Queries, Modalities, Relations, Trees, XPath
Lecture VI
Harvest: Core XPath 1.0
as a Modal Logic for Trees
Axiomatizations and Complexity

Tadeusz Litak
Department of Computer Science
University of Leicester

July 2010: draft
Before we begin . . .

I am sometimes asked by students (not researchers, as they know the answer)

why theory is needed?

is it possible to just do applications without any theory?
The answer was provided by Charles-Louis de Secondat, baron de La Bréde et de Montesquieu, one of the greatest European philosophers of law (XVIIIth century)
Introduction
Axioms, Logic and Algebra
Axioms For Single Axes and Full Core XPath
Complexity

XPath
Its Navigational Core
Query Equivalence Problem
An Idea of Despotic Power

When the savages of Louisiana are desirous of fruit,

they cut the tree to the root, and gather the fruit.

This is an emblem of despotic government.
Trying to learn “applications” without necessary background means **cutting the tree of learning**. In the long run, you are not going to have any fruits.
Only after you learn theory properly, you realize
Only after you learn theory properly, you realize

- how many results you can produce
Only after you learn theory properly, you realize

- how many results you can produce
- how closely things are connected
Only after you learn theory properly, you realize

- how many results you can produce
- how closely things are connected
- how many tools and techniques from the past you can reuse
FROM NOW ON, THE LECTURE IS MEANT TO ILLUSTRATE THIS
To use José’s terminology, the contents belong to **Web Services Architecture** and more specifically, of course, to **XML Technologies**
XML and Web Technologies

A good overall reference:

Webpage for the book: http://www.brics.dk/ixwt/
Most detailed reference on XPath (except for W3C specification itself):
XML and Semi-structured Data
XML and Semi-structured Data

XML

eXtensible Markup Language
XML and Semi-structured Data

XML

eXtensible Markup Language

- began as a subset of SGML:

 Standard Generalized Markup Language

 (HTML: simplified and corrupted subset of SGML)
XML and Semi-structured Data

XML

eXtensible Markup Language

- began as a subset of **SGML**:
 Standard Generalized Markup Language
 (HTML: simplified and corrupted subset of SGML)
- developed to
 - RSS
XML and Semi-structured Data

XML

eXtensible Markup Language

- began as a subset of **SGML**: Standard Generalized Markup Language (HTML: simplified and corrupted subset of SGML)
- developed to
 - RSS
 - Atom
XML and Semi-structured Data

XML
eXtensible Markup Language

- began as a subset of SGML:
 Standard Generalized Markup Language
 (HTML: simplified and corrupted subset of SGML)

- developed to
 - RSS
 - Atom
 - SOAP
XML and Semi-structured Data

XML
eXtensible Markup Language

- began as a subset of **SGML**: Standard Generalized Markup Language (HTML: simplified and corrupted subset of SGML)
- developed to
 - RSS
 - Atom
 - SOAP
 - XHTML …
Example Document

No XML talk can do without its own example document:
No XML talk can do without its own example document:

```xml
<?xml version='1.0' encoding='UTF-8'?><talk date='23-Jul-2010'>
  <speaker uni='Leicester'>T. Litak</speaker>
  <title>
    <i>Core XPath 1.0</i> as a Modal Logic
  </title>
  <location>
    <i>JXNU</i><b>Nanchang</b>
  </location>
</talk>
```

(no DTD given, but you can easily come up with one)
What we’ll see through our dim glasses

Either this...

At any rate, we are too blind to see actual text content.
What we’ll see through our dim glasses

Either this . . .

(we cannot even see attributes, each node is labelled with a single label: its name)
What we’ll see through our dim glasses

or that ...

```
talk, @date='23-Jul-2010'
```

```
speaker, @uni='Leicester'
```

```
title
```

```
location
```

(attribute-value pairs are additional labels)
What we’ll see through our dim glasses

or perhaps ...

(back to the unique labelling idea, attribute-value pairs are a special kind of children)
What we’ll see through our dim glasses

or perhaps …

(talk)

@date='23-Jul-2010'

speaker

@uni='Leicester'

location

(title)

At any rate, we are too blind to see actual text content

(back to the unique labelling idea, attribute-value pairs are a special kind of children)
XPath 1.0: W3C Specification

- Provides a common syntax and semantics for functionality shared between [XQuery], XSL Transformations and XPointer
XPath 1.0: W3C Specification

- Provides a common syntax and semantics for functionality shared between [XQuery], XSL Transformations and XPointer
- Primary purpose: to address parts of an XML document
XPath 1.0: W3C Specification

- Provides a common syntax and semantics for functionality shared between [XQuery], XSL Transformations and XPointer
- **Primary purpose:** to address parts of an XML document
- In support of this primary purpose, it also provides basic facilities for manipulation of strings, numbers and booleans
XPath 1.0: W3C Specification

- Provides a common syntax and semantics for functionality shared between [XQuery], XSL Transformations and XPointer

- **Primary purpose:** to address parts of an XML document

- **In support of this primary purpose,** it also provides basic facilities for manipulation of strings, numbers and booleans

- **Uses a compact, non-XML syntax**
 - to facilitate use of XPath within URIs and XML attribute values
XPath 1.0: W3C Specification

- *Provides a common syntax and semantics for functionality shared between [XQuery], XSL Transformations and XPointer*

- **Primary purpose:** to address parts of an XML document

- In support of this primary purpose, it also provides basic facilities for manipulation of strings, numbers and booleans

- Uses a **compact, non-XML syntax** to facilitate use of XPath within URIs and XML attribute values

- Operates on the **abstract, logical structure of an XML document**, rather than its surface syntax
Samples of XPath Expressions

- **Unions.** For example: `/note/from | /note/to`.

The slides provide examples of XPath expressions, including unions, descendant and ancestor steps, filters, attributes, string functions, and arithmetical functions. The slides also mention the specifications for XPath 1.0, XPath 2.0, and XPath 3.0, with the latter being an extrapolation due to its potential size.
Samples of XPath Expressions

- **Unions.** For example: `/note/from | /note/to`.
- **Counting.** For example: `/node/to[1]`
Samples of XPath Expressions

- **Unions.** For example: `/note/from | /note/to`.

- **Counting.** For example: `/node/to[1]`.

- **Descendant and ancestor steps.** For example: `/node//i`
Samples of XPath Expressions

- **Unions.** For example: `/note/from | /note/to`.
- **Counting.** For example: `/node/to[1]`.
- **Descendant and ancestor steps.** For example: `/node//i`.
- **Filters.** For example: `/note[from]/to`.
Samples of XPath Expressions

- **Unions.** For example: `/note/from | /note/to`.
- **Counting.** For example: `/node/to[1]`
- **Descendant and ancestor steps.** For example: `/node//i`
- **Filters.** For example: `/note[from]/to`
- **Attributes.** For example: `/note[@date="10-nov-2006"]`
Samples of XPath Expressions

- **Unions.** For example: `/note/from | /note/to`.
- **Counting.** For example: `/node/to[1]`
- **Descendant and ancestor steps.** For example: `/node//i`
- **Filters.** For example: `/note[from]/to`
- **Attributes.** For example: `/note[@date="10-nov-2006"]`
- **String functions.** For example: `/note[substring(body,1,3)="It’s"]`
Samples of XPath Expressions

- **Unions.** For example: `/note/from | /note/to`
- **Counting.** For example: `/node/to[1]`
- **Descendant and ancestor steps.** For example: `/node//i`
- **Filters.** For example: `/note[from]/to`
- **Attributes.** For example: `/note[@date="10-nov-2006"]`
- **String functions.** For example: `/note[substring(body,1,3)="It’s"]`
- **Arithmetical functions.** ...
Samples of XPath Expressions

- **Unions.** For example: /note/from | /note/to.

