelivery in the Euclidean plane?
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Thank you!

Questions?


