
Towards a Task-Oriented, Policy-Driven
Business Requirements Specification

for Web Services

Stephen Gorton and Stephan Reiff-Marganiec

Department of Computer Science
University of Leicester

University Road,
Leicester LE1 7RH, UK
{smg24, srm13}@le.ac.uk

Abstract. Dynamic assembly of complex software is possible through
automated composition of web services. Coordination scripts identify
and orchestrate a number of services to fulfil a user or business goal.
The automated process begins at the business requirement stage, thus
there exists a need for expressing high level business requirements, in
such a way that is accessible by businesses. Current solutions (such as
BPMN and UML) fail to include specifications at the appropriate level
of abstraction. Our approach defines a graphical notation to depict a
business goal in terms of objectives, which are refined by tasks, where
the specifics of each task as well as overarching business constraints are
encapsulated in a descriptive way in policies.

1 Motivation

The advent of Service-oriented Architecture (SoA) makes software “on demand”
a distinct possibility. The relatively recent introduction of web services means
that automated composition of services can be achieved. Solutions already exist
for service discovery and description, though these may be far from complete.
Composition solutions also exist, with the Business Process Execution Language
(BPEL1) the de facto standard.

There is an obvious layer of abstraction required to bridge the gap between
the business domain and the service domain. While attempts are often made at
expressing business logic through composition or other technologies, there is a
distinct lack of tools which can express precise requirements specifications at the
business level. While existing solutions tackle aspects such as functionality and
sequencing of business activities, none are complete to encompass all information
required at the business level. Although bridges have been built between the
service composition layer and the business requirements layer, they are not wide
enough to accommodate the large requirements vehicle that must travel along
it.
1 http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

The problem that we address in this paper regards business process modelling
and analysis, and our goal is to develop a modelling language to accurately
express a complete set of business requirements, through the use of policies, in
terms of web service usage. One particular aspect is that the notation should
be suitable for use by business users (not IT experts) and that it should be
simple to use to encourage changes when demand arises. This work also includes
discussion on further aspects such as workflows and SoA. We proceed in section
3 to give an overview of our approach. In section 4 we present the graphical
notation used, followed by the description of additional considerations in section
5. We present an example of the graphical notation in section 6. Finally, we
evaluate our approach in section 7 before drawing conclusions and describing
further work in section 8.

2 Background

Service-oriented Architecture, and its implementation as Web Services, make
the vision of just-in-time assembly of applications a distinct possibility. SoA
refers to a system architecture where a number of independent services can be
composed at runtime into larger applications in order to respond to immediate
business needs or goals. Fundamentally this is based around a publish-find-bind
paradigm. A service author writes a service and then publishes the same plus the
interface description on the web. A service consumer can retrieve the description
and if it describes a suitable service bind to the service at run-time. For details
about SoA we would like to refer to Alonso et al. [1]. Of course there are some
aspects that still must be addressed, most notably the automatic composition
(i.e. identifying plans for composing services such that they fulfil some desirable
goal) and, possibly more important, ways for end-users to express these goals
(requirements) in the first place. In this paper we concentrate on the latter.

End-user requirements are seen two-fold for the purpose of our work: one
aspect is the flow of the business process, the other is the description of the
business policies. Task flow is usually captured in a way that describes the oper-
ative nature of the business by using task maps or work flow languages. Task flow
is obtained through business modelling as this requires a certain understanding
of the business processes involved.

Service description is provided by such standards as WSDL [4], while dis-
covery is predominantly provided by UDDI [5]. Composition is offered in many
ways, including the afore-mentioned BPEL. Abstract requirements specification,
that is at the business level and has implementation-specific information removed
(e.g. service details), has yet to find a suitable solution for SoA. We have reviewed
current approaches to requirements specification, in terms of process manage-
ment. In addition to approaches described here, more business process models
are surveyed in [7].

2.1 Business Modelling

Business modelling refers to the specification of business processes and business
logic such that the business level is addressed by business analysts, rather than
software system analysts. In the world of web services, there are few options
available for expressing these business requirements. Whilst composition tech-
nologies such as BPEL can express sequence logic in service usage, they do not
do so at the more abstract business level.

It could be stated that modelling notations for business processes occur in
their 10000s, ranging from implementation level to the business level. The dis-
tance from implementation level reveals the amount of abstraction (i.e. the closer
to the business level, the more abstraction is needed). In a recent white paper,
Jasmine Noel notes that the future of enterprises is in BPM suites [15], therefore
we consider the various BPM approaches as significant in this research.