- **Counting.** For example: /node/to[1]

- **Descendant and ancestor steps.** For example: /node//i

- **Filters.** For example: /note[from]/to

- **Attributes.** For example: /note[@date="10-nov-2006"]

- **String functions.** For example:
 /note[substring(body,1,3)="It’s"]

- **Arithmetical functions.** . . .

- . . .
Samples of XPath Expressions

- **Unions.** For example: /note/from | /note/to.
- **Counting.** For example: /node/to[1]
- **Descendant and ancestor steps.** For example: /node//i
- **Filters.** For example: /note[from]/to
- **Attributes.** For example: /note[@date="10-nov-2006"]
- **String functions.** For example:
 /note[substring(body,1,3)="It’s"]
- **Arithmetical functions.** . . .
- . . .
Samples of XPath Expressions

- **Unions.** For example: /note/from | /note/to.
- **Counting.** For example: /node/to[1]
- **Descendant and ancestor steps.** For example: /node//i
- **Filters.** For example: /note[from]/to
- **Attributes.** For example: /note[@date="10-nov-2006"]
- **String functions.** For example: /note[substring(body,1,3)="It’s"]
- **Arithmetical functions.** ...
 ...
- Specification of XPath 2.0 (W3C, Nov ’05): ± 90 pages.
Samples of XPath Expressions

- **Unions.** For example: `/note/from | /note/to`.
- **Counting.** For example: `/node/to[1]`
- **Descendant and ancestor steps.** For example: `/node//*`
- **Filters.** For example: `/note[from]/to`
- **Attributes.** For example: `/note[@date="10-nov-2006"]`
- **String functions.** For example:
 `/note[substring(body,1,3)="It’s"]`
- **Arithmetical functions.** . . .
 . . .
- Specification of XPath 2.0 (W3C, Nov ’05): ± 90 pages.
- Specification of XPath 3.0: ± 270 pages? (Balder’s extrapolation)
Core XPath 1.0

We focus on the basic navigational functionality of XPath:
Core XPath 1.0

We focus on the basic navigational functionality of XPath: (no arithmetics, no strings, no counting ... —recall these features are secondary!)
Core XPath 1.0

We focus on the basic navigational functionality of XPath: (no arithmetics, no strings, no counting . . .
—recall these features are secondary!)

Core XPath 1.0
Isolated by Gottlob, Koch and Pichler in 2002
Core XPath 1.0

We focus on the basic navigational functionality of XPath:
(no arithmetics, no strings, no counting . . .
—recall these features are secondary!)

Core XPath 1.0
Isolated by Gottlob, Koch and Pichler in 2002

An additional advantage of such a simple language:

data model discrepancies between XPath 1.0 and 2.0
no longer relevant
Core XPath

Core XPath has two types of expressions:
- Path expressions define binary relations
- Node expressions define sets of nodes
Core XPath

Core XPath has two types of expressions:

- **Path expressions** define binary relations
- **Node expressions** define sets of nodes

Syntax of Core XPath:
Core XPath

Core XPath has two types of expressions:

- **Path expressions** define binary relations
- **Node expressions** define sets of nodes

Syntax of Core XPath:

\[s ::= \downarrow, \uparrow, \leftarrow, \rightarrow \]
\[a ::= s | s^+ \]
\[pexpr ::= a | \cdot | pexpr/pexpr | pexpr \cup pexpr | pexpr[nexpr] \]
Core XPath

Core XPath has two types of expressions:

- **Path expressions** define binary relations
- **Node expressions** define sets of nodes

Syntax of Core XPath:

\[
s ::= \downarrow, \uparrow, \leftarrow, \rightarrow \\
a ::= s \mid s^+ \\
pexpr ::= a \mid \cdot \mid pexpr/pexpr \mid pexpr \cup pexpr \mid pexpr[nexpr] \\
nexpr ::= p \mid \langle pexpr \rangle \mid \neg nexpr \mid nexpr \lor nexpr \quad (p \in \Sigma)
\]
Core XPath

Core XPath has two types of expressions:

- Path expressions define binary relations
- Node expressions define sets of nodes

Syntax of Core XPath:

```plaintext
children::*,*parent::*,*preceding-sibling::*[1],following-sibling::*[1]
a ::= s | s+
pexpr ::= a | · | pexpr/pexpr | pexpr ∪ pexpr | pexpr[nexpr]
nexpr ::= p | ⟨pexpr⟩ | ¬nexpr | nexpr ∨ nexpr  (p ∈ Σ)
```

(Our notation is a bit different from the official XPath notation)

We also consider single axis fragments CoreXPath(a) for a fixed axis a

Tadeusz Litak
Lecture VI: Harvest: CXPath 1.0 (18/59)
Core XPath

Core XPath has two types of expressions:

- **Path expressions** define binary relations
- **Node expressions** define sets of nodes

Syntax of Core XPath:

\[
\text{children::*, parent::*, preceding-sibling::*[1], following-sibling::*[1]}
\]

\[
\ldots \text{descendant::*, ancestor::*, preceding-sibling::*, following-sibling::*}
\]

\[
\text{pexpr ::= a | · | pexpr/pexpr | pexpr \lor pexpr | pexpr[nexpr]}
\]

\[
\text{nexpr ::= p | \langle pexpr \rangle | \neg nexpr | nexpr \lor nexpr \quad (p \in \Sigma)}
\]
Core XPath

Core XPath has two types of expressions:
- Path expressions define binary relations
- Node expressions define sets of nodes

Syntax of Core XPath:

children::*, parent::*, preceding-sibling::*[1], following-sibling::*[1]
... descendant::*, ancestor::*, preceding-sibling::*, following-sibling::*
... self::*, pexpr/pexpr, pexpr | pexpr, pexpr[nexpr]

nexpr ::= p | ⟨pexpr⟩ | ¬nexpr | nexpr ∨ nexpr (p ∈ Σ)
Core XPath

Core XPath has two types of expressions:

- **Path expressions** define binary relations
- **Node expressions** define sets of nodes

Syntax of Core XPath:

\[
\text{children::*}, \text{parent::*}, \text{preceding-sibling::*[1]}, \text{following-sibling::*[1]} \\
\ldots \text{descendant::*}, \text{ancestor::*}, \text{preceding-sibling::*}, \text{following-sibling::*} \\
\ldots \text{self::*}, \text{pexpr/pexpr}, \text{pexpr | pexpr}, \text{pexpr[nexpr]} \\
\text{self::p}, \text{pexpr}, \text{not(nexpr)}, \text{nexpr or nexpr}
\]
Core XPath

Core XPath has two types of expressions:

- Path expressions define binary relations
- Node expressions define sets of nodes

Syntax of Core XPath:

\[
\begin{align*}
s & ::= \downarrow, \uparrow, \leftarrow, \rightarrow \\
a & ::= s | s^+ \\
pexpr & ::= a | \cdot | pexpr/pexpr | pexpr \cup pexpr | pexpr[nexpr] \\
nexpr & ::= p | \langle pexpr \rangle | \neg nexpr | nexpr \lor nexpr \quad (p \in \Sigma)
\end{align*}
\]

(Our notation is a bit different from the official XPath notation)
Core XPath

Core XPath has two types of expressions:

- **Path expressions** define binary relations
- **Node expressions** define sets of nodes

Syntax of Core XPath:

\[
\begin{align*}
s & ::= \downarrow, \uparrow, \leftarrow, \rightarrow \\
a & ::= s \mid s^+ \\
pexpr & ::= a \mid \cdot \mid pexpr/pexpr \mid pexpr \cup pexpr \mid pexpr[nexpr] \\
nexpr & ::= p \mid \langle pexpr \rangle \mid \neg nexpr \mid nexpr \lor nexpr \quad (p \in \Sigma)
\end{align*}
\]

(Our notation is a *bit* different from the official XPath notation)

We also consider **single axis fragments** of CoreXPath—notation $\text{CoreXPath}(a)$ for a fixed axis a
As said above, we see XML documents as finite sibling-ordered node labelled trees: ideal abstraction for such a simple syntax.
As said above, we see XML documents as finite sibling-ordered node labelled trees: ideal abstraction for such a simple syntax.
As said above, we see XML documents as finite sibling-ordered node labelled trees: ideal abstraction for such a simple syntax.

