Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Coalgebras, the Hennessy-Milner property, and the Adjoint Functor Theorem

Raul Andres Leal¹

¹ILLC Universiteit van Amsterdam

7-10-2008 University of Leicester

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Outline

- Final Coalgebras
- Coalgebras: Languages 2
- Structures Vs Languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Coalgebras: Languages

Structures Vs Languages

・ ロ ト ・ 雪 ト ・ 目 ト ・

э

Pointless Languages

Outline

- 2 Coalgebras: Languages
- 3 Structures Vs Languages
- Pointless Languages

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Coalgebras: Intuition

- Coalgebra = Dual of Algebra.
- Observation Vs Construction.
- Coalgebra = Machines from the point of view of the user.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Example: Battery Chargers

Battery chargers are coalgebraic structures (One button machines). The are represented by a function

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example: Battery Chargers

Battery chargers are coalgebraic structures (One button machines). The are represented by a function

$$\alpha : \mathbf{A} \longrightarrow \mathbf{1} + \mathbf{A}$$

Coalgebras: Structures	Coalgebras: Languages	Structures Vs Languages	Pointless Languages
000000000000000000000000000000000000000			

Examples

One button machines with screen (deterministic transition systems)

$$\alpha: \mathbf{A} \longrightarrow \mathbf{L} \times \mathbf{A}$$

Kripke frames (non-deterministic transition systems)

(

$$\alpha: \mathbf{A} \longrightarrow \mathcal{P}\mathbf{A}$$

• Kripke Models

$$\alpha: \mathbf{A} \longrightarrow \mathcal{P}(\mathbf{Q}) \times \mathcal{P}(\mathbf{A})$$

Non-deterministic label transition systems

$$\alpha: \mathbf{A} \longrightarrow \mathcal{P}(\mathbf{L} \times \mathbf{A})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Coalgebraic Structures

Definition

A coalgebra for a functor $T : Set \rightarrow Set$ is a function

$$\alpha : \mathbf{A} \longrightarrow \mathbf{T}\mathbf{A}$$

Question:

How do we relate coalgebraic structures?

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Coalgebraic Structures

Definition

A coalgebra for a functor $T : Set \rightarrow Set$ is a function

$$\alpha : \mathbf{A} \longrightarrow \mathbf{T}\mathbf{A}$$

Question:

How do we relate coalgebraic structures?

Examples:

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hard Situation

We want to relate two systems

$$\alpha : \mathbf{A} \longrightarrow \mathcal{P}(\mathbf{A}) \text{ and } \beta : \mathbf{B} \longrightarrow \mathcal{P}(\mathbf{B})$$

Easy Situation:

We want to relate two machines

 $\alpha : \mathbf{A} \longrightarrow \mathbf{1} + \mathbf{A} \text{ and } \beta : \mathbf{B} \longrightarrow \mathbf{1} + \mathbf{B}$

Examples:

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hard Situation

We want to relate two systems

$$\alpha : \mathbf{A} \longrightarrow \mathcal{P}(\mathbf{A}) \text{ and } \beta : \mathbf{B} \longrightarrow \mathcal{P}(\mathbf{B})$$

Easy Situation:

We want to relate two machines

 $\alpha : \mathbf{A} \longrightarrow \mathbf{1} + \mathbf{A} \text{ and } \beta : \mathbf{B} \longrightarrow \mathbf{1} + \mathbf{B}$

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Solving the easy situation:

Easy Situation:

To relate two machines $\alpha : A \rightarrow 1 + A$ and $\beta : B \rightarrow 1 + B$

- The halting states should be related.
- Related states should have the same "charge"

Solution

The following diagram

commutes.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Coalgebraic Morphisms

Definition

A coalgebraic morphism from α to β , written $f : \alpha \longrightarrow \beta$, is a function $f : A \longrightarrow B$ such that the following diagram

commutes

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Solving the hard situation

Hard Situation:

To relate two machines $\alpha : A \longrightarrow \mathcal{P}(A)$ and $\beta : B \longrightarrow \mathcal{P}(B)$

Solution

commutes.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Reading the Solution

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Another Example

Related states should have the same labels.

Remark

The states s and f(s) always have the same behavior!!

