An Efficient Algorithm for the Fast Delivery Problem

lago A. Carvalho ${ }^{1}$ Thomas Erlebach ${ }^{2}$ Kleitos Papadopoulos ${ }^{2}$

${ }^{1}$ Dept. of Computer Science, Universidada Federal de Minas Gerais, Brazil
${ }^{2}$ School of Informatics, University of Leicester, England
FCT 2019, Copenhagen, Denmark, 14 August 2019

Motivation: Delivery of Packages by Drones

Motivation: Delivery of Packages by Drones

What if drones (or agents) with different speeds need to collaborate to deliver a package as quickly as possible?

Input:

- Undirected graph $G=(V, E)$ with edge lengths $\ell_{e}>0$. Convention: $|V|=n,|E|=m$
- $k \leq n$ agents. For $1 \leq i \leq k$, agent i is located at node $a_{i} \in V$ at time 0 and has velocity $v_{i}>0$.
- A package that needs to be delivered from source $s \in V$ to destination $y \in V$

Output:

- Schedule of agent movements to collaboratively deliver the package from s to y.

Objective:

- Minimize the time when the package reaches y.

Input:

- Undirected graph $G=(V, E)$ with edge lengths $\ell_{e}>0$. Convention: $|V|=n,|E|=m$
- $k \leq n$ agents. For $1 \leq i \leq k$, agent i is located at node $a_{i} \in V$ at time 0 and has velocity $v_{i}>0$.
- A package that needs to be delivered from source $s \in V$ to destination $y \in V$

Output:

- Schedule of agent movements to collaboratively deliver the package from s to y.

Objective:

- Minimize the time when the package reaches y.

Remark:

- Package handovers are instantaneous and can happen at a node or at any point on an edge.

Example

Example

Example

agent 1: $v_{1}=1$
agent 2: $v_{2}=2$
agent 3: $v_{3}=4$

$$
t=2
$$

Example

Example

Example

Example

Previous Work

- Bärtschi, Graf, Mihalák 2018:
- $O\left(k^{2} m+k n^{2}+\right.$ APSP $)$ time algorithm for FastDelivery based on dynamic programming
- For minimizing the energy consumption among all fastest delivery schedules: NP-hardness for planar graphs, polynomial algorithms for paths and for equal velocities
- Bärtschi et al. 2017:
- Energy-efficient delivery by agents with equal speed: NP-hard for multiple packages, polynomial for a single package
- Chalopin et al. 2013, 2014; Bärtschi et al. 2017:
- Energy-constrained collaborative delivery

Our Result

Theorem

FastDelivery can be solved in $O(k n \log n+k m)$ time

- Improvement over $O\left(k^{2} m+k n^{2}+\right.$ APSP $)$ by Bärtschi et al. 2018:
- $O\left(n^{4}\right)$ to $O\left(n^{3}\right)$ for dense graphs and $k=\Omega(n)$
- $O\left(n^{3}\right)$ to $O\left(n^{2} \log n\right)$ for sparse graphs and $k=\Omega(n)$

Our Result

Theorem

FastDelivery can be solved in $O(k n \log n+k m)$ time

- Improvement over $O\left(k^{2} m+k n^{2}+\right.$ APSP $)$ by Bärtschi et al. 2018:
- $O\left(n^{4}\right)$ to $O\left(n^{3}\right)$ for dense graphs and $k=\Omega(n)$
- $O\left(n^{3}\right)$ to $O\left(n^{2} \log n\right)$ for sparse graphs and $k=\Omega(n)$
- Main idea: Apply Dijkstra's algorithm for graphs with edges with time-dependent transit times (cf. Cooke and Halsey, 1966; Delling and Wagner, 2009)

Our Result

Theorem

FastDelivery can be solved in $O(k n \log n+k m)$ time

- Improvement over $O\left(k^{2} m+k n^{2}+\right.$ APSP $)$ by Bärtschi et al. 2018:
- $O\left(n^{4}\right)$ to $O\left(n^{3}\right)$ for dense graphs and $k=\Omega(n)$
- $O\left(n^{3}\right)$ to $O\left(n^{2} \log n\right)$ for sparse graphs and $k=\Omega(n)$
- Main idea: Apply Dijkstra's algorithm for graphs with edges with time-dependent transit times (cf. Cooke and Halsey, 1966; Delling and Wagner, 2009)
- Key Ingredient: Transport package over an edge as quickly as possible (FastLineDelivery problem).

Reminder: Standard Dijkstra Algorithm

- In each step:
- find the unfinished node v with smallest tentative distance
- make v final and update the tentative distances of its unfinished neighbors ("relax" edges)

Dijkstra with Time-Dependent Transit Times

- In each step:
- find the unfinished node v with smallest tentative earliest arrival time (EAT)
- make v final and update the tentative EAT of its unfinished neighbors, using current transit times
- Correct if transit times satisfy FIFO property (no overtaking).

Diagram for Package Transport Over One Edge

- For any edge $u v \in E$, let $\boldsymbol{a}_{\boldsymbol{t}}(\boldsymbol{u}, \boldsymbol{v})$ be the earliest time when a package present at u at time t can reach v over edge $u v$
- The transport of the package from u to v can be visualised in a time-space diagram:

Package Transport Satisfies FIFO

Claim

For $t<t^{\prime}, a_{t}(u, v) \leq a_{t^{\prime}}(u, v)$.

Package Transport Satisfies FIFO

Claim

For $t<t^{\prime}, a_{t}(u, v) \leq a_{t^{\prime}}(u, v)$.

Proof.

Assume otherwise:

Package Transport Satisfies FIFO

Claim

For $t<t^{\prime}, a_{t}(u, v) \leq a_{t^{\prime}}(u, v)$.