XML document

A tuple $T = (N, R\downarrow, R\rightarrow, V)$ where

- N is the set of nodes,
Semantics of CoreXPath I

As said above, we see XML documents as finite sibling-ordered node labelled trees: ideal abstraction for such a simple syntax

XML document

A tuple $T = (N, R_\downarrow, R_\rightarrow, V)$ where

- N is the set of nodes,
- R_\downarrow and R_\rightarrow are ‘child’ and ‘next sibling’ relations of a finite tree, and
As said above, we see XML documents as finite sibling-ordered node labelled trees: ideal abstraction for such a simple syntax

XML document

A tuple $T = (N, R_{\downarrow}, R_{\rightarrow}, V)$ where

- N is the set of nodes,
- R_{\downarrow} and R_{\rightarrow} are ‘child’ and ‘next sibling’ relations of a finite tree, and
- $V : \Sigma \rightarrow 2^N$ (or just $V : N \rightarrow \Sigma$ if unique labelling assumed)
Semantics of Core XPath II

pexpr : pairs (context node, reachable node)—subsets of N^2

- $[s]^T = R_s$
- $[s^+]^T$ = the transitive closure of R_s
- $[.]^T$ = the identity relation on N
- $[A[\phi]]^T = \{(n, m) \in [A]^T \mid m \in [\phi]^T\}$

nexpr : subsets of N

- $[p]^T = \{n \in N \mid n \in V(p)\}$
- $[\phi \land \psi]^T = [\phi]^T \cap [\psi]^T$
- $[\lnot \phi]^T = N \setminus [\phi]^T$
- $[\langle A \rangle]^T$ = domain of $[A]^T = \{n \mid (n, m) \in [A]^T\}$
Remember what we’ve seen yesterday?

A (slightly modified) diagram of Johan Van Benthem:

\[w \]

unary properties \(\rightarrow \) *modes* \(\rightarrow \) binary relations

\[w^2 \]

of states \(\leftarrow \) *projections* \(\leftarrow \) between states

propositional operators

ML

program operators

DRA/TRA
Examples of modes:

\[\mathcal{X} := \{ \langle x, x \rangle \mid x \in X \} \] (testing)

\[!\mathcal{X} := \{ \langle w, x \rangle \mid w \in \mathcal{W}, x \in X \} \] (realizing)

Examples of projections:

\[\langle R \rangle := \{ w \in \mathcal{W} \mid \exists v \in \mathcal{W}. wR^\mathcal{W} v \} \] (domain)

\[\pi^{-1}(R) := \{ w \in \mathcal{W} \mid \exists v \in \mathcal{W}. vR^\mathcal{W} w \} \] (codomain)

\[\sim R := \{ w \in \mathcal{W} \mid \forall v \in \mathcal{W}. \neg (wR^\mathcal{W} v) \} \] (antidomain)

\[\Delta(R) := \{ w \in \mathcal{W} \mid wR^\mathcal{W} w \} \] (diagonal)
Examples of modes:

\[?X := \{ \langle x, x \rangle \mid x \in X \} \]
(testing)

\[!X := \{ \langle w, x \rangle \mid w \in W, x \in X \} \]
(realizing)

Examples of projections:

\[\langle R \rangle := \{ w \in W \mid \exists v \in W. wR^{\triangleright} v \} \]
(domain)

\[\pi^{-1}(R) := \{ w \in W \mid \exists v \in W. vR^{\triangleright} w \} \]
(codomain)

\[\sim R := \{ w \in W \mid \forall v \in W. \neg (wR^{\triangleright} v) \} \]
(antidomain)

\[\Delta(R) := \{ w \in W \mid wR^{\triangleright} w \} \]
(diagonal)

NOTE THAT:

\[\langle R \rangle = \sim\sim R \]
\[= R/R\sim \cap \cdot \]

\[\Delta(R) = R \cap \cdot \]
\[\cap (R) = \cap \cdot \]
Comments for logicians

- Note we do not allow transitive closure of arbitrary path expressions (allowed in non-standard extensions like Regular XPath)
- Note also that path expressions, as opposed to node expressions, are not closed under other boolean connectives than sum (changed in XPath 2.0)
Comments for logicians

- Note we do not allow transitive closure of arbitrary path expressions (allowed in non-standard extensions like Regular XPath)
- Note also that path expressions, as opposed to node expressions, are not closed under other boolean connectives than sum (changed in XPath 2.0)
- Therefore, we are not exactly in the world of Tarski’s relation algebras
Comments for logicians

- Note we do not allow transitive closure of arbitrary path expressions (allowed in non-standard extensions like Regular XPath)
- Note also that path expressions, as opposed to node expressions, are not closed under other boolean connectives than sum (changed in XPath 2.0)
- Therefore, we are not exactly in the world of Tarski’s relation algebras
- The right algebraic two-sorted setting would be boolean modules over idempotent semirings
Comments for logicians

- Note we do not allow transitive closure of arbitrary path expressions (allowed in non-standard extensions like Regular XPath)
- Note also that path expressions, as opposed to node expressions, are not closed under other boolean connectives than sum (changed in XPath 2.0)
- Therefore, we are not exactly in the world of Tarski’s relation algebras
- The right algebraic two-sorted setting would be boolean modules over idempotent semirings
- It is possible to move the discussion to one-sorted setting, though:

 Dynamic Relation Algebras (DRA’s)
 studied in the 1990’s by a Dutch group in Utrecht (A. Visser, M. Hollenberg)
Comments for logicians

- Note we do not allow transitive closure of arbitrary path expressions (allowed in non-standard extensions like Regular XPath).
- Note also that path expressions, as opposed to node expressions, are not closed under other boolean connectives than sum (changed in XPath 2.0).
- Therefore, we are not exactly in the world of Tarski’s relation algebras.
- The right algebraic two-sorted setting would be boolean modules over idempotent semirings.
- It is possible to move the discussion to one-sorted setting, though:

 Dynamic Relation Algebras (DRA’s) studied in the 1990’s by a Dutch group in Utrecht (A. Visser, M. Hollenberg) which are exactly idempotent semirings with antidomain operation \(\sim \) (also known as dynamic negation).
Comments for logicians

- Note we do not allow transitive closure of arbitrary path expressions (allowed in non-standard extensions like Regular XPath)
- Note also that path expressions, as opposed to node expressions, are not closed under other boolean connectives than sum (changed in XPath 2.0)
- Therefore, we are not exactly in the world of Tarski’s relation algebras
- The right algebraic two-sorted setting would be boolean modules over idempotent semirings
- It is possible to move the discussion to one-sorted setting, though:

 Dynamic Relation Algebras (DRA’s) studied in the 1990’s by a Dutch group in Utrecht (A. Visser, M. Hollenberg) which are exactly idempotent semirings with antidomain operation ~ (also known as dynamic negation)
Enter the Short CoreXPath (SCX) of de Rijke and Marx: one-sorted notational variant
Short Core XPath

Enter the **Short CoreXPath (SCX)** of de Rijke and Marx: one-sorted notational variant