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Another Example

Related states should have the same labels.

Remark

The states *s* and f(s) always have the same behavior!!

・ロト・日本・モート ヨー うへで

Coalgebras: Languages

Structures Vs Languages

・ロット (雪) ・ (日) ・ (日)

э

Pointless Languages

Outline

2 Coalgebras: Languages

3 Structures Vs Languages

Pointless Languages

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Behavioral Equivalence of States

Definition

Two states $s \in \alpha$ and $s' \in \beta$ are *behavioral equivalent, written* $s \sim s'$, iff there exists a coalgebra γ and morphisms

such that f(s) = g(s').

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Behavior of a State

Behavior

The behavior of a state is the "evolution" of the state.

Under appropriate circumstances we can give a concrete representation to the observable behavior

The observable behavior of one button machines

A state s can...

- lead to the halt of the machine, or
- lead us to one step closer to the halt of the machine.
- Keep us waiting, i.e. we will never see the machine stop.

A concrete presentation

Consider the set

 $\overline{\mathbb{N}}=\mathbb{N}\cup\infty$

and the function $\zeta:\overline{\mathbb{N}} \to 1 + \overline{\mathbb{N}}$ defined as follows

 $\zeta(0) = *; \quad \zeta(n+1) = n; \quad \zeta(\infty) = \infty$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Structures Vs Languages

Pointless Languages

The observable behavior of one button machines

A state s can...

- lead to the halt of the machine, or
- lead us to one step closer to the halt of the machine.
- Keep us waiting, i.e. we will never see the machine stop.

A concrete presentation

Consider the set

$$\overline{\mathbb{N}}=\mathbb{N}\cup\infty$$

and the function $\zeta:\overline{\mathbb{N}}\longrightarrow \mathbf{1}+\overline{\mathbb{N}}$ defined as follows

$$\zeta(0) = *; \quad \zeta(n+1) = n; \quad \zeta(\infty) = \infty$$

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Why is this cool?

Because..

Given a machine $\alpha : A \longrightarrow 1 + A$ we can define a unique morphism $f_{\alpha} : \alpha \longrightarrow \zeta$ as follows

$$f_{\alpha}(a) = \begin{cases} 0 \text{ if } \alpha(a) = * \\ n \text{ if } f_{\alpha}\alpha(a) = n + 1 \\ \infty \text{ if } f_{\alpha}\alpha(a) = \infty \end{cases}$$

This is coinduction!!!

・ロト・四ト・日本・日本・日本・日本

Coalgebras: Languages

Structures Vs Languages

・ロット (雪) ・ (日) ・ (日)

3

Pointless Languages

Outline

2 Coalgebras: Languages

3 Structures Vs Languages

Pointless Languages

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Final Coalgebras

Definition

A final *T*-coalgebra (Z, ζ) is a terminal object in the category of *T*-coalgebras, i.e. for every *T*-coalgebra α there exists a unique morphism

$$f_{\alpha}: \alpha \longrightarrow \zeta.$$

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Deterministic transition systems: A final coalgebra is the set of infinite lists over *L*.

$$\zeta: L^{\mathbb{N}} \longrightarrow L \times L^{\mathbb{N}}$$

• Kripke frames, and Kripke models have no final coalgebra.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

・ コット (雪) (小田) (コット 日)

Nice properties of final coalgebras

Theorem

If a final coalgebra exists, two states $s \in \alpha$ and $s' \in \beta$ are behavioral equivalent iff they are mapped to the same state in a final coalgebra, i.e.

$$m{s}\simm{s}'$$
 iff $m{f}_lpha(m{s})=m{f}_eta(m{s}')$

Important

Final coalgebras code behavioral equivalence semantically.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Nice properties of final coalgebras

Theorem

If a final coalgebra exists, two states $s \in \alpha$ and $s' \in \beta$ are behavioral equivalent iff they are mapped to the same state in a final coalgebra, i.e.

$$m{s} \sim m{s}'$$
 iff $m{f}_lpha(m{s}) = m{f}_eta(m{s}')$

Important

Final coalgebras code behavioral equivalence semantically.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Outline