2.2 Code-based Approach

Apart from natural English, structured languages are often used for express-
ing processes. In terms of WS, BPEL is identified as the most widely adver-
tised process language, even though it was designed (from IBM’s WSFL [12]
and Microsoft’s XLANG [22]) for service composition. Other solutions include
WSCL [3] and WSCI [2]. Suites such as ebXML2 are also capable of expressing
business processes. The main problem with these solutions is that they all rep-
resent implementation-level approaches to describing service interaction. While
they perform their respective roles as required, they are not able to express
high-level user requirements. They are suitable to model processes within which
details about each involved service are already known.

More traditional workflow languages are more appropriate for modelling pro-
cesses. YAWL [24] is a workflow language that extends Petri nets to provide a
powerful formal language with defined syntax and semantics. Further languages
include SMAWL [21], GAT [14], XRL (initial blueprints in [11]) and WSFL.
These solutions are considered better in terms of describing processes since they
abstract away composition details that would be included in those solutions pre-
viously discussed. Although they describe processes, they are unable to define
high-level requirements for activities or events that occur in the workflow. How-
ever, we note that any solution should include a suitable analysis of workflows
and workflow patterns.

2.3 Process Calculi-based Approach

A sister approach to the code-based approaches, process calculi offer a formal
method in which to express processes. Whilst not including enough information
for actual composition, this approach allows one to model a (composition) pro-
cess so that it can be verified and reasoned about. Semantics are required for

2 http://www.ebxml.org

this formality and process calculi such as Petri Nets (already used for YAWL),
π-calculus and CCS all possess structured operational semantics. Examples of
this approach are described in [10] and [8].

2.4 Notation-based Approach

Graphical notations generally provide an intuitive method in which analysts can
define processes by a sequence of activities or tasks. As with code-based ap-
proaches, there are a number of vendor-specific solutions, e.g. IBM’s WebSphere
Business Modeller3. However, they conveniently abstract away more implementa-
tion level details which make them more suitable for use in the business domain.
Indeed, business analysts have long been using flow charts to organise processes,
so a similar modelling notation that is adaptable to SoA is desirable.

The most widely-accepted universal process notation for business processes
is the Business Process Modelling Notation [17]. This notation is based around
a Business Process Diagram (BPD). This diagram expresses simple flows, in-
cluding operations on flows (e.g. split and merge), plus capabilities to handle
exception flows. Processes in a BPD can be separated into swimlanes, therefore
identifying different system viewpoints. Activities and other BPD objects may
be given attributes to add more meaning. One particular advantage of BPMN
is that it can be used to model a BPEL process [26]. However, it offers little
to help locate services to match to each process activity. Even the specification
suggests that strategy, data and information models and business rules are not a
part of BPMN. In particular, we note that BPMN does not support the expres-
sion of non-functional business requirements (mapping directly to non-functional
properties of services as analysed in [16] and formalised in [18]).

Alternatively, another solution is to use the Activity Diagram component of
the Unified Modelling Language (UML). These diagrams express the dynamic
behaviour of systems in a clear and intuitive way. However, UML often suffers
from a lack of clear semantics, though the syntax is clear. Further research goes
into adding semantics for UML [27, 6]. Also, while the syntax of the diagram is
intuitive, it is sometimes unclear as to what a particular layout would do. For
example, in Fig. 1, it is unclear when D is executed. Does it occur after B and C,
or once after either? This problem arises when B and C take different amounts
of time to complete.

Notations in general lack the ability of expressing any information that is not
graphical, e.g. “this task should be completed in x time” or similar. Therefore
we require a particular capability of expressing this further information, down
to the sub-process (i.e. task or activity) level.

2.5 Business Policies

Business policies on the other hand express rules that are of a more generic na-
ture; often they do not apply to a specific business process but rather to specific
3 http://www-306.ibm.com/software/integration/wbimodeler/

B

C

D

Fig. 1. UML fork and join example

tasks or the way that the business operates overall. Policies are descriptive in
their nature. Policy description languages [13] have been used to express quality
of service constraints or access control, that is to describe very low level proper-
ties of systems. The Appel policy language [20, 23] has been defined to express
end-user rules in telecommunications systems and we are extending this in our
ongoing work to interact with the task maps discussed in this paper.

Our approach seeks to build on the conceptual ideas of BPMN by using
a simpler graphical notation, but adding policies to express precise business
requirements. In a similar way that a BPMN business process is broken down
into events and activities in a BPD, our approach breaks down a business goal
into several tasks that are arranged in a task map. Our notation can yield views
in terms of control and data, though only control views are discussed in this
paper.