Syntax of Short Core XPath:

\[
\begin{align*}
s & ::= \downarrow, \uparrow, \leftarrow, \rightarrow \\
a & ::= s \mid s^+ \\
exp & ::= \cdot \mid a \mid \exp / \exp \mid \exp \cup \exp
\end{align*}
\]
Enter the **Short Core XPath (SCX)** of de Rijke and Marx: one-sorted notational variant

Syntax of Short Core XPath:

\[
\begin{align*}
s & ::= \downarrow, \uparrow, \leftarrow, \rightarrow \\
a & ::= s \mid s^+ \\
ext & ::= \cdot \mid a \mid exp/exp \mid exp \cup exp \mid ?p \mid \neg exp \quad (p \in \Sigma)
\end{align*}
\]
Short Core XPath

Enter the Short CoreXPath (SCX) of de Rijke and Marx:
one-sorted notational variant

Syntax of Short Core XPath:

\[
s ::= \downarrow, \uparrow, \leftarrow, \rightarrow
\]

\[
a ::= s \mid s^+
\]

\[
exp ::= \cdot \mid a \mid \text{exp/exp} \mid \text{exp} \cup \text{exp} \mid ?p \mid \neg \text{exp} \quad (p \in \Sigma)
\]

Definition of a single axis fragment remains the same
Semantics of Short Core XPath

\[\text{pexpr} : \text{pairs (context node, reachable node)—subsets of } N^2 \]

\[
\begin{align*}
[s]^T &= R_s \\
[s^+]^T &= \text{the transitive closure of } R_s \\
[.]^T &= \text{the identity relation on } N \\
[A \cup B]^T &= \text{union of } [A]^T \text{ and } [B]^T \\
[A[\phi]]^T &= \{(n, m) \in [A]^T \mid m \in [\phi]^T\} \\
\text{nexpr} : \text{subsets of } N \\
p]^T &= \{n \in N \mid n \in V(p)\} \\
[\phi \land \psi]^T &= [\phi]^T \cap [\psi]^T \\
[\neg \phi]^T &= N \setminus [\phi]^T \\
[\langle A \rangle]^T &= \text{domain of } [A]^T = \{n \mid (n, m) \in [A]^T\}
\end{align*}
\]
Semantics of Short Core XPath

\[\text{exp : pairs (context node, reachable node)—subsets of } N^2 \]

\[[s]^T = R_s \]
\[[s^+]^T = \text{the transitive closure of } R_s \]
\[[.]^T = \text{the identity relation on } N \]
\[[A/B]^T = \text{composition of } [A]^T \text{ and } [B]^T \]
\[[A \cup B]^T = \text{union of } [A]^T \text{ and } [B]^T \]

\[[?p]^T = \{ (n, n) \in N^2 \mid n \in V(p) \} \]
\[[\sim A]^T = \{ (n, n) \in N^2 \mid \forall m. (n, m) \not\in [A]^T \} \]
Back-and-forth Between Core XPath and SCX

One direction is easy:
\[[\sim A]^T = [\cdot [\neg \langle A \rangle]]^T \]
Back-and-forth Between Core XPath and SCX

One direction is easy:

\[\textstyle [\sim A]^T = [\cdot [\neg \langle A \rangle]]^T \]

But there is also a polynomial translation \(t \) in the reverse direction:

\[
\begin{align*}
t(p) & = ?p \\
t(\langle A \rangle) & = \sim\sim t(A) \\
t(\phi \land \psi) & = \sim(\sim t(\phi) \cup \sim t(\psi)) \\
t(A[\phi]) & = t(A)/t(\phi)
\end{align*}
\]

other connectives being straightforward. Clearly
Back-and-forth Between Core XPath and SCX

One direction is easy:

\[[\sim A]^T = [\cdot [\sim \langle A \rangle]]^T \]

But there is also a polynomial translation \(t \) in the reverse direction:

\[
\begin{align*}
 t(p) & = ?p \\
 t(\langle A \rangle) & = \sim \sim t(A) \\
 t(\phi \land \psi) & = \sim (\sim t(\phi) \cup \sim t(\psi)) \\
 t(A[\phi]) & = t(A)/t(\phi)
\end{align*}
\]

other connectives being straightforward. Clearly

\[
\begin{align*}
 [A]^T & = [t(A)]^T & \text{for all } A \in \text{pexpr} \\
 [\cdot [\phi]]^T & = [t(\phi)]^T & \text{for all } \phi \in \text{nexpr}
\end{align*}
\]
When Two Queries Are Equivalent?

Definition

Let P and Q be either
- both path expressions or
- both node expressions

We say P and Q are equivalent ($P \equiv Q$) if for any document $[P]^T = [Q]^T$
Which expressions are equivalent?

Let’s give it a try:

is it true that
· ≡ ↑ /
·
fine, how about
· ≡ ↓ /
·
and
↑ /
↓ ≡ ← + ∪ · ∪ → +
Which expressions are equivalent?

Let’s give it a try:

is it true that

\[\cdot \equiv \uparrow/\downarrow? \]
Which expressions are equivalent?

Let’s give it a try:

- is it true that
 - $\equiv \uparrow/\downarrow$?
Which expressions are equivalent?

Let’s give it a try:

- is it true that
 \[\cdot \equiv \uparrow/\downarrow? \]
- fine, how about
 \[\cdot \equiv \downarrow/\uparrow \]
 and
 \[\uparrow/\downarrow \equiv \leftarrow^{+} \cup \cdot \cup \rightarrow^{+}? \]
Which expressions are equivalent?

Let’s give it a try:

- is it true that \(\cdot \equiv \uparrow/\downarrow \)?

- fine, how about \(\cdot \equiv \downarrow/\uparrow \)?

- and \(\uparrow/\downarrow \equiv \leftarrow^{+} \bigcup \cdot \bigcup \rightarrow^{+} \)?

Tadeusz Litak Lecture VI: Harvest: CXPath 1.0 (28/59)
Which expressions are equivalent?

Let’s give it a try:

- is it true that
 \[\cdot \equiv \uparrow/\downarrow? \]

- fine, how about
 \[\cdot \equiv \downarrow/\uparrow \]
 and
 \[\uparrow/\downarrow \equiv \leftarrow^+ \cup \cdot \cup \rightarrow^+? \]

- One last try: how about
 \[\cdot [\langle\downarrow\rangle] \equiv \downarrow/\uparrow \]
 and
 \[\uparrow/\downarrow \equiv \leftarrow^+ \cup \cdot [\langle\uparrow\rangle] \cup \rightarrow^+? \]
Which expressions are equivalent?

Let’s give it a try:

- is it true that
 \[\cdot \equiv \uparrow/\downarrow ? \]

- fine, how about
 \[\cdot \equiv \downarrow/\uparrow \]
 and
 \[\uparrow/\downarrow \equiv \leftarrow^+ \cup \cdot \cup \rightarrow^+ \]

- One last try: how about
 \[\sim\sim/\downarrow \equiv \downarrow/\uparrow \]
 and
 \[\uparrow/\downarrow \equiv \leftarrow^+ \cup \sim\sim \cup \uparrow \cup \rightarrow^+ \]
Which expressions are equivalent?

Let’s give it a try:

- is it true that
 \[\cdot \equiv \uparrow/\downarrow? \]

- fine, how about
 \[\cdot \equiv \downarrow/\uparrow \]
 and
 \[\uparrow/\downarrow \equiv \leftarrow^+ \cup \cdot \cup \rightarrow^+? \]

- One last try: how about
 \[\sim\sim\downarrow \equiv \downarrow/\uparrow \]
 and
 \[\uparrow/\downarrow \equiv \leftarrow^+ \cup \sim\sim\uparrow \cup \rightarrow^+? \]
A non-trivial problem for query rewrite and optimization:

Evaluation times of two equivalent queries may differ up to several orders of magnitude!
A non-trivial problem for query rewrite and optimization:

Evaluation times of two equivalent queries may differ up to several orders of magnitude!