3 Structures Vs Languages

▲□▶▲□▶▲□▶▲□▶ □ のへ⊙

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Abstract coalgebraic languages

Definition

An abstract coalgebraic language is a set $\ensuremath{\mathcal{L}}$ together with a function

$$Th_{\alpha}: A \longrightarrow \mathcal{PL}$$

for each coalgebra $\alpha : A \rightarrow TA$.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example: Modal Logic for Kripke structures

- We use have basic propositional logic.
- We describe the behavior of a state using two modalities
 □, and ◊. Given a Kripke frame α : A → P(A)

$$\boldsymbol{a} \models \Box \varphi \text{ iff } \alpha(\boldsymbol{a}) \subseteq \llbracket \varphi \rrbracket$$

Important fact

If two states are behavioral equivalent, they satisfy the same formulas.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

What do we want coalgebraic languages?

- We want to generalize modal logic.
- We want to describe the behavior of a system.
- We want to provide an internal local perspective of dynamic systems.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Expressive languages

Definition

An abstract coalgebraic language is *expressive* iff it completely describes behavioral equivalence, i.e.

$$s \sim s'$$
 iff $Th_{\alpha}(s) = Th_{\beta}(s')$.

Important

Expressive languages code behavioral equivalence syntactically

・ロト・四ト・モート ヨー うへの

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Expressive languages

Definition

An abstract coalgebraic language is *expressive* iff it completely describes behavioral equivalence, i.e.

$$s \sim s'$$
 iff $Th_{lpha}(s) = Th_{eta}(s')$.

Important

Expressive languages code behavioral equivalence syntactically

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Outline

2 Coalgebras: Languages

3 Structures Vs Languages

4 Pointless Languages

Summary

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$f_{lpha}(s) = f_{eta}(s') ext{ iff } s \sim s' ext{ iff } Th_{lpha}(s) = Th_{eta}(s')$

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Our main topic

Theorem (Goldblatt)

For every functor T: Set \rightarrow Set, the existence of a final T-coalgebra is equivalent to the existence of an expressive language with respect to behavioral equivalence.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

From final coalgebras to expressive languages

Theorem

If there exists a final coalgebra ζ , there exists an expressive abstract coalgebraic language.

Proof.

Take $\mathcal{L} = Z$ and $Th_{\alpha} = f_{\alpha}$.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

From expressive languages to final coalgebras

Theorem

If there exists an expressive language, there exists a final coalgebra.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

A point wise definition of final coalgebras

Proof.

- Take $Z = \{ \Phi \subseteq \mathcal{L} \mid (\exists \alpha) (\exists s \in \alpha) (Th_{\alpha}(s) = \Phi) \}.$
- ② Define ζ : Z → TZ as follows: an element Th_α(s) = Φ ∈ PL is mapped to

$$\zeta(\Phi) = T(Th_{\alpha})\alpha(s).$$

- If response 1 Prove that ζ is well defined.
- Prove that Th_α : α → ζ is the only morphism of coalgebras.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

A point wise definition of final coalgebras

Proof.

Take
$$Z = \{ \Phi \subseteq \mathcal{L} \mid (\exists \alpha) (\exists s \in \alpha) (Th_{\alpha}(s) = \Phi) \}.$$

Those are the states of a final coalgebra

Define ζ : Z → TZ as follows: an element Th_α(s) = Φ ∈ PL is mapped to

 $\zeta(\Phi) = T(Th_{\alpha})\alpha(s).$

- 3 Prove that ζ is well defined.
- Prove that Th_α : α → ζ is the only morphism of coalgebras.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

A point wise definition of final coalgebras

Proof.

1 Take
$$Z = \{ \Phi \subseteq \mathcal{L} \mid (\exists \alpha) (\exists s \in \alpha) (Th_{\alpha}(s) = \Phi) \}.$$

2 Define $\zeta : Z \rightarrow TZ$ as follows:

3 Prove that ζ is well defined.

9 Prove that $Th_{\alpha} : \alpha \longrightarrow \zeta$ is the only morphism of coalgebras.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

A point wise definition of final coalgebras

Proof.