3 Overview of Approach

The aims of our approach are two-fold: to allow businesses to easily express their
required activities in the form of tasks, and to enable the specification of both
core functionality and other non-functional requirements. This approach does
not include enhancements to service composition approaches, which are out of
the scope of this paper.

Our approach is based on a business goal that is satisfied by a number of ob-
jectives, where each objective is fulfilled by a set of tasks performed in a defined
order. This process is described using a simple graphical notation. Each task
is automatically matched to a web service, thus tasks can be defined indepen-
dent of prior service knowledge. Non-functional attributes, overarching business
constraints and business rules are expressed as policies.

3.1 Process

Our graphical notation is intended to act as a modelling agent for businesses who
choose to use web services. The process of requirements elicitation begins with

the specification of the business goal. This goal is broken down into objectives
that are fulfilled by tasks, which represent atomic business activities. The goal is
then expressed in terms of a task map and policies. Now there exists an accurate
model for the business requirements.

The task map (and policies) are read by a parsing engine (itself possibly
a web service), which then searches Internet directories for web services that
satisfy the requirements. Once all services have been located, their descriptions
are returned. A coordination engine generates a coordination script according
to the descriptions and flows in the task map. This script is then ready to be
executed.

3.2 Goal Definition

To define the goal, the business must define the objectives that would satisfy
it and the tasks required to satisfy each objective, along with the execution
sequences of the tasks. A business goal is likely to be defined at a very high level
and thus cannot be easily formalised.

Suppose a couple wish to get married. Their overall goal is to plan their
wedding. This cannot be easily formalised! Instead, they must break it down into
objectives (composite tasks) such that planning a wedding can be seen in terms
of planning the celebrations (stag and hen parties), planning the preparation
(clothing, photography, etc.), planning the ceremony, planning the legal parts,
planning the reception and planning the honeymoon. Each of these objectives
can also be seen as too high-level to formalise. Therefore each is broken down
further. This process continues until a set of atomic tasks has been reached, i.e.
tasks that cannot be broken down further.

Functionality is the core requirement for each task. Although functionality
can be expressed at the composite task level, it can be more accurately expressed
at the atomic task level. However, non-functional requirements may be expressed
at the composite task level, such that they can propagate through to any subtask
that does not overrule them.

3.3 Design

The foundation of our business model is the business goal, which is satisfied
by a number of objectives. An objective obj is defined as a triple (T,m,K),
where T is a set of all identified (atomic) tasks, m is a task map and K is a
set of global or business constraints. These constraints have the ability to affect
service composition or task execution, therefore incorporating ideas of aspect-
oriented computing. Informally, we identify all tasks that each represent a single
business activity with their requirements, organise them according to execution
sequence and subject the result to certain constraints.

The task map m maps a set of control flows to a set of tasks. Thus it depicts
process order of task execution. It is formally defined as a triple (O, C,D), where
O is a set of operators, C is a set of control flows and D is a set of data flows. We
might also refer to “sub” maps, which essentially are task maps, just that they

service

data in

data outerror

compensation side effect
(world change)

Fig. 2. Service as a computational entity.

form parts of other task maps. In order to easily define rules for our operators, we
define a set of entities E, the set of all tasks and operators given by E = T ∪O.

An operator op ∈ O is a function on a control flow, with the ability to split
and merge the flow as defined in section 4.3. A control flow is an execution
sequence of entities and a data flow is a route of data between tasks. Entities
also are ordered in the task map showing their relative execution order.

3.4 Policies

Rich, high-level business requirements will include more than simple process-
oriented core functionality. To fully express what a business wants, the ability
to specify non-functional requirements (e.g. resource constraints) is required.
Further generic rules describing the operation of the business as well as the
constraints that apply to certain tasks must be expressed. Our approach uses
policies to encode this information.

We have identified in previous work [19] 4 types of policies: conditional ECAs
(Event-Condition-Action), unconditional ECAs (i.e. ECAs with true as condi-
tion), conditional goals and unconditional goals (i.e. just actions). Goals are
distinct from ECAs in that they do not have a triggering event.

A policy is triggered when the triggering event occurs: e.g. the flow has
reached a certain state or a certain action is produced (e.g. an order is being
sent out). For example, a task may be specified such that it allows for up to 4
inputs, but a policy might define that at least 2 must exist for proceeding. This
might be the case if the inputs were quotes for products, and the business only
allows a decision once a certain number of quotes has been obtained.