When implementing an optimizer, you may need thousands of those equivalences.
Now how do you know...
A non-trivial problem for query rewrite and optimization:

 Evaluation times of two equivalent queries
 may differ up to several orders of magnitude!

When implementing an optimizer,
you may need thousands of those equivalences
Now how do you know...

(soundness problem)
... all of your equivalences are valid?
 some fake equivalences not so easy to spot, especially in hurry
A non-trivial problem for query rewrite and optimization:

Evaluation times of two equivalent queries may differ up to several orders of magnitude!

When implementing an optimizer, you may need thousands of those equivalences.
Now how do you know... (soundness problem)
...all of your equivalences are valid?

some fake equivalences not so easy to spot, especially in hurry

(completeness problem)
...you took care of all (possibly) relevant ones?

there might be classes of equivalences you never thought of!
Definition (Complete Axiomatization)

A complete axiomatization of a given XPath fragment:

A set of

- finitely many valid **equivalence schemes**
- finitely many validity preserving **inference rules**

from which every other valid equivalence is derivable.
Definition (Complete Axiomatization)

A complete axiomatization of a given XPath fragment:

A set of

- finitely many valid *equivalence schemes*
- finitely many validity preserving *inference rules*

from which every other valid equivalence is derivable.

For logicians again: of course, we are interested only in finite axiomatizations. As intended models are finite, finite axiomatization implies *decidability*!
Definition (Complete Axiomatization)

A complete axiomatization of a given XPath fragment:

A set of

- finitely many valid equivalence schemes
- finitely many validity preserving inference rules

from which every other valid equivalence is derivable.

For logicians again: of course, we are interested only in finite axiomatizations. As intended models are finite, finite axiomatization implies decidability!

One of reasons why we consider Core XPath only:

the whole XPath would be too big to allow an axiomatization
How does a complete axiomatization help?

- Solves the soundness problem:
 if all your rules can be derived from the axioms, they are valid
How does a complete axiomatization help?

- Solves the soundness problem:
 if all your rules can be derived from the axioms, they are valid

- Solves the completeness problem:
 if you can handle all the axioms, you did not forget anything
How does a complete axiomatization help?

- Solves the soundness problem:
 if all your rules can be derived from the axioms, they are valid

- Solves the completeness problem:
 if you can handle all the axioms, you did not forget anything

- Hopefully, it should also yield better rewrite strategies
Logic—Algebra—Query Languages

Logicians and algebraists have long studied similar problems in a different disguise:

| logic: | algebras: | databases: |
Logicians and algebraists have long studied similar problems in a different disguise:

<table>
<thead>
<tr>
<th>logic:</th>
<th>algebras:</th>
<th>databases:</th>
</tr>
</thead>
<tbody>
<tr>
<td>formulas</td>
<td>terms</td>
<td>query plans</td>
</tr>
</tbody>
</table>
Logicians and algebraists have long studied similar problems in a different disguise:

<table>
<thead>
<tr>
<th>logic:</th>
<th>algebras:</th>
<th>databases:</th>
</tr>
</thead>
<tbody>
<tr>
<td>formulas</td>
<td>terms</td>
<td>query plans</td>
</tr>
<tr>
<td>tautologies</td>
<td>equations</td>
<td>query equivalences</td>
</tr>
</tbody>
</table>
Logic—Algebra—Query Languages

Logicians and algebraists have long studied similar problems in a different disguise:

<table>
<thead>
<tr>
<th>logic:</th>
<th>algebras:</th>
<th>databases:</th>
</tr>
</thead>
<tbody>
<tr>
<td>formulas</td>
<td>terms</td>
<td>query plans</td>
</tr>
<tr>
<td>tautologies</td>
<td>equations</td>
<td>query equivalences</td>
</tr>
<tr>
<td>inference rules</td>
<td>rewrite rules</td>
<td></td>
</tr>
</tbody>
</table>
Logicians and algebraists have long studied similar problems in a different disguise:

<table>
<thead>
<tr>
<th>logic:</th>
<th>algebras:</th>
<th>databases:</th>
</tr>
</thead>
<tbody>
<tr>
<td>formulas</td>
<td>terms</td>
<td>query plans</td>
</tr>
<tr>
<td>tautologies</td>
<td>equations</td>
<td>query equivalences</td>
</tr>
<tr>
<td>inference rules</td>
<td>rewrite rules</td>
<td></td>
</tr>
</tbody>
</table>

In particular, they standarized a beautifully simple set of validity preserving rules:
Logicians and algebraists have long studied similar problems in a different disguise:

<table>
<thead>
<tr>
<th>logic:</th>
<th>algebras:</th>
<th>databases:</th>
</tr>
</thead>
<tbody>
<tr>
<td>formulas</td>
<td>terms</td>
<td>query plans</td>
</tr>
<tr>
<td>tautologies</td>
<td>equations</td>
<td>query equivalences</td>
</tr>
<tr>
<td>inference rules</td>
<td></td>
<td>rewrite rules</td>
</tr>
</tbody>
</table>

In particular, they standarized a beautifully simple set of validity preserving rules:

Birkhoff’s Calculus For Equational Logic
Birkhoff’s Calculus For Equational Logic

Definition

Let Γ be a set of equivalences. Equivalence $P \equiv Q$ is **derivable** from Γ if it can be obtained by the following rules:

$P \equiv P$
Definition

Let Γ be a set of equivalences. Equivalence $P \equiv Q$ is **derivable** from Γ if it can be obtained by the following rules:

1. $P \equiv P$
2. $P \equiv Q \Rightarrow Q \equiv P$
3. $P \equiv Q$ and $Q \equiv R \Rightarrow P \equiv R$

An axiomatization using Birkhoff’s rules only is **orthodox**. Clearly, these rules preserve validity.
Definition

Let Γ be a set of equivalences. Equivalence $P \equiv Q$ is **derivable** from Γ if it can be obtained by the following rules:

- $P \equiv P$
- $P \equiv Q \quad \implies \quad Q \equiv P$
- $P \equiv Q \land Q \equiv R \quad \implies \quad P \equiv R$

An axiomatization using Birkhoff’s rules only is **orthodox**. Clearly, these rules preserve validity.
Definition

Let Γ be a set of equivalences. Equivalence $P \equiv Q$ is **derivable** from Γ if it can be obtained by the following rules:

- $P \equiv P$
- $P \equiv Q \implies Q \equiv P$
- $P \equiv Q \& Q \equiv R \implies P \equiv R$
- $P \equiv Q \implies R \equiv R'$

(R' is obtained from R by replacing occurrences of P by Q)
Birkhoff’s Calculus For Equational Logic

Definition

Let Γ be a set of equivalences. Equivalence $P \equiv Q$ is **derivable** from Γ if it can be obtained by the following rules:

- $P \equiv P$
- $P \equiv Q \implies Q \equiv P$
- $P \equiv Q \land Q \equiv R \implies P \equiv R$
- $P \equiv Q \implies R \equiv R'$

(R' is obtained from R by replacing occurrences of P by Q)

An axiomatization using Birkhoff’s rules only is **orthodox**.
Birkhoff’s Calculus For Equational Logic

Definition

- Let Γ be a set of equivalences. Equivalence $P \equiv Q$ is derivable from Γ if it can be obtained by the following rules:
 \begin{align*}
 P \equiv P \\
 P \equiv Q \implies Q \equiv P \\
 P \equiv Q \& Q \equiv R \implies P \equiv R \\
 P \equiv Q \implies R \equiv R' \\
 \end{align*}
 (R' is obtained from R by replacing occurrences of P by Q)

- An axiomatization using Birkhoff’s rules only is orthodox.