- Take $Z = \{ \Phi \subseteq \mathcal{L} \mid (\exists \alpha) (\exists s \in \alpha) (Th_{\alpha}(s) = \Phi) \}.$
- 2 Define $\zeta : Z \to TZ$ as follows: an element $Th_{\alpha}(s) = \Phi \in \mathcal{PL}$ is mapped to

$$\zeta(\Phi) = T(Th_{\alpha})\alpha(s).$$

Output Prove that ζ is well defined.

Prove that Th_α : α → ζ is the only morphism of coalgebras.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

A point wise definition of final coalgebras

Proof.

- Take $Z = \{ \Phi \subseteq \mathcal{L} \mid (\exists \alpha) (\exists s \in \alpha) (Th_{\alpha}(s) = \Phi) \}.$
- 2 Define $\zeta : Z \to TZ$ as follows: an element $Th_{\alpha}(s) = \Phi \in \mathcal{PL}$ is mapped to

$$\zeta(\Phi) = T(Th_{\alpha})\alpha(s).$$

- **3** Prove that ζ is well defined.
- Prove that *Th_α* : α → ζ is the only morphism of coalgebras.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶▲□▶▲□▶▲□▶ □ のQで

A point wise definition of final coalgebras. We are here!!!

Proof.

- Take $Z = \{ \Phi \subseteq \mathcal{L} \mid (\exists \alpha) (\exists s \in \alpha) (Th_{\alpha}(s) = \Phi) \}.$
- 2 Define ζ : Z → TZ as follows: an element Th_α(s) = Φ ∈ PL is mapped to

$$\zeta(\Phi) = T(Th_{\alpha})\alpha(s).$$

- **I** Prove that ζ is well defined.
- **(**) Prove that $Th_{\alpha} : \alpha \longrightarrow \zeta$ is the only morphism of coalgebras.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

The structural map ζ is well defined

Proof.

For every morphism f : α → β and every state s ∈ α, the equation

$$T(Th_{\alpha})\alpha(s) = T(Th_{\beta})\beta f(s)$$

holds.

Por every pair of states s ∈ α and s' ∈ β. If Th_α(s) = Th_β then

 $T(Th_{\alpha})\alpha(s) = T(Th_{\beta})\beta(s')$

Important

You have to use that the language \mathcal{L} is expressive

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

The structural map ζ is well defined

Proof.

• For every morphism $f : \alpha \longrightarrow \beta$ and every state $s \in \alpha$, the equation

$$T(Th_{\alpha})\alpha(s) = T(Th_{\beta})\beta f(s)$$

holds.

You will use that $s \sim s'$ implies $Th_{\alpha}(s) = Th_{\beta}(s')$

Por every pair of states s ∈ α and s' ∈ β. If Th_α(s) = Th_β then

 $T(Th_{lpha})lpha(s) = T(Th_{eta})eta(s')$

Important

You have to use that the language $\ensuremath{\mathcal{L}}$ is expressive

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

The structural map ζ is well defined

Proof.

• For every morphism $f : \alpha \longrightarrow \beta$ and every state $s \in \alpha$, the equation

$$T(Th_{\alpha})\alpha(s) = T(Th_{\beta})\beta f(s)$$

holds.

2 For every pair of states $s \in \alpha$ and $s' \in \beta$. If $Th_{\alpha}(s) = Th_{\beta}$ then

$$T(Th_{lpha})lpha(s)=T(Th_{eta})eta(s')$$

You will use that $Th_{\alpha}(s) = Th_{\beta}(s')$ implies $s \sim s'$

Important

You have to use that the language $\mathcal L$ is expressive

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

The structural map ζ is well defined

Proof.

• For every morphism $f : \alpha \longrightarrow \beta$ and every state $s \in \alpha$, the equation

$$T(Th_{lpha})lpha(s)=T(Th_{eta})eta f(s)$$

holds.

2 For every pair of states $s \in \alpha$ and $s' \in \beta$. If $Th_{\alpha}(s) = Th_{\beta}$ then

$$T(Th_{\alpha})\alpha(s) = T(Th_{\beta})\beta(s')$$

Important

You have to use that the language \mathcal{L} is expressive

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶▲□▶▲□▶▲□▶ □ のQで

A point wise definition of final coalgebras. We are here!!!

Proof.