A condition states what variant must be true in order for an action to take
place. This concept allows for testing on inputs and environment variables. It
also allows for the expression of non-functional attributes such as financial cost,
temporal and spatial availabilities.

The actions specify what the task should do and thus express core functional
requirements. In addition, an action should be included for error flows should
there be any runtime process problem.

3.5 Services

A service is a computational entity that maps input data to output data, respects
certain non-functional properties, might change a world condition and has a
compensation action (e.g. undo as in [9]). In Fig. 2, we see how a service is

task
service

control data

control data

ext in error
data

dataerror

compensate side
effect

Fig. 3. Services map directly to tasks.

graphically represented, and in Fig. 3 how a service maps to a task (or composite
task). Note that the service may be of a composite nature (i.e. composed of other
services). In effect, we expect that a (composite) service can map directly to a
(composite) task. Should there be no service available, the error output flow
is instantiated. However, the mapping of tasks to services is included here for
completeness: the business user is not required to be aware of this detail, as they
work at the more abstract task and policies level.

4 Graphical Modelling Constructs

We now present the graphical notation used in our modelling language, along
with more formal definitions of each language component.

4.1 Task

A task is a business activity that contributes to an objective and thus the wider
business goal. Each task t ∈ T (the set of all tasks) is a quadruple (i, R, P, X),
where i is a unique identifier and:

– A requirement r ∈ R is defined as either a functional (F) or non-functional
(N) requirement. The set of requirements satisfies the following: R = F ∪N ,
F ∩ N = ∅ and F 6= ∅. Informally we say that a requirement is either
exclusively functional or non-functional, and the set must include at least
one functional requirement.

– The set of problem instructions P ⊆ SP×TI, where SP are source problems
and TI are instructions on actions to perform (e.g. if some source problem
spx ∈ SP occurred, then instruction tix ∈ TI would be performed).

control data

ext in
task

control data

Fig. 4. A task with its input/output flows

– The set X of external inputs represents a policy that affects this particular
task. This is in addition to the standard task requirements. For example,
a company director may place extra constraints on a particular business
activity after it has been designed by a project team.

Finally, we note that tasks have inputs and outputs. Each task must have
a control input and a control output. Once control has reached a task’s input,
the task’s triggers are activated. On completion of the task, the control leaves
through its output channel.

task

control data

control data

ext in

Fig. 5. Composite tasks are expressed similarly to atomic tasks

Composite Task. Composite tasks are task sub-maps, enabling the designers
to separate concerns over aspects of the business goal. Just as with an atomic
task, the composite task has control and data inputs and outputs, along with
external policy inputs. The control and data inputs map to the starting task(s)
inside the sub-map, the outputs similarly are from the final tasks and the external
policy inputs affect each task in the sub-map.

4.2 Flows

A flow is a sequence of entities (tasks or operators) in the task map. A route is a
flow that begins at the start of the map and finishes at the end. A flow can either
be a control flow or a data flow. Each task must be connected to the task map
by a control flow, i.e. it must be in a route. Otherwise, the task is redundant as
there is no way to invoke it.

All tasks inside a task map are subject to policies that are centrally specified
by the consuming business or governing law. For example, country X may have
a law stating that no business in X may use a service (software or non-software)
from another country Y. Alternatively, a corporate policy may state that the
use of a direct competitor’s services is forbidden. These examples limit the user
of services that are available to conduct the task; other policies might change
the shape of the task map. An example of the latter is a policy that requires the
obtaining of at least 3 quotes before a purchase can be made.

We recognise that whilst control flow is important to the precise execution
of a set of tasks, the data flow may not be an exact mirror. Indeed partial data
flows may also exist. For example, where a control flow is t1 → t2 → t3, data
output from t1 may not be required at t2 but instead at t3, thus the data flow
is t1 → t3.

t2 t3

t1

Fig. 6. Data flows are not necessarily the same as control flows.

4.3 Operators

In addition to tasks and flows, which can express simple sequencing, we define
operators that are functions on control flows. These further enable a business
to accurately model their business goal. The operators are described here with
respect to control flows, rather than data flows.

fx.1 fx.2 fx.4 fx.5

fx

fx.3

Fig. 7. The flow split operator distributes control from one flow to many.

Flow Split. The flow split operator is an n-ary function FS : in → OUT , where
in is a control flow input and OUT is a set of control flow outputs. In Fig. 7,
the operator is pictured with one input and four output flows. When the active
control flow reaches the operator, control is distributed amongst the outgoing
flows such that each flow progresses simultaneously.