Clearly, these rules preserve validity.
Q1: Why Birkhoff Calculus?

Before we proceed, you may have two questions:
Q1: Why Birkhoff Calculus?

Before we proceed, you may have two questions:

Definition

What is so great about this derivation system? Is it . . .
Q1: Why Birkhoff Calculus?

Before we proceed, you may have two questions:

Definition

What is so great about this derivation system? Is it . . .

- . . . the definition itself?
Q1: Why Birkhoff Calculus?

Before we proceed, you may have two questions:

Definition

What is so great about this derivation system? Is it . . .

• . . . the definition itself? 😃
 Should feel straightforward and natural,
 not surprising and counterintuitive
Q1: Why Birkhoff Calculus?

Before we proceed, you may have two questions:

Definition

What is so great about this derivation system? Is it . . .

- . . . the definition itself? 😞 Should feel straightforward and natural, not surprising and counterintuitive
- . . . the avalanche of results it triggered off?
Q1: Why Birkhoff Calculus?

Before we proceed, you may have two questions:

Definition

What is so great about this derivation system? Is it . . .

- . . . the definition itself? 🤔
 Should feel straightforward and natural, not surprising and counterintuitive

- . . . the avalanche of results it triggered off? 😊
 \textit{Theory of varieties} developed since the 1930’s: semigroups and groups, semirings, semilattices, lattices and residuated lattices, boolean algebras, abstract relation and cylindric algebras . . .
Q1 cont'd: But What Use Are They For Us?

An orthodox axiomatization
≡
An elegant, self-contained equational rewrite system
(no need to break equational reasoning with intermediate lemmas)

Almost all axiomatizations presented today will be orthodox
(you're going to see one exception at the end of the talk and dislike it)
Q1 cntnd: But What Use Are They For Us?

An orthodox axiomatization

≡

An elegant, self-contained equational rewrite system
(no need to break equational reasoning with intermediate lemmas)
Q1 contd: But What Use Are They For Us?

An orthodox axiomatization

≡

An elegant, self-contained equational rewrite system
(no need to break equational reasoning with intermediate lemmas)

Almost all axiomatizations presented today will be orthodox
(you’re going to see one exception at the end of the talk and dislike it)
Q2: Anything Special about XPath?

Question

How about complete axiomatizations for SQL-like languages?

After all, there has been nothing XML specific to what I said . . .
Q2: Anything Special about XPath?

Question

How about complete axiomatizations for SQL-like languages?

After all, there has been nothing XML specific to what I said . . .

Answer

Even with no more than three attributes, you soon run into unaxiomatizability results! (© by logicians and algebraists)

Some database theorists got into problems not knowing about it . . .
Q2: Anything Special about XPath?

Question

How about complete axiomatizations for SQL-like languages?

After all, there has been nothing XML specific to what I said . . .

Answer

Even with no more than three attributes, you soon run into unaxiomatizability results! (© by logicians and algebraists)

Some database theorists got into problems not knowing about it . . .
It does not mean you cannot find interesting axiomatizable fragments—they are rather small though.
Q2 cntd: Is XPath Querying Any Better Off, Then?

Yes. precisely because we can isolate the navigational core . . . (would not make much sense in the relational context) . . . and this core is related to well-behaved, axiomatizable formalisms: Node expressions—to modal logic. Path expressions—to idempotent (antidomain) semirings. The duality of path and node expressions: resembles (fragments of) the logic of programs (PDL).
Q2 cntd: Is XPath Querying Any Better Off, Then?

Short Answer

Yes.
Q2 cntd: Is XPath Querying Any Better Off, Then?

Short Answer

Yes.

Long Answer

Yes, precisely because

- *we can isolate the navigational core . . .*

 (would not make much sense in the relational context)
Q2 cntd: Is XPath Querying Any Better Off, Then?

Short Answer
Yes.

Long Answer
Yes, precisely because

- we can isolate the navigational core . . .
 (would not make much sense in the relational context)

- . . . and this core is related to
 well-behaved, axiomatizable formalisms:
 - Node expressions—to modal logic
Q2 cntd: Is XPath Querying Any Better Off, Then?

Short Answer

Yes.

Long Answer

Yes, precisely because

- we can isolate the navigational core . . .
 (would not make much sense in the relational context)

- . . . and this core is related to
 well-behaved, axiomatizable formalisms:
 - Node expressions—to modal logic
 - Path expressions—to idempotent (antidomain) semirings
Q2 cntd: Is XPath Querying Any Better Off, Then?

Short Answer
Yes.

Long Answer
Yes, precisely because

- we can isolate the navigational core . . .
 (would not make much sense in the relational context)
- . . . and this core is related to
 well-behaved, axiomatizable formalisms:
 - Node expressions—to modal logic
 - Path expressions—to idempotent (antidomain) semirings
 - The duality of path and node expressions:
 resembles (fragments of) the logic of programs (PDL)
Q2 cntd: Is XPath Querying Any Better Off, Then?

Short Answer
Yes.

Long Answer
Yes, precisely because

- we can isolate the navigational core . . .
 (would not make much sense in the relational context)

- . . . and this core is related to
 well-behaved, axiomatizable formalisms:
 - Node expressions—to modal logic
 - Path expressions—to idempotent (antidomain) semirings
 - The duality of path and node expressions:
 resembles (fragments of) the logic of programs (PDL)
Basic Axioms I: Idempotent Semirings

<table>
<thead>
<tr>
<th>ISAx1</th>
<th>((A \cup B) \cup C \equiv A \cup (B \cup C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISAx2</td>
<td>(A \cup B \equiv B \cup A)</td>
</tr>
<tr>
<td>ISAx3</td>
<td>(A \cup A \equiv A)</td>
</tr>
<tr>
<td>ISAx4</td>
<td>(A/(B/C) \equiv (A/B)/C)</td>
</tr>
</tbody>
</table>
| ISAx5 | \(
\begin{align*}
\cdot / A & \equiv A \\
A / \cdot & \equiv A \\
A/(B \cup C) & \equiv A/B \cup A/C \\
(A \cup B)/C & \equiv A/C \cup B/C
\end{align*}
\) |
| ISAx6 | \(\bot \subseteq A\) |

Distributive lattices, Kleene algebras, Tarski’s relation algebras: they all have **idempotent semiring** reducts. Idempotency is the axiom ISAx3. \(\bot\) abbreviates \(\cdot[\neg\langle\cdot\rangle]\)
Basic Axioms II: Predicate Axioms

PrAx1 \(A \left[\neg \langle B \rangle \right]/B \equiv \bot \)

PrAx2 \(A \left[\phi \lor \psi \right] \equiv A \left[\phi \right] \cup A \left[\psi \right] \)

PrAx3 \((A/B)[\phi] \equiv A/B[\phi] \)

PrAx4 \(\cdot[\langle \cdot \rangle] \equiv \cdot \)

In Tarski’s relation algebras and XPath 2.0, predicates can be defined away.