- Take $Z = \{ \Phi \subseteq \mathcal{L} \mid (\exists \alpha) (\exists s \in \alpha) (Th_{\alpha}(s) = \Phi) \}.$
- 2 Define ζ : Z → TZ as follows: an element Th_α(s) = Φ ∈ PL is mapped to

$$\zeta(\Phi) = T(Th_{\alpha})\alpha(s).$$

Prove that ζ is well defined.
Prove that *Th*_α : α → ζ is the only morphism of coalgebras.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

The function Th_{α} is the only morphism

Proof.

Assume there exists a morphism f : α → ζ and s ∈ α such that

 $f(s) \neq Th_{\alpha}(s).$

- 2 Then there exists a coalgebra β and s' ∈ β such that Th_β(s') = f(s).
- 3 This implies $s \sim s'$. Since the language is expressive we conclude

 $Th_{\beta}(s') = Th_{\alpha}(s).$

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

The function Th_{α} is the only morphism

Proof.

Solution Assume there exists a morphism *f* : α → ζ and *s* ∈ α such that

 $f(s) \neq Th_{\alpha}(s).$

2 Then there exists a coalgebra β and s' ∈ β such that Th_β(s') = f(s).

3 This implies $s \sim s'$. Since the language is expressive we conclude

 $\mathit{Th}_{eta}(s') = \mathit{Th}_{lpha}(s).$

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

The function Th_{α} is the only morphism

Proof.

Solution Assume there exists a morphism *f* : *α* → *ζ* and *s* ∈ *α* such that

 $f(s) \neq Th_{\alpha}(s).$

- 2 Then there exists a coalgebra β and s' ∈ β such that Th_β(s') = f(s).
- 3 This implies $s \sim s'$. Since the language is expressive we conclude

 $Th_{\beta}(s') = Th_{\alpha}(s).$

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

The function Th_{α} is the only morphism

Proof.

Solution Assume there exists a morphism *f* : *α* → *ζ* and *s* ∈ *α* such that

 $f(s) \neq Th_{\alpha}(s).$

- 2 Then there exists a coalgebra β and s' ∈ β such that Th_β(s') = f(s).
- 3 This implies $s \sim s'$. Since the language is expressive we conclude

$$Th_{\beta}(s') = Th_{\alpha}(s).$$

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

The function Th_{α} is the only morphism

Proof.

Solution Assume there exists a morphism *f* : *α* → *ζ* and *s* ∈ *α* such that

 $f(s) \neq Th_{\alpha}(s).$

- 2 Then there exists a coalgebra β and s' ∈ β such that Th_β(s') = f(s).
- 3 This implies $s \sim s'$. Since the language is expressive we conclude

$$Th_{eta}(s')=Th_{lpha}(s).$$

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Moreover....

Theorem

An abstract coalgebraic language \mathcal{L} is expressive iff the set

$$\boldsymbol{Z} = \{ \boldsymbol{\Phi} \subseteq \mathcal{L} \, | \, (\exists \alpha) (\exists \boldsymbol{s} \in \alpha) (\mathit{Th}_{\alpha}(\boldsymbol{s}) = \boldsymbol{\Phi}) \}$$

admits a final coalgebraic structure ζ (for T) such that the arrow Th_{α} is the only morphism.

Corollary

An abstract coalgebraic language \mathcal{L} has the Henessy-Milner iff the set

 $Z = \{ \Phi \subseteq \mathcal{L} \, | \, (\exists \alpha) (\exists s \in \alpha) (Th_{\alpha}(s) = \Phi) \}$

admits a coalgebraic structure ζ (for T) such that the arrow Th_{α} is a morphism.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Moreover....

Theorem

An abstract coalgebraic language \mathcal{L} is expressive iff the set

$$\boldsymbol{Z} = \{ \boldsymbol{\Phi} \subseteq \mathcal{L} \, | \, (\exists \alpha) (\exists \boldsymbol{s} \in \alpha) (\mathit{Th}_{\alpha}(\boldsymbol{s}) = \boldsymbol{\Phi}) \}$$

admits a final coalgebraic structure ζ (for T) such that the arrow Th_{α} is the only morphism.