For example, in a typical customer-supplier-warehouse example, a product
dispatch may involve simultaneously notifying the customer of the dispatch
whilst ordering a stock replacement. Both tasks here may be done independently.

fx

fx.1 fx.2 fx.4fx.3

n

Fig. 8. In conditional merging, n control flows can combine to one according to business
decisions over each flow.

Conditional Merge. The conditional merge operator takes a set of active
input control flows and, subject to business-defined constraints, merges them
with synchronisation to a single output flow. It is a function CM : IN → out.
The component IN is a set of pairs (c, b) where c ∈ C (control flows) and b ∈ B.
The component b specifies whether or not this particular flow must reach the
operator before the flow is allowed to proceed. Those flows with true values are
called mandatory flows, while those with false values are optional flows. These
are graphically described as having either filled or empty circles, respectively, at
the intersection of the flow and the operator.

The component out defines an output flow and n specifies the number of
flows that must reach the operator before proceeding, where 1 ≤ n ≤ |IN |.
Graphically, n is written inside the operator’s diamond this is shown as value i).
Since the operator can also refer to mandatory flows, we also have that n must
be greater than or equal to the number of mandatory participant flows. Partial
synchronisation is therefore introduced here, with cancellation of optional flows
addressed in section 5.1.

For example, when looking for airline ticket quotes, one might request quotes
from three suppliers, including the preferred supplier. Before booking, we might
say that we must have a quote from the preferred supplier, plus one more. Thus
there is one mandatory flow and a minimum of two flows to complete before
proceeding.

fx

fx.1 fx.2

test

Fig. 9. Control flow Junction. Depending on the result of some test, the control flow
may choose which route to take.

Flow Junction. A flow junction operator diverts the control flow down one of
two possible output routes according to a binary test. The function is written
as:

FJ : in× test =

{
out1 if test = true,
out2 if test = false.

In the description (in, out1, out2, test), the element test is a binary test such
that when resolved, if true control diverts to the primary output and secondary
otherwise.

Strict Preference. A strict preference operator attempts to execute a series
of tasks in a defined order, progressing when one of the tasks is completed. The

p1tp.1 tp.2 tp.3

error

Fig. 10. Strict Preference allows a business to specify their priorities over tasks.

function is written SP : in → out, where out is one of a set of possible output
flows. We describe strict preference as a set PT ∪ {error}. PT is an ordered set
of pairs in the form (t, n), where t ∈ T represents a task and n ∈ N is a unique
priority in the range 1 ≤ n ≤ |PT |, such that the task with highest priority is
attempted first. In the case where no task can be completed (due to a timeout
or other issue), the error output flow is selected.

Each task in the operator specifies its own output flow which is followed when
its parent task is completed. Thus after the operator, there is one active output
flow plus a number of inactive flows.

c1tc.1 tc.2 tc.3

error

Fig. 11. Random Choice enables random selection of a task to be invoked.

Random Choice. Choice is similar to preference, but without priorities at-
tached to included tasks. It is described simply as CT ⊆ T . When control
reaches this operator, all tasks may be attempted simultaneously. When a first
task reaches a commit stage, then all others are cancelled (see section 5.1). The
output control flow connected with this task is then proceeded along. Graphi-
cally, the difference with the preference operator is that all included tasks are
lined up on the same plane.

fx.1 fx.2 fx.4 fx.5

fx

fx.3

Fig. 12. Four incoming control flows merge into one.

Flow Merge. Flow merge is a unary operator in that it takes a set of control
flow inputs IN which maps to a single output flow out in the form FM : IN →
out, where IN is a non-empty set of control flows such that |IN | ≥ 2.

In order to preserve synchronisation, we say that only one flow of the incom-
ing set must be active, with all others inactive. This may be the result of a prior
junction, preference or choice operator. If more than one flow is active, then the
conditional merge operator must be used.

5 Further Considerations

5.1 Cancellation of Tasks

In the case of the random choice and conditional merge operators, there is the
likelihood that partial synchronisation will leave previous tasks in a state of
execution. Thus there is a need for some cancellation function, in order to avoid
unwanted side-effects caused by the cancelled tasks (e.g. a penalty for cancelled
airline ticket booking).

We observe that there are essentially two types of task. The first is state-
dependent, meaning that the overall system state is changed during the execution
of the task. The second is state-independent, which possibly changes the system
state after its execution. In the latter case, we say that the task is made up
of a pre-computation stage followed by a commit stage. A delay is possible
between stages and cancellation is only available before the commit. In the former
situation, there are an arbitrary number of state changes possible, therefore
there exists an arbitrary number of pre-computation stages, each followed by a
commit. In this situation, a cancellation of the task is only available before the
first commit.

