
Boosting Automated Reasoning by Mining Existing Proofs
Thomas Gransden – Department of Computer Science, University of Leicester – tg75@student.le.ac.uk

Work supervised by Dr. Neil Walkinshaw and Prof. Rajeev Raman.

Motivation
There are many proofs that rely on human intervention to provide
the necessary sequence of proof steps. This is especially true in
significant mathematical and industrial proofs. This project
investigates an approach that looks to provide greater
automation for theorem provers by applying data mining
techniques to the large libraries of proofs that are available.

Research Questions
1) How can we deal with the complexities of Higher Order
proofs?

The complex higher order language may have constructs such as
variable instantiations and proof directives that make the proof
extremely specific. We must find ways of managing this
information so that we can generalize sequences of proof steps
into more widely applicable tactics.

2) How can proof patterns be found?

As explained in Bundy et al ‘s work[1], a proof can be thought of
as a hierarchy of levels – the tactic level, the goal level and the
proof tree level. An important open research question is which
techniques can help to find patterns in each level of the proof.

3) How can we interface between the theorem prover and
tactic miner?

We must make sure that the contents of the proof libraries are
abstracted into a format that can be understood by the tactic
miner, and the results from the tactic miner must be interpreted
back into the theorem proving environment.

4) Can we incorporate negative information to learn from?

By including failed and discarded proof derivations, we will be
able to learn sequences of proof steps that don’t work. This
would allow us to implement a supervised tactic inference
approach.

Tactic Mining Approach
This aim of this project is to build upon the existing work and
implement a tactic mining tool for theorem provers. The tactics
will be formed from sequences of proof steps that are contained
in proof libraries.

There has been previous tactic mining work by Hazel Duncan [3].
Duncan’s approach searched for commonly occurring sequences
of proof steps and then used genetic programming techniques to
combine these sequences into tactics. In the evaluation, the
tactics proved moderately effective in terms of their applicability.
We provide an outline of our tactic mining strategy:

•  Abstract information about the proof library and current goal
into an appropriate learning format

•  Identify useful proof step sequences from the library that
could help to prove the goal.

•  Generalise the proof steps into tactics.

•  Apply the tactics and prove the goal.

•  Update the proof library with the new information.

Proof Library

Learning
Format

Sequences of
Proof Steps

Tactics

Goal to be
proved

References
[1] – A Statistical Relational Learning Challenge – Bundy et al.
ICML 2012

[2] – Machine Learning in Proof General. Komendantskaya and
Heras. UITP 2012

[3] – The Use Of Data Mining for the Automatic Formation of
Tactics. Hazel Duncan. University of Edinburgh, 2007

[4] – Learning semantics for Automated Reasoning. Urban et al.
NIPS Workshop on Learning Semantics, 2011

Combining Data Mining and Theorem Proving
In Higher Order Theorem Proving, emphasis has been put on
providing the user with proof hints based on existing proofs.
Some example applications are:

•  PGTips Recommender System – This system gives
statistical hints based on commonly occurring sequences of
tactics in proof libraries.

•  ML4PG [2] – makes use of clustering algorithms and
suggests proofs that are similar to the goal that is trying to be
proven.

In First Order Theorem Proving, much work has been carried out
by Urban et al [4] on the premise selection problem. Broadly, this
is the problem of selecting prior knowledge from large theories
libraries that is most useful for proving a new conjecture.

Example
We show an example proof about logarithms from the Isabelle/
HOL library that cannot be fully automated using the standard
Isabelle proof tools – human intervention is required to guide the
proof:

Lemma powr_divide2 : “x powr a / x powr b = x powr (a-b)”
apply (simp add: powr_def)

 apply (subst exp_diff [THEN sym])
 apply (simp add: left_diff_distrib)

done

