
Boosting Automated Reasoning By Mining Existing Proofs
Thomas Gransden

Department of Computer Science,
University of Leicester

tg75@student.le.ac.uk

Abstract: Theorem provers are extremely useful tools for reasoning about complex mathematics and large
scale systems. They play an important part in verifying the correctness of designs, particularly for safety-
critical systems. The problem is that they still require a large amount of human intervention to successfully
guide the proof. Our solution to this important limitation involves using data mining techniques to mine proof
tactics from successful and unsuccessful proofs with the aim that they can be more widely applied. In this
paper we motivate the problem, and describe our work in progress.

1 Introduction

Proof automation is an extremely desirable property in the-
orem proving. In First Order Theorem Proving, reasoning
automatically has now become a reality with the advent of
fully automated theorem provers that work with decidable
fragments of First Order Logic. Automated Theorem Prov-
ing (ATP) is a very competitive area of research, with many
automated proof systems now competing against each other
in tournaments staged at international conferences. This
shows the progress that has been made so far in the field
of Automated Reasoning, but we also know that there are
many more challenges ahead.

Although First Order Logic provides us with the po-
tential for automation, we must accept a tradeoff with the
amount of expressivity that the logic provides. A more ca-
pable logic for expressing complex problems is Higher Or-
der Logic (HOL). HOL allows us to quantify over functions
and predicates, whereas this cannot be done in FOL. This
increase in expressivity leads to a major problem; HOL is
much harder to automatically reason over due to undecid-
able algorithms and proof methods. Whilst trivial goals can
be solved automatically, most complex proof developments
require significant amounts of human intervention to elicit
a successful proof.

As the field develops there is more formalised knowledge
becoming available in the form of proof libraries. Whilst
there is too much information to perform a brute force proof
search, there is the potential for identifying interesting and
useful patterns in these libraries. Our work is based on mak-
ing use of these patterns by turning them into tactics which
could be applied automatically. We can think of a tactic as
a set of instructions that when applied to a proof state, they
either advance the proof state, complete the proof or fail to
do either of these.

2 Data Mining in Theorem Proving

There have been some attempts at applying data mining
techniques in the context of theorem proving. Many first
order theorem provers use heuristics to guide their proof
search procedures. Much work has been carried out on im-

proving these heuristics by learning from previous proof ex-
amples [1, 2, 3].

In terms of applying data mining techniques to higher or-
der theorem proving, there have been a few attempts. Hazel
Duncan’s work [4] looked at searching through libraries of
successful proofs to find commonly occurring sequences of
proof steps. These proof steps were then formed into tac-
tics, which were then incorporated into a small automatic
theorem prover in Isabelle. The prover was naive in the
sense that it simply tried each tactic that was found in a
brute force way.

The tactics that Duncan produced were moderately ef-
fective in terms of their applicability. From the test set that
she evaluated her tactics against, an average of 32% of them
could have at least one of her tactics applied to them. A tac-
tic that was deemed good in terms of applicability was used
in 51% of the test set proofs, whereas a bad tactic couldn’t
be applied at all. A recommender system [6] was created
that made use of the sequences of mined proof steps, pro-
viding hints to the user about what the next step of a proof
could be, based on the existing proofs that were mined from
the proof libraries.

A more recent attempt is called ML4PG [5]. This project
attempts to show that it is possible to link Interactive The-
orem Provers with machine learning tools, and that non-
trivial patterns can be found. The software provides a link
between the Coq theorem prover and the machine learning
tools Matlab and Weka. The user can use ML4PG when
they become stuck during a proof, and the tool provides
hints to the user. The user must select libraries of existing
proofs, and the level of proof that they would like to look
for patterns in (proof tree, goal structures or proof steps).

The learning tool returns clusters of lemmas that show
similarities to the difficult proof, and it is left to the user
to inspect the proofs of the clustered lemma to see if there
is a proof pattern that could help advance the problematic
proof. In their conclusions, it would appear that clustering
based on goal structures provides the best results. They also
show that their tool can be used in a variety of proof situ-
ations such as industrial proofs and mathematical proofs.
Overall, this work goes some way to showing that there is
a place for machine learning in theorem proving, and that



useful results can be found.