However we do recognise the possibility of quasi-atomicity; made possible
through the introduction of history buffers. This idea has been initially addressed
in [9]. However this aspect is out of the scope of this paper.

5.2 Workflows

An initial analysis indicates that our notation supports many of the workflows
described in [25]. However, the following are not supported and subject to further
investigation:

– Implicit termination;
– Merging without synchronisation;
– Multiple instance patterns.

At present, we believe that the although the implicit termination workflow
may be useful and easily introduced to our notation, the other patterns are not
desirable in that they can cause unexpected and over-complicated behaviour
from the designer’s point of view.

In addition, the following patterns are indirectly implemented:

– Arbitrary cycles
We propose that bounded cycles be allowed in the task map, though this is
subject to further consideration.

– Deferred choice
The choice over which output path to take may be dependent on an environ-
mental variable, rather than a corporate variable as defined by the business.

– Interleaved parallel routing
The organisation of tasks in the task map expresses the order in which
tasks are executed. Noting a flowchart “begin at the top” approach, tasks
are invoked in the order specified by the control flows with respect to the
layout.

– Milestone
If the milestone is a check to see if something in the system is true, we can
model this using a global variable that can be checked by any task (with
policies).

– Cancel activity / case
This workflow is implicitly addressed in terms of cancellation procedures
briefly described in section 5.1.

5.3 Negotiation

There is a significant possibility that situations will arise where multiple data
sources will not effectively work together to perform a task. When choosing a
holiday destination and a budget, a chosen destination of the Seychelles and a
budget of £10 (from the UK) will obviously not yield any useful result when
attempting to make a booking. Thus there needs to be some element of negoti-
ation. We note that data accordance is different to compatibility issues, which
we regard as problems in task execution.

To facilitate negotiation, we initially propose that task policies state priori-
ties on requirements. These priority values should include: “must”, “must not”,
“should”, “should not”, “prefer” and “prefer not”. A suitable strategy then needs
to be devised for resolving a possible negotiation process.

6 Wedding Example

Anyone who has been married will probably realise that there is much to plan
for the event. Planning often begins months, even years, before the actual day,
and costs are often above £10k. The wedding example is suitable as a simple
demonstration of our notation.

The overall business goal is to plan the wedding, and this can be broken
down into the categories: pre-wedding day celebrations, pre-wedding prepara-
tions, ceremony, legalities, reception and honeymoon. Each of these categories
can be represented as composite tasks, with their own independent task maps,
although there is still a “master map” that specifies the execution sequence of
each composite task (e.g. typically the ceremony and reception venues would
need to be booked first and at the same time, whilst the celebratory stag and
hen nights are the last to be organised).

6.1 Honeymoon Booking Sub-Example

c1

t2 t3

t4

t8

t11 t12

t1

2

t5 t6 t7

2

t9
t10

p1

start

t1: jobs allocated to either
husband or wife

t2: wife chooses
destination

t3: husband
chooses budget

both flows must reach
here before proceeding

t4: best destination
and budget decided

t5, t6 , t7: quotes are obtained
from three travel agencies
simultaneously

At least two quotes must be
received, including the preferred

agency, before proceeding
t8: quotes are ordered
into preference

p1:an attempt to book the
best offer is made, with the

second offer attempted if
the first failed

c1: currency is changed at
either one of two banks,
with no preference
between either

end

Fig. 13. The simplified honeymoon example

The wedding example is a particularly large goal to express, so we look at
one of the objectives, that of planning the honeymoon (pictured in Fig. 13). This
is mostly the same as booking a holiday. Our example is a “modern” version in
that both prospective husband and wife get to organise the honeymoon together.
After a preliminary task of job allocation, the first tasks are to decide where to
go (t2) and how much to spend (t3). The wife has the privilege of the former

choice while the husband has the more difficult latter task; both may be done in
parallel.

Once both decisions have been made (negotiation may be required!), the
couple then proceed to look for three travel agencies from whom they wish to
obtain quotes (t4). The agencies are contacted simultaneously (t5, t6 and t7),
and on receipt of at least two replies, including one from their favoured agency,
the couple then decide which order of preference, i.e. primary and secondary,
they rate the quotes (t8).