Note that PrAx3 would not be valid if we allowed unrestricted positional predicates.
Basic Axioms III: Node Axioms

NdAx1 \(\phi \equiv \neg(\neg\phi \lor \psi) \lor \neg(\neg\phi \lor \neg\psi) \)

NdAx2 \(\langle A \cup B \rangle \equiv \langle A \rangle \lor \langle B \rangle \)

NdAx3 \(\langle A / B \rangle \equiv \langle A [\langle B \rangle] \rangle \)

NdAx4 \(\langle \cdot [\phi] \rangle \equiv \phi \)

Note how little was needed to ensure booleanity!
(by Huntington’s result from the 1930’s)
And NdAx2–NdAx4 just mimick PrAx2—PrAx4
(redundancy: price to pay for two-sorted signature)
Axioms in one-sorted signature

Recall all the two-sorted axioms for predicates and expressions:

PrAx1 \(A[\lnot\langle B\rangle]/B \equiv \bot \)
PrAx2 \(A[\phi \lor \psi] \equiv A[\phi] \cup A[\psi] \)
PrAx3 \((A/B)[\phi] \equiv A/B[\phi] \)
PrAx4 \(\cdot[\langle \cdot \rangle] \equiv \cdot \)

NdAx1 \(\phi \equiv \lnot(\lnot\phi \lor \psi) \lor \lnot(\lnot\phi \lor \lnot\psi) \)
NdAx2 \(\langle A \cup B\rangle \equiv \langle A\rangle \lor \langle B\rangle \)
NdAx3 \(\langle A/B\rangle \equiv \langle A[\langle B\rangle]\rangle \)
NdAx4 \(\langle \cdot[\phi]\rangle \equiv \phi \)
Here is a one-sorted axiomatization for \sim over idempotent semi-ring axioms found by Hollenberg:

\[
\begin{align*}
\sim A/A & \equiv \bot \\
\sim\sim A/A & \equiv A \\
\sim(A/B)/A & \equiv \sim((A/B)/A)/\sim B \\
\sim(A \cup B) & \equiv \sim A/\sim B \\
\sim A \cup \sim B & \equiv \sim\sim(\sim A \cup \sim B)
\end{align*}
\]

We need to add one more axiom for tests:

\[?p \equiv \sim\sim?p\]
Now, you may have the feeling that there was nothing XPath-specific yet
Now, you may have the feeling that *there was nothing XPath-specific yet*
But in fact there is a fragment for which it is all there is:
Now, you may have the feeling that *there was nothing XPath-specific yet*
But in fact there is a fragment for which *it is all there is:*
Core XPath(\downarrow), the child-axis-only fragment!

Theorem

The axioms presented so far are complete for all valid equivalences of Core XPath(\downarrow).
Now, you may have the feeling that there was nothing XPath-specific yet. But in fact there is a fragment for which it is all there is: Core XPath(\downarrow), the child-axis-only fragment!

Theorem

The axioms presented so far are complete for all valid equivalences of Core XPath(\downarrow).

In order to find more interesting equivalences, we have to move to other fragments.
Axioms for Linear Axes

The non-transitive case:

\[\text{LinAx1} \quad \phi \rightarrow_{\neg \phi} s \quad \equiv \quad \cdot \left(\neg \langle s \phi \rangle \right) / s \quad \text{for } s \in \{ \rightarrow, \leftarrow, \uparrow \} \]

This forces functionality of the corresponding axis
Axioms for Transitive Axes

One for node expressions, one for path expressions:

TransAx1 \(\langle s^+ [\phi] \rangle \equiv \langle s^+ [\phi \land \neg\langle s^+ [\phi] \rangle]\rangle \)

TransAx2 \(s^+ \equiv s^+ \cup s^+/s^+ \)

The first one is called the L"ob axiom and forces well-foundedness.
Don’t get modal logicians started on it—people wrote books about this formula.

In particular, all the consequences of TransAx2 for node expressions can be already derived from TransAx1.
I can neither prove nor disprove that for path expressions TransAx2 is (ir-)redundant.
Finally, Axes which Are Both Transitive and Linear

\[
\text{LinAx2} \cdot [\langle s^+ [\phi] \rangle] / s^+ \equiv s^+ [\phi] \cup s^+ [\phi] / s^+ \cup s^+ [\langle s^+ [\phi] \rangle] \\
\text{for } s \in \{\rightarrow, \leftarrow, \uparrow\}
\]

This forces the corresponding axis is a linear order
Single Axis Completeness Result

Theorem

- **Base axioms** are complete for Core XPath(\downarrow)

- **Base axioms with LinAx1** are complete for other intransitive single axis fragments

- **Base axioms with TransAx1 and TransAx2** are complete for Core XPath(\downarrow^+)

- **Base axioms with TransAx1, TransAx2 and LinAx2** are complete for other transitive single axis fragments
A Few Words About Proofs

First, rewrite node expressions to simple node expressions:

\[
\text{siNode} ::= \langle \cdot \rangle \mid p \mid \langle a \ [\text{siNode}] \rangle \mid \neg \text{siNode} \mid \text{siNode} \lor \text{siNode}
\]
A Few Words About Proofs

- First, rewrite node expressions to **simple node expressions**:

 $\text{siNode ::= } \langle \cdot \rangle | p | \langle a [\text{siNode}] \rangle | \neg \text{siNode} | \text{siNode} \lor \text{siNode}$

They are isomorphic variants of **modal formulas**
A Few Words About Proofs

- First, rewrite node expressions to **simple node expressions**:

 \[\text{siNode ::= } \langle \cdot \rangle \mid p \mid \langle a \text{ [siNode]} \rangle \mid \neg \text{siNode} \mid \text{siNode} \lor \text{siNode} \]

 They are isomorphic variants of **modal formulas**

- Using **normal form theorems** for modal logic, we provide a completeness proof for node expressions
A Few Words About Proofs cntd.

Then we rewrite all path expressions as sums of sum-free expressions of the form

\[S = \cdot [\beta_1] / a [\beta_2] / \ldots / a [\beta_\ell], \]

(all \(\beta_i \) are normal forms of

- the same nesting degree in case of transitive axes
- strictly decreasing degree for intransitive axes)

In case of linear axes, we can even guarantee that every formula is witnessed further down the chain.
A Few Words About Proofs cntd.

- Then we rewrite all path expressions as sums of sum-free expressions of the form

\[S = \cdot [\beta_1] / a [\beta_2] / \ldots / a [\beta_\ell], \]

(all \(\beta_i \) are normal forms of

- the same nesting degree in case of transitive axes
- strictly decreasing degree for intransitive axes)

In case of linear axes, we can even guarantee that every formula is witnessed further down the chain

- We prove that for every two such expressions either
A Few Words About Proofs cntd.

Then we rewrite all path expressions as sums of sum-free expressions of the form

\[S = \cdot [\beta_1] / a [\beta_2] / \ldots / a [\beta_\ell], \]

(all \(\beta_i \) are normal forms of

- the same nesting degree in case of transitive axes
- strictly decreasing degree for intransitive axes)

In case of linear axes, we can even guarantee that every formula is witnessed further down the chain

We prove that for every two such expressions either

- one is a subsequence of the other—provably contained or
A Few Words About Proofs cntd.

- Then we rewrite all path expressions as sums of sum-free expressions of the form

\[S = \cdot [\beta_1] / a [\beta_2] / \ldots / a [\beta_\ell], \]

(all \(\beta_i \) are normal forms of
- the same nesting degree in case of transitive axes
- strictly decreasing degree for intransitive axes)

In case of linear axes, we can even guarantee that every formula is witnessed further down the chain

- We prove that for every two such expressions either
 - one is a subsequence of the other—provably contained or
 - there is a countermodel for containment
Aside: the issue of labels

There is a fact about XML trees we did not take into account (unless we opt to render attribute-value pairs as additional labels)

\[p \land q \equiv \bot \] for distinct \(p \) and \(q \)

This axiom itself is not substitution-invariant, this is why we do not like it. But as our proofs used only Birkhoff's rules they are quite flexible and adding this axiom does not hurt.
Aside: the issue of labels

There is a fact about XML trees we did not take into account (unless we opt to render attribute-value pairs as additional labels)

The labels are disjoint!
Aside: the issue of labels

There is a fact about XML trees we did not take into account (unless we opt to render attribute-value pairs as additional labels)

The labels are disjoint!