Proof.

Assume otherwise:

Time-Dependent Dijkstra for FastDelivery

$d(s) \leftarrow t_{s} ; \quad / *$ time when first agent reaches $s * /$ $d(v) \leftarrow \infty$ for all $v \in V \backslash\{s\}$;
final $(v) \leftarrow$ false for all $v \in V$;
insert s into priority queue Q with priority $d(s)$;
while Q not empty do
$u \leftarrow$ node with minimum d value in Q;
delete u from Q; final $(u) \leftarrow$ true;
if $u=y$ then break;
$t \leftarrow d(u)$; $\quad / *$ time when package reaches $u * /$
forall neighbors v of u with final $(v)=$ false do $a_{t}(u, v) \leftarrow \operatorname{FAStLineDeLivery}(u, v, t)$;
if $a_{t}(u, v)<d(v)$ then $d(v) \leftarrow a_{t}(u, v) ;$ if $v \in Q$ then decrease priority of v to $d(v)$; else insert v into Q with priority $d(v)$;

Running-Time for Whole Algorithm

- Run standard Dijkstra from each of the k agent nodes a_{i} to find the earliest arrival time for each agent at each node in V : $O(k(n \log n+m))$ time.

Running-Time for Whole Algorithm

- Run standard Dijkstra from each of the k agent nodes a_{i} to find the earliest arrival time for each agent at each node in V : $O(k(n \log n+m))$ time.
- Sort agent arrivals at each node (and discard slower agents that arrive after faster agents): $O(n k \log k)$ time.

Running-Time for Whole Algorithm

- Run standard Dijkstra from each of the k agent nodes a_{i} to find the earliest arrival time for each agent at each node in V : $O(k(n \log n+m))$ time.
- Sort agent arrivals at each node (and discard slower agents that arrive after faster agents): $O(n k \log k)$ time.
- Time-dependent Dijkstra framework: $O(n \log n+T)$, where T is the time for m calls of FastLineDelivery (including preprocessing)

Running-Time for Whole Algorithm

- Run standard Dijkstra from each of the k agent nodes a_{i} to find the earliest arrival time for each agent at each node in V : $O(k(n \log n+m))$ time.
- Sort agent arrivals at each node (and discard slower agents that arrive after faster agents): $O(n k \log k)$ time.
- Time-dependent Dijkstra framework: $O(n \log n+T)$, where T is the time for m calls of FastLineDelivery (including preprocessing)
- Components of T :
- $O(n k \log k)$ for preprocessing each node in $O(k \log k)$ time
- $O(m k)$ for executing FastLineDelivery (u, v, t) in $O(k)$ time for m edges
\Rightarrow Total: $O(k n \log n+k m)$

Preprocessing for FastLineDelivery (u, v, t)

- Agent brings package to u at time t

Preprocessing for FastLineDelivery (u, v, t)

- Same agent could carry package to v

Preprocessing for FastLineDelivery (u, v, t)

- Faster agents may help

Preprocessing for FastLineDelivery (u, v, t)

- Trajectories of faster agents

- Use sweepline algorithm (Bentley and Ottmann 1979)

Preprocessing for FastLineDelivery (u, v, t)

- Fastest way for agents coming from u to deliver package to v

Preprocessing for FastLineDelivery (u, v, t)

- Agents coming from v may help

Preprocessing for FastLineDelivery (u, v, t)

- Trajectories of agents coming from v

Preprocessing for FastLineDelivery (u, v, t)

- Relevant arrangement of agents coming from v

Result of preprocessing for FastLineDelivery (u, v, t)

relevant arrangement
of agents from v

Computing FastLineDelivery (u, v, t)

- Trace the lower envelope from u to v

Computing FastLineDelivery (u, v, t)

- Intersect slower agent, do nothing

Computing FastLineDelivery (u, v, t)

- Intersect faster agent, hand over

Computing FastLineDelivery (u, v, t)

- Intersect faster agent, hand over

Computing FAstLineDelivery (u, v, t)

- Intersect faster agent, hand over, update lower envelope

Computing FastLineDelivery (u, v, t)

- Intersect faster agent, hand over

Computing FastLineDelivery (u, v, t)

- Intersect faster agent, hand over

Computing FAstLineDelivery (u, v, t)

- Intersect faster agent, hand over, update lower envelope

Computing FastLineDelivery (u, v, t)

- Intersect faster agent, hand over

Computing FastLineDelivery (u, v, t)

- Intersect faster agent, hand over

Computing FAstLineDelivery (u, v, t)

- Intersect faster agent, hand over, update lower envelope

Computing FastLineDelivery (u, v, t)

- Reach v

Computing FastLineDelivery (u, v, t)

- Solution to $\operatorname{FastLineDelivery}(u, v, t)$

Summary of Solution to FastLineDelivery

- Compute relevant arrangement once for every node: $O(k \log k)$ time per node
- Compute lower envelope for each node when it is made final: $O(k \log k)$ time per node
- Compute $a_{t}(u, v)$ in $O(k)$ time (once for each edge):
- trace lower envelope of agents coming from u, in the direction from u to v
- update lower envelope whenever a faster agent of the relevant arrangement of v is met
- Correctness can be proved by induction (the current lower envelope is always a fastest and foremost solution using only the agents from u and those from v that could have reached the package by now)

Conclusion

Our Result

- FastDelivery can be solved in $O(k n \log n+k m)$ time
- Key ideas:
- Use Dijkstra for time-dependent transit times
- Solve FastLineDelivery using geometric representation of agent movements

Future Work

- Can the running-time be improved further?
- Consider FastDelivery in the Euclidean plane?

Thank you!

Questions?