An attempt is then made at booking the primary quote (t9), with the sec-
ondary as backup in the event of a failure occurring in the primary booking
(t10). Once complete, the final task is to exchange currency at one of two banks
(t11 and t12). Since both banks offer the same rate of exchange, the couple have
no preference over which to use.

From this example, we can extract specific control flows as follows:

– start → t1 → [t2|t3] → t4 → [t5|t6|t7] → t8 → t9 → t11 → end.
– start → t1 → [t2|t3] → t4 → [t5|t6|t7] → t8 → t10 → t11 → end.
– start → t1 → [t2|t3] → t4 → [t5|t6|t7] → t8 → t9 → t12 → end.
– start → t1 → [t2|t3] → t4 → [t5|t6|t7] → t8 → t10 → t12 → end.

We note that parallel flows exist, written [a|b|c] where a, b and c are individual
entity flows. By identifying flows in this way, it is possible to transform the
diagram into some workflow or process algebra language, making it suitable for
verification, e.g. with model checking. The possibility also arises for dynamic
composition scripts.

7 Evaluation

Our approach has been to simplify the the requirements specification process for
non-IT experts working in the business domain. Despite the existence of other
methods, we believe that our method has the following advantages when applied
at the business level:

– Expressiveness
Our language is able to express as many or as few requirements as is deemed
necessary by the business. Task maps are an easy method to understand
and, with the aid of a wizard, policies are easy to construct. Despite being
at a higher level of abstraction, the task map can be automatically mapped
into service coordination scripts. We also include operators in our notation
that are non-existent in current notations, e.g. preference, thus increasing
the expressiveness for end users.

– No Binding
All tasks are expressed without the knowledge of services that are available.
The job of matching services to tasks is performed automatically by a search
engine, based on ontologies and richer semantic descriptions of web services,

which is out of the scope of this paper (there is active research in this area
which has led to some preliminary results; most ideas are centred around
planning algorithms).

– Change
If some aspect of the business goal needs changing to cater for a new or
changed business requirement, it can be done with relative ease by altering
the task map or underlying policies. The service coordination script is gener-
ated automatically, which is subject to any changes made to the specification.

– Technology Compatibility
Though not an immediate aspect of business versatility, our solution is able
to take advantage of current solutions that exist, e.g. BPEL as the coordi-
nation script. In this respect, a business always has the option of altering
their executable coordination script before proceeding.

– Composition Views
We add that our solution can generate different views that are customized
to different stakeholders. In particular, a project manager may be more in-
terested in (composite) task requirements whereas the IT director may be
more interested in the global or business-wide constraints. Further low level
views include control flow views and data flow views.

– Workflows
Our notation is able to support many of the workflow patterns as described
in [25]. For a further discussion, see section 5.2.

8 Conclusions and Further Work

We have presented a notation for describing business requirements at an abstract
level. A business goal is defined in terms of objectives which are further refined by
tasks. Tasks are organised into a task map. Policies define complete requirements
and specifications for tasks, and are more generic in that they can be used
throughout the task map, providing information to many parts of a business
goal, and even across multiple goals. We firmly believe that this solution is able
to fill the gap between service levels and business levels.

Our further work includes refinement of the ideas presented on policies, as
briefly described in section 3.4. A possible implementation of these may be the
APPEL policy language [23], which was developed with respect to telephony
systems.

Formal semantics need to be applied to the model, including transformations
to other notations such as service coordination, configuration and choreography.

Finally, we propose that a workbench be designed to enable designing of task
maps and policies through the use of a graphical user interface.

Acknowledgements

This work is funded by the IST-FET IST-2005-16004 project SENSORIA (Software

Engineering for Service-Oriented Overlay Computers). Further thanks to Marie-Claude

Gaudel for her advice on cancellation and undoing.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraiu. Web Services: Concepts, Archi-
tectures and Applications. Springer, 2004.

2. A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani,
K. Riemer, S. Struble, P. Takacsi-Nagy, I. Trickovic, and S. Zimek. Web services
choreography interface (wsci). W3C, Aug 2002. http://www.w3.org/TR/wsci/.

3. A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A. Karp,
H. Kuno, M. Lemon, G. Pogossiants, S. Sharma, and S. Williams. Web services
conversation language (wscl). W3C, Mar 2002. http://www.w3.org/TR/wscl10/.

4. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services
description language (wsdl). W3C, Mar 2001. http://www.w3.org/TR/wsdl/.

5. L. Clement, A. Hately, C. von Riegen, T. Rogers, T. Bellwood, S. Capell, J. Col-
grave, M. Dovey, D. Feygin, R. Kochman, P. Macias, M. Novotny, M. Paolucci,
K. Sycara, P. Wenzel, and Z. Wu. Uddi version 3.0.2. OASIS, Oct 2004.
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf.