Corollary

An abstract coalgebraic language ${\mathcal L}$ has the Henessy-Milner iff the set

$$Z = \{ \Phi \subseteq \mathcal{L} \, | \, (\exists \alpha) (\exists s \in \alpha) (Th_{\alpha}(s) = \Phi) \}$$

admits a coalgebraic structure ζ (for T) such that the arrow Th_{α} is a morphism.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶▲□▶▲□▶▲□▶ □ のQで

Some extra properties

- The theory map $Th_{\zeta}: Z \longrightarrow \mathcal{PL}$ is the inclusion.
- Truth Lemma: For any formula $\varphi \in \mathcal{L}$ and any set $\Phi \in Z$

 $\varphi \in Th_{\zeta}(\Phi) \text{ iff } \varphi \in \Phi.$

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Outline

- Coalgebras: Structures
 Behavioral Equivalence
 Final Coalgebras
- 2 Coalgebras: Languages
- 3 Structures Vs Languages

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Farewell to Set

Our aim

To construct final coalgebras over categories different than Set

First issue

What is an expressive language outside Set?

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Pointless languages I

Definition

An abstract coalgebraic language is a set $\ensuremath{\mathcal{L}}$ together with a function

$$Th_{\alpha}: \mathcal{A} \longrightarrow \mathcal{PL}$$

for each coalgebra $\alpha : A \rightarrow TA$.

- In our construction we are not using the points (formulas) in L.
- In the "real live" *L* has an algebraic structure and...
- in the boolean case, our theory maps are functions

$$Th_{\alpha}: \mathcal{A} \rightarrow Uf(\mathcal{L}).$$

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Pointless languages II

Definition

Given a functor $T : \mathbb{A} \to \mathbb{A}$, an *abstract coalgebraic language* for *T*-coalgebras is an object \mathcal{L} together with a morphism

$$Th_{\alpha}: A \longrightarrow \mathcal{L}$$

for each coalgebra $\alpha : A \longrightarrow TA$.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Pointless expressivity I

Expressivity in Set

$$m{s} \sim m{s}'$$
 iff $\mathit{Th}_{lpha}(m{s}) = \mathit{Th}_{eta}(m{s}')$

From left to right

The following diagram

commutes for every coalgebra morphism f.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Pointless expressivity II

Expressivity in Set

$$m{s} \sim m{s}'$$
 iff $\mathit{Th}_lpha(m{s}) = \mathit{Th}_eta(m{s}')$

One reading from right to left

For every pullback there exists a pair of coalgebra morphism f_1, f_2 such that

the diagram on the right commutes.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Pointless expressivity II

Expressivity in Set

$$m{s} \sim m{s}'$$
 iff $\mathit{Th}_lpha(m{s}) = \mathit{Th}_eta(m{s}')$

One reading from right to left

For every pullback there exists a pair of coalgebra morphism f_1, f_2 such that

the diagram on the right commutes.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

From final coalgebras to expressive languages

Theorem

For any functor $T : \mathbb{A} \to \mathbb{A}$ over a category with pullbacks; if there exists a final coalgebra ζ , there exists an expressive abstract coalgebraic language.

Proof.

Take
$$\mathcal{L} = Z$$
 and $Th_{\alpha} = f_{\alpha}$.

One road to go

The converse of the previous theorem holds if $\mathbb A$ is monadic over Set

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Nostalgia for Set

In Set the following are equivalent: For an adequate language \mathcal{L} ...

- \mathcal{L} is expressive.
- The function ζ is well defined.

The set

$$\boldsymbol{Z} = \{ \boldsymbol{\Phi} \subset \mathcal{L} \, | \, (\exists \alpha) (\exists \boldsymbol{a} \in \alpha) (\mathit{Th}_{\alpha}(\boldsymbol{a}) = \boldsymbol{\Phi}) \}$$

admits a coalgebraic structure such that for each coalgebra α the function Th_{α} is a morphism of coalgebras.

- The condition with pullbacks
- But there is more...

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Nostalgia for Set

In Set the following are equivalent: For an adequate language $\mathcal{L}\ldots$

- \mathcal{L} is expressive.
- The function ζ is well defined.