3 Research Challenges

When combining data mining techniques with interactive
theorem proving, there are naturally many challenges that
arise. Whilst some of these are addressed more generally in
[5] there are some that arise specifically from our work on
implementing a tactic miner.

In Higher Order Logic, a particular goal could be solved
by an unlimited combination of proof steps, which can in-
clude user specified variable instantiations. This makes it
difficult infer useful models from specific examples in such
a way that the distinguishing features of a proof can be ex-
tracted and applied more generally.

Providing a suitable interface for communication be-
tween the theorem prover and the mining algorithm is dif-
ficult. Ultimatley, the results of the tactic miner must be
interpreted back into the language of the theorem prover
being used, so we must consider how this can be done in
a way that allows the theorem prover to make use of the
tactics output from the mining algorithm. We must make
use of mechanisms provided in some theorem provers that
allow users to specify tactics in some language that the the-
orem prover can understand. An example of this is the Ltac
language that Coq uses.

So far, proof tactic inference approaches have been unsu-
pervised; tactics have only been observed from successful
proofs. However, the theorem proving process also gener-
ates a lot of failed and discarded derivations. The ability to
leverage these negative examples can significantly improve
the accuracy and efficiency of mining algorithms. There-
fore, one of our research challenges will be to develop a
supervised tactic mining algorithm that will make use of
this data.

Finally, when evaluating tactic mining algorithms there
are a number of factors to consider. We must see if the
algorithm is scalable, and also generic enough to be imple-
mented within a number of theorem provers. We must also
look at the quality of the algorithm and see how many ex-
amples were needed to learn tactics from, and we must also
evaluate the applicability of the tactics that the algorithm
outputs.

4 Current Work

Although we are focussed on developing the tactic mining
approach at the moment, we must also consider the be-
haviour of a theorem proving system that implements our
tactic mining algorithm. This behaviour is shown in Figure
1.

Firstly, we must take the proof libraries (of successful
and unsuccessful proofs) and abstract them into a format
that is appropriate for learning. Currently, we have con-
verted successful Isabelle proofs into simple lists consist-
ing of the proof steps used. However, we know that in-
cluding some contextual information would be beneficial,

Figure 1: Proposed Technique

so that we can identify the state of the proof when a partic-
ular proof step was applied.

The next step will be to learn useful patterns from these
existing proofs. We are currently at the stage of studying
what kind of learning approach will give the best results.
We envisage that something novel will have to be developed
specifically for solving our problem.

Once we have identified the useful patterns in the proof
libraries, we can either present them to the user and al-
low them to manually evaluate the sequences, or ideally we
want to form tactics from them. By doing this we open
up the possibility of automatically applying them to proof
states.

Finally, when we complete any new proofs the proof li-
brary must be updated with the new information. This is
important so that any future times that the algorithm is used,
it can make use of the newly proved knowledge.

References

[1] James P. Bridge. Machine learning and automated the-
orem proving. Technical report, University of Cam-
bridge, Computer Laboratory, November 2010.

[2] J. Denzinger, M. Fuchs, C. Goller, and S. Schulz.
Learning from Previous Proof Experience. Technical
report, Institut für Informatik, Technische Universität
München, 1999.

[3] J. Denzinger and S. Schulz. Automatic Acquisition
of Search Control Knowledge from Multiple Proof
Attempts. Journal of Information and Computation,
162:59–79, 2000.

[4] H. Duncan. The Use of Data Mining for the Automatic
Formation of Tactics. PhD thesis, University of Edin-
burgh, 2007.

[5] Katya Komendantskaya and Jonathan Heras. Machine
Learning in Proof General: Interfacing Interfaces. De-
cember 2012.

[6] Alison Mercer. PG Tips: A Recommender System for
an Interactive Theorem Prover. Master’s thesis, Uni-
versity of Edinburgh, 2006.