However, this is easy to fix: add node axiom

\[p \land q \equiv \bot \]

for distinct \(p \) and \(q \)

This axiom itself is not substitution-invariant, this is why we do not like it
Aside: the issue of labels

There is a fact about XML trees we did not take into account (unless we opt to render attribute-value pairs as additional labels)

The labels are disjoint!

However, this is easy to fix: add node axiom

\[p \land q \equiv \bot \]

for distinct \(p \) and \(q \)

This axiom itself is not substitution-invariant, this is why we do not like it

But as our proofs used only Birkhoff’s rules they are quite flexible and adding this axiom does not hurt
Starting from the Other End

Instead of beginning with single axes and then trying to combine two or more
Starting from the Other End

Instead of beginning with single axes and then trying to combine two or more

LET’S GO FOR THE WHOLE CORE XPATH!
Axiom For Axes Dependencies

TreeAx1 \left\{ \begin{align*}
s^+ / s & \cup s \equiv s^+ \\
s / s^+ & \cup s \equiv s^+
\end{align*} \right. \\
TreeAx2 & \quad s [\phi] / s \equiv \cdot [[s [\phi]]] \quad (\text{for } s \text{ distinct than } \uparrow) \\
TreeAx3 & \quad \uparrow [\phi] / \downarrow \equiv (\leftarrow^+ \cup \rightarrow^+ \cup \cdot) [[[\uparrow [\phi]]]] \\
TreeAx4 \left\{ \begin{align*}
\leftarrow^+ & \equiv \leftarrow^+ [[[\uparrow]]] \\
\rightarrow^+ & \equiv \rightarrow^+ [[[\uparrow]]]
\end{align*} \right.

TreeAx1 says: s^+ is a transitive closure of s

TreeAx2 says non-child axes are functional and describes their converse

TreeAx3 forces \uparrow is the converse of (non-functional) \downarrow

with TreeAx4, it also describes how horizontal and vertical axes interplay
Theorem

The axioms presented so far are complete for Core XPath node expressions
Theorem

The axioms presented so far are complete for Core XPath node expressions

Proof.

By reduction to simple node expressions and derivation of all axioms of modal logic of finite trees by Blackburn, Meyer-Viol, de Rijke
(boolean axioms)

\[
\begin{align*}
\langle s \neg \langle \cdot \rangle \rangle & \equiv \neg \langle \cdot \rangle \\
\langle s [\phi \lor \psi] \rangle & \equiv \langle s [\phi] \rangle \lor \langle s [\psi] \rangle \\
\phi & \lor \langle \neg \langle s \neg [\phi] \rangle \rangle \\
\langle s [\neg \phi] \rangle \land \langle s [\phi] \rangle & \equiv \neg \langle \cdot \rangle \text{ (for } s \text{ distinct than } \uparrow) \\
\langle s [\phi] \rangle \lor \langle s [s^+ [\phi]] \rangle & \equiv \langle s^+ [\phi] \rangle \\
\neg \langle s [\phi] \rangle \land \langle s^+ [\phi] \rangle & \lor \langle s^+ [\neg \phi \land \langle s [\phi] \rangle] \rangle \\
\langle s [\langle \cdot \rangle] \rangle & \equiv \neg \langle \langle \cdot \rangle \rangle \\
\langle \downarrow [\neg \langle \leftarrow \rangle \land \neg \langle \rightarrow \rangle \ast [\phi] \rangle \rangle & \lor \langle \downarrow \neg [\phi] \rangle \\
\langle s [\phi] \rangle & \lor \langle \downarrow [\neg \langle \leftarrow \rangle] \rangle \land \langle \downarrow [\neg \langle \rightarrow \rangle] \rangle \\
\neg \langle \langle \rightarrow \rangle \rangle & \lor \langle \langle \leftarrow \rangle \rangle \land \neg \langle \langle \rightarrow \rangle \rangle
\end{align*}
\]
A Nasty Trick

We can use this to provide an axiomatization for path expressions... of a sort—a non-orthodox one!

Add the separability rule:

\[(\text{Sep})\] IF \[\langle A[p]\rangle \equiv \langle B[p]\rangle\] for \(p\) not occurring in \(A, B\) THEN \(A \equiv B\).

Except for spoiling the whole equational story, it does not sit too well with the labelling axiom...
A Nasty Trick

We can use this to provide an axiomatization for path expressions . . .
A Nasty Trick

We can use this to provide an axiomatization for path expressions . . .

. . . of a sort—a non-orthodox one! 😛
A Nasty Trick

We can use this to provide an axiomatization for path expressions . . .

. . . of a sort—a non-orthodox one! 😊

Add the separability rule:

\((\text{Sep})\) IF \(\langle A[p]\rangle \equiv \langle B[p]\rangle\) for \(p\) not occurring in \(A, B\)

THEN \(A \equiv B\).
A Nasty Trick

We can use this to provide an axiomatization for path expressions . . .

. . . of a sort—a non-orthodox one! 😏

Add the separability rule:

\[(\text{Sep}) \quad \text{IF } \langle A\ [p]\rangle \equiv \langle B\ [p]\rangle \text{ for } p \text{ not occurring in } A, B\]

\[\text{THEN } A \equiv B.\]

Except for spoiling the whole equational story, it does not sit too well with the labelling axiom . . .
The Nasty Trick Does Its Job

...but it’s perfect for obtaining complexity results for query equivalence problem by using reductions to corresponding modal logics.
Complexity Theorem

Theorem

- Query equivalence of Core XPath($\rightarrow^+, \leftarrow^+$), Core XPath($\uparrow^+$), Core XPath($s$) (for $s \in \{\uparrow, \leftarrow, \rightarrow\}$) is coNP-complete.

- Query equivalence of Core XPath($\leftarrow^+, \leftarrow, \rightarrow^+, \rightarrow, \uparrow^+, \uparrow$) is PSPACE-complete.

 Thus, the PSPACE upper bound applies to all its sublanguages.

- Query equivalence of Core XPath(\downarrow) and Core XPath(\downarrow^+) is PSPACE-complete.

 Thus, all extensions of this fragment are PSPACE-hard.

- Query equivalence of Core XPath(\downarrow, \downarrow^+) is EXPTIME-complete.

 Thus, all extensions of this fragment are EXPTIME-hard.
Proofs

...by reductions to complexity results for modal logics like K, $K4$, $Alt.1$ and fragments of tense/temporal logic on linear and branching orders.

The most interesting one is for the second clause—somewhat tricky embedding into a logic of Sistla and Clarke.
Conclusions

We have seen:

- **equational axiomatizations** for **path equivalences** of all eight **single axis fragments** of Core XPath
Conclusions

We have seen:

- **equational axiomatizations for path equivalences** of all eight **single axis fragments** of Core XPath
- **equational axiomatizations for node equivalences** of full Core XPath 1.0
Conclusions

We have seen:

- equational axiomatizations for path equivalences of all eight single axis fragments of Core XPath
- equational axiomatizations for node equivalences of full Core XPath 1.0
- non-orthodox axiomatization for path equivalences of full Core XPath 1.0
Conclusions

We have seen:

- **equational axiomatizations** for path equivalences of all eight **single axis fragments** of Core XPath
- **equational axiomatizations** for node equivalences of full Core XPath 1.0
- **non-orthodox axiomatization** for path equivalences of full Core XPath 1.0
- **computational complexity results** for path equivalences in most meaningful sublanguages of Core XPath 1.0
What we have not seen so far . . .

- Definability and expressivity results (for finite sibling-ordered trees . . .)
- Results for fragments of XPath stronger than CoreXPath 1.0

Both are discussed in Balder’s M4M slides