6. H. Eshuis. Semantics and verification of UML Activity Diagrams for workflow
modelling, 2002.

7. Peter Fettke, Peter Loos, and Jörg Zwicker. Business process reference models:
Survey and classification. In Christoph Bussler and Armin Haller, editors, Business
Process Management Workshops, volume 3812, pages 469–483, 2005.

8. Xiang Fu, Tevfik Bultan, and Jianwen Su. Formal verification of e-services and
workflows. In Christoph Bussler, Richard Hull, Sheila A. McIlraith, Maria E.
Orlowska, Barbara Pernici, and Jian Yang, editors, WES, volume 2512 of Lecture
Notes in Computer Science, pages 188–202. Springer, 2002.

9. M-C. Gaudel. Toward undoing in composite web services. LRI, Paris-Sud Univer-
sity and CNRS, Orsay, France, 2004.

10. Rachid Hamadi and Boualem Benatallah. A petri net-based model for web service
composition. In Klaus-Dieter Schewe and Xiaofang Zhou, editors, ADC, volume 17
of CRPIT, pages 191–200. Australian Computer Society, 2003.

11. Akhil Kumar and J. Leon Zhao. Workflow support for electronic commerce appli-
cations. Decision Support Systems, 32(3):265–278, 2002.

12. F. Leymann. Web service flow language. Technical report, IBM Software Group,
2001. http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

13. E. Lupu and M. Sloman. Conflicts in policy-based distributed systems manage-
ment. IEEE Trans. Software Eng., 25(6):852–869, 1999.

14. S. Nepal, A. Fekete, P. Greenfield, J. Jang, D. Kuo, and T. Shi. A service-oriented
workflow language for robust interacting applications. In Robert Meersman, Zahir
Tari, Mohand-Said Hacid, John Mylopoulos, Barbara Pernici, Özalp Babaoglu,
Hans-Arno Jacobsen, Joseph P. Loyall, Michael Kifer, and Stefano Spaccapietra,
editors, OTM Conferences (1), volume 3760 of Lecture Notes in Computer Science,
pages 40–58. Springer, 2005.

15. J. Noel. Bpm and soa: Better together. IBM White Paper, IBM Corporation, 2005.
http://www.findwhitepapers.com/docs/vendors/IBM/BPM%20SOA%20BetterTogether%20-
%20Offer.pdf.

16. P. Oaks, A. H. M. ter Hofstede, and D. Edmond. Capabilities: Describing what
services can do. In M. E. Orlowska, S. Weerawarana, M. P. Papazoglou, and
J. Yang, editors, ICSOC, volume 2910 of Lecture Notes in Computer Science, pages
1–16. Springer, 2003.

17. Object Management Group (OMG). Business Process Modeling Notation (BPMN)
Specification, Feb 2006.

18. J. O’Sullivan, D. Edmond, and A. H. M. ter Hofstede. Formal description of
non-functional service properties. Technical Report FIT-TR-2005-01, Queensland
University of Technology, Brisbane, Feb 2005.

19. S. Reiff-Marganiec and K. J. Turner. Feature interaction in policies. Computer
Networks, 45(5):569–584, 2004.

20. S. Reiff-Marganiec, K. J. Turner, and L. Blair. Appel: The accent policy envi-
ronment/language. Technical Report CSM-164, University of Stirling, Jun 2005.

21. C. Stefansen. Smawl: A small workflow language based on ccs. In O. Belo, J. Eder,
J. Falcão e Cunha, and O. Pastor, editors, CAiSE Short Paper Proceedings, volume
161 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

22. S. Thatte. Xlang. Microsoft Corporation.
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm.

23. K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P. Perry, and J. Ireland.
Policy support for call control. Computer Standards and Interfaces, August 2005.

24. W. M. P. van der Aalst and A. H. M. ter Hofstede. Yawl: yet another workflow
language. Inf. Syst., 30(4):245–275, 2005.

25. W. M. P van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Technical Report FIT-TR-2002-03, Queensland University of
Technology, Brisbane, 2002.

26. S. A. White. Using bpmn to model a bpel process. BPTrends, 2005.
http://www.bptrends.com, accessed on 15/03/06.

27. Dong Yang and Shen sheng Zhang. Using π-calculus to formalize UML activity
diagram. In ECBS, pages 47–54. IEEE Computer Society, 2003.