The set

$$\boldsymbol{Z} = \{ \boldsymbol{\Phi} \subset \mathcal{L} \, | \, (\exists \alpha) (\exists \boldsymbol{a} \in \alpha) (\mathit{Th}_{\alpha}(\boldsymbol{a}) = \boldsymbol{\Phi}) \}$$

admits a coalgebraic structure such that for each coalgebra α the function Th_{α} is a morphism of coalgebras.

- The condition with pullbacks
- But there is more...

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

The blind Set theorist

In Set the following are equivalent: For an adequate language $\mathcal{L}\ldots$

The set

$$\boldsymbol{Z} = \{ \boldsymbol{\Phi} \subset \mathcal{L} \, | \, (\exists \alpha) (\exists \boldsymbol{a} \in \alpha) (\mathit{Th}_{\alpha}(\boldsymbol{a}) = \boldsymbol{\Phi}) \}$$

admits a coalgebraic structure (for *T*) such that for each coalgebra α the function Th_{α} is a morphism of coalgebras.

• For each coalgebra α the set

$$Z_{\alpha} = \{ \Phi \subseteq \mathcal{L} \, | \, (\exists a \in \alpha) (Th_{\alpha}(a) = \Phi) \}$$

admits a coalgebraic structure for T such that the function Th_{α} is a morphism of coalgebras.

 For each coalgebra (A, α) we can make the quotient with Ker(Th_α) in Coalg(T).

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

The blind Set theorist

In Set the following are equivalent: For an adequate language $\mathcal{L}\ldots$

The set

$$\boldsymbol{Z} = \{ \boldsymbol{\Phi} \subset \mathcal{L} \, | \, (\exists \alpha) (\exists \boldsymbol{a} \in \alpha) (\mathit{Th}_{\alpha}(\boldsymbol{a}) = \boldsymbol{\Phi}) \}$$

admits a coalgebraic structure (for *T*) such that for each coalgebra α the function Th_{α} is a morphism of coalgebras.

• For each coalgebra α the set

$$Z_{\alpha} = \{ \Phi \subseteq \mathcal{L} \, | \, (\exists a \in \alpha) (\mathit{Th}_{\alpha}(a) = \Phi) \}$$

admits a coalgebraic structure for T such that the function Th_{α} is a morphism of coalgebras.

 For each coalgebra (A, α) we can make the quotient with Ker(Th_α) in Coalg(T).

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

The blind Set theorist

In Set the following are equivalent: For an adequate language $\mathcal{L}\ldots$

The set

$$\boldsymbol{Z} = \{ \boldsymbol{\Phi} \subset \mathcal{L} \, | \, (\exists \alpha) (\exists \boldsymbol{a} \in \alpha) (\mathit{Th}_{\alpha}(\boldsymbol{a}) = \boldsymbol{\Phi}) \}$$

admits a coalgebraic structure (for *T*) such that for each coalgebra α the function Th_{α} is a morphism of coalgebras.

• For each coalgebra α the set

$$Z_{\alpha} = \{ \Phi \subseteq \mathcal{L} \, | \, (\exists a \in \alpha) (\mathit{Th}_{\alpha}(a) = \Phi) \}$$

admits a coalgebraic structure for T such that the function Th_{α} is a morphism of coalgebras.

 For each coalgebra (A, α) we can make the quotient with Ker(Th_α) in Coalg(T).

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Unraveling the quotient

The quotient

For each coalgebra α

we can fill this diagram.
Coalgebras: Languages

Structures Vs Languages

Pointless Languages

Unraveling the quotient

The quotient

For each coalgebra α

we can fill this diagram.

(日)

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The categorical Point of View

Two facts:

- We are using a factorization structure.
- We can use adjoints.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Adjoint Functor Theorem

Theorem

If \mathbb{C} is a cocomplete category, then \mathbb{C} has a terminal object if and only if it has a set S of objects which is weakly final, i.e. For every $c \in \mathbb{C}$ there exists an arrow $c \rightarrow s$.

Corollary

For any functor $T : \mathbb{A} \to \mathbb{A}$ over a decent category with factorization structures the existence of an expressive object implies the existence of a final coalgebra.

Coalgebras: Languages

Structures Vs Languages

Pointless Languages

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The End